Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 4 grudnia 2025 11:52
  • Data zakończenia: 4 grudnia 2025 11:53

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie należy użyć, aby połączyć sieć lokalną z Internetem?

A. most.
B. przełącznik.
C. koncentrator.
D. ruter.
Ruter to urządzenie, które pełni kluczową rolę w komunikacji pomiędzy siecią lokalną a Internetem. Jego głównym zadaniem jest przekazywanie danych pomiędzy różnymi sieciami, co pozwala na wymianę informacji pomiędzy urządzeniami wewnątrz sieci lokalnej a użytkownikami zewnętrznymi. Ruter wykonuje funkcje takie jak kierowanie pakietów, NAT (Network Address Translation) oraz zarządzanie adresami IP. Przykładem zastosowania rutera w praktyce jest sytuacja, gdy mamy w domu kilka urządzeń (komputery, smartfony, tablety), które łączą się z Internetem. Ruter pozwala tym urządzeniom na korzystanie z jednego, publicznego adresu IP, co jest zgodne z praktykami oszczędzania przestrzeni adresowej. Ruter może również zapewniać dodatkowe funkcje, takie jak zapora sieciowa (firewall) oraz obsługa sieci bezprzewodowych (Wi-Fi), co zwiększa bezpieczeństwo i komfort użytkowania. To urządzenie jest zatem niezbędne w każdej sieci, która chce mieć dostęp do globalnej sieci Internet.

Pytanie 2

Punkty abonenckie są rozmieszczone w równych odstępach, do nawiązania połączenia z najbliższym punktem wymagane jest 4 m kabla, a z najdalszym - 22 m. Koszt zakupu 1 m kabla wynosi 1 zł. Jaką kwotę trzeba przeznaczyć na zakup kabla UTP do połączenia 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym?

A. 260 zł
B. 80 zł
C. 130 zł
D. 440 zł
Odpowiedzi takie jak 130 zł czy 440 zł wynikają raczej z niezrozumienia, jak to wszystko policzyć. Gdy mówisz, że 130 zł to pomijasz, że odległości do gniazd są różne. Myślenie, że wszystkie gniazda są w tej samej odległości, to błąd. Na przykład, średnia długość kabla to nie wszystko, bo każda odległość może być zupełnie inna i to może całkowicie zmienić koszty. Z kolei odpowiedź 440 zł, to chyba wynika z myślenia, że każde gniazdo musi mieć maksymalną długość kabla, co też jest mało prawdopodobne. W rzeczywistości, część gniazd jest bliżej i potrzebuje mniej kabla, więc koszty są niższe. W projektach instalacyjnych często jest tak, że ludzie przesadzają z zabezpieczeniem, przez co kupują więcej materiałów niż potrzebują. Zamiast tego, warto dokładnie pomierzyć i przeanalizować, co jest gdzie, żeby zmniejszyć wydatki. Opracowanie schematu instalacji to naprawdę dobra praktyka, bo ułatwia później wszystko zaplanować.

Pytanie 3

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
B. umożliwiająca zdalne połączenie z urządzeniem
C. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
D. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 4

Jednostką przenikania zdalnego FEXT, dotyczącego okablowania strukturalnego, jest

A. Ω
B. dB
C. s
D. V
Wybór jednostki dla przeniku zdalnego FEXT jako Ω (om), V (wolt) lub s (sekunda) jest nieprawidłowy, ponieważ każda z tych jednostek odnosi się do zupełnie innych właściwości fizycznych, które nie mają bezpośredniego związku z zakłóceniami sygnałów w systemach okablowania. Om jest jednostką oporu elektrycznego, która odnosi się do zdolności materiałów do opierania się przepływowi prądu. W kontekście okablowania strukturalnego opór ma znaczenie, ale nie jest bezpośrednio związany z pomiarem przeniku FEXT. Volt jest jednostką napięcia i również nie odnosi się do analizy zakłóceń, które zachodzą w torach kablowych. Napięcie jest ważnym parametrem w obwodach elektrycznych, ale jego pomiar nie dostarcza informacji o przenikaniu sygnałów między torami, ani o ich zakłóceniach. Z kolei sekunda jako jednostka czasu służy do pomiaru zdarzeń w czasie, takich jak czas trwania sygnału, co również nie jest właściwe w kontekście oceny przeniku zdalnego. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych odpowiedzi, często polegają na myleniu jednostek miary i ich zastosowań w różnych kontekstach. Właściwe zrozumienie znaczenia i zastosowania jednostki dB w kontekście FEXT pozwala na lepszą interpretację wyników pomiarów oraz skuteczniejsze projektowanie i eksploatację systemów okablowania strukturalnego, co jest kluczowe dla zapewnienia wysokiej jakości komunikacji w sieciach. Znajomość standardów branżowych, takich jak ANSI/TIA-568, może również pomóc w uniknięciu tych błędów.

Pytanie 5

Urządzenie sieciowe typu most (ang. Bridge) działa w:

A. jest urządzeniem klasy store and forward
B. osiemnej warstwie modelu OSI
C. pierwszej warstwie modelu OSI
D. nie ocenia ramki pod względem adresu MAC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Most (ang. Bridge) jest urządzeniem sieciowym, które działa w drugiej warstwie modelu OSI, znanej jako warstwa łącza danych. Jego głównym zadaniem jest segmentacja ruchu sieciowego oraz poprawa wydajności i bezpieczeństwa komunikacji. Pracując w trybie 'store and forward', most odbiera ramki danych, buforuje je, a następnie analizuje ich nagłówki, aby określić, czy wysłać je do danego segmentu sieci. To podejście pozwala na eliminację ewentualnych błędów w danych, ponieważ most może zignorować ramki, które są uszkodzone. Mosty są często wykorzystywane w architekturach LAN (Local Area Network), gdzie pozwalają na łączenie różnych segmentów sieci, co z kolei umożliwia lepsze zarządzanie ruchem i zwiększa dostępność sieci. W kontekście standardów, mosty są zgodne z protokołem IEEE 802.1D, który definiuje standardy dla mostowania oraz zarządzania ruchami w sieciach Ethernet. Dobre praktyki w projektowaniu sieci zalecają stosowanie mostów w sytuacjach, gdzie istnieje potrzeba podziału ruchu lub zwiększenia przepustowości bez konieczności inwestowania w droższe przełączniki.

Pytanie 6

Z powodu uszkodzenia kabla typu skrętka zanikło połączenie pomiędzy przełącznikiem a komputerem stacjonarnym. Jakie urządzenie pomiarowe powinno zostać wykorzystane do identyfikacji i naprawy usterki, aby nie było konieczne wymienianie całego kabla?

A. Spektrum analizer.
B. Wielofunkcyjny miernik.
C. Urządzenie do pomiaru mocy.
D. Reflektometr TDR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reflektometr TDR (Time Domain Reflectometer) to urządzenie, które pozwala na lokalizację uszkodzeń w kablach, w tym w kablach typu skrętka. Działa na zasadzie wysyłania impulsów elektrycznych wzdłuż kabla i analizy echa tych impulsów, które powracają po napotkaniu na różne impedancje, takie jak uszkodzenia lub połączenia. Dzięki temu można dokładnie zlokalizować miejsce awarii, co pozwala na szybkie podjęcie działań naprawczych bez konieczności wymiany całego kabla. W praktyce, reflektometr TDR jest niezwykle przydatny w sytuacjach, gdy występują problemy z połączeniem, ponieważ oszczędza czas i koszty związane z wymianą infrastruktury. Tego rodzaju urządzenia są standardem w branży telekomunikacyjnej i IT, gdzie utrzymanie ciągłości działania sieci jest kluczowe. Użycie TDR jest zgodne z dobrymi praktykami w zakresie diagnostyki sieci i pozwala na efektywne zarządzanie zasobami. Warto również zauważyć, że reflektometry TDR są w stanie dostarczyć dodatkowe informacje o kondycji kabla, co może pomóc w zapobieganiu przyszłym awariom.

Pytanie 7

Narzędzie przedstawione na zdjęciu to

Ilustracja do pytania
A. narzędzie uderzeniowe.
B. ściągacz izolacji.
C. zaciskarka.
D. nóż monterski.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "ściągacz izolacji" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu ma oznaczenia "CABLE STRIPPER/CUTTER", co w tłumaczeniu na język polski oznacza "ściągacz izolacji/przecinak". Narzędzia te są kluczowe w pracy z instalacjami elektrycznymi, gdyż umożliwiają sprawne usuwanie izolacji z przewodów. W praktyce, ściągacz izolacji jest niezbędny przy przygotowywaniu przewodów do połączeń, co jest istotne w kontekście zgodności z normami bezpieczeństwa. Poprawne zdjęcie izolacji zapobiega zwarciom oraz innym problemom związanym z niewłaściwym połączeniem. Użycie ściągacza izolacji minimalizuje ryzyko uszkodzenia żył przewodu, co jest kluczowe dla zapewnienia trwałości połączeń elektrycznych. W wielu krajach, w tym w Polsce, stosowanie odpowiednich narzędzi do obróbki przewodów jest regulowane standardami, które nakładają obowiązek stosowania narzędzi przystosowanych do danej aplikacji, co podkreśla znaczenie tego narzędzia w branży elektrycznej.

Pytanie 8

Jakim skrótem nazywana jest sieć, która korzystając z technologii warstwy 1 i 2 modelu OSI, łączy urządzenia rozmieszczone na dużych terenach geograficznych?

A. WAN
B. VPN
C. LAN
D. VLAN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
WAN, czyli Wide Area Network, odnosi się do sieci, która łączy urządzenia rozmieszczone na dużych obszarach geograficznych, wykorzystując technologie warstwy 1 i 2 modelu OSI. W przeciwieństwie do LAN (Local Area Network), która obejmuje mniejsze obszary, takie jak biura czy budynki, WAN może rozciągać się na całe miasta, kraje a nawet kontynenty. Przykładami zastosowania WAN są sieci rozległe wykorzystywane przez przedsiębiorstwa do łączenia oddziałów w różnych lokalizacjach, a także infrastruktura internetowa, która łączy miliony użytkowników na całym świecie. Standardy takie jak MPLS (Multiprotocol Label Switching) czy frame relay są często wykorzystywane w sieciach WAN, co pozwala na efektywne zarządzanie ruchem danych oraz zapewnia odpowiednią jakość usług. Znajomość technologii WAN jest kluczowa dla specjalistów IT, szczególnie w kontekście projektowania i zarządzania infrastrukturą sieciową w dużych organizacjach.

Pytanie 9

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. pierścienia
B. gwiazdy
C. siatki
D. magistrali

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekazywanie żetonu w sieci typu pierścieniowego to naprawdę ciekawy proces. W praktyce oznacza to, że dane krążą wokół zamkniętej pętli, co ułatwia dostęp do informacji dla każdego węzła. Każdy węzeł łączy się z dwoma innymi, tworząc coś w rodzaju zamkniętej sieci. Kiedy jeden węzeł chce przesłać dane, po prostu umieszcza je w żetonie, który następnie krąży, aż dotrze do celu. To rozwiązanie zmniejsza ryzyko kolizji, bo tylko jeden żeton jest aktywny w danym momencie, co poprawia wydajność. Ciekawe jest, że tego typu sieci często znajdziemy w lokalnych sieciach komputerowych, gdzie stała wymiana danych jest bardzo ważna. Dobrym przykładem jest technologia Token Ring, która była popularna w latach 80. i 90. XX wieku. Standardy IEEE 802.5 dokładnie opisują, jak te sieci powinny działać, co pozwala różnym urządzeniom na współpracę. W skrócie, zarządzanie przekazywaniem żetonu w sieci pierścieniowej sprawia, że jest to naprawdę funkcjonalne rozwiązanie w wielu zastosowaniach.

Pytanie 10

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić kanał radiowy
B. zmienić sposób szyfrowania z WEP na WPA
C. skonfigurować filtrowanie adresów MAC
D. zmienić hasło

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 11

Jakie aktywne urządzenie pozwoli na podłączenie 15 komputerów, drukarki sieciowej oraz rutera do sieci lokalnej za pomocą kabla UTP?

A. Panel krosowy 16-portowy
B. Switch 16-portowy
C. Panel krosowy 24-portowy
D. Switch 24-portowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przełącznik 24-portowy to świetne rozwiązanie, bo można do niego podłączyć sporo urządzeń jednocześnie, jak komputery czy drukarki, do lokalnej sieci. W sytuacji, gdzie trzeba podłączyć 15 komputerów, drukarkę sieciową i router, ten przełącznik akurat ma tyle portów, że wszystko się zmieści. W codziennym użytkowaniu przełączniki są kluczowe w zarządzaniu ruchem w sieci, co umożliwia szybsze przesyłanie danych między urządzeniami. Dodatkowo, jak używasz przełącznika, można wprowadzić różne funkcje, na przykład VLAN, co pomaga w podziale sieci i zwiększeniu jej bezpieczeństwa. Jeśli chodzi o standardy, sprzęty zgodne z normą IEEE 802.3 potrafią działać naprawdę wydajnie i niezawodnie. Tak więc, na pewno 24-portowy przełącznik to sensowne rozwiązanie dla średnich sieci, które potrzebują elastyczności i dużej liczby połączeń.

Pytanie 12

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. kabel koncentryczny o średnicy ¼ cala
B. fale radiowe o częstotliwości 5 GHz
C. fale radiowe o częstotliwości 2,4 GHz
D. kabel UTP kategorii 5e

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kabel UTP kategorii 5e jest idealnym medium transmisyjnym do budowy sieci przewodowej o maksymalnej szybkości transmisji 1 Gb/s i odległości do 100 m. UTP (Unshielded Twisted Pair) to rodzaj kabla, który składa się z par skręconych przewodów, co znacząco zmniejsza zakłócenia elektromagnetyczne i pozwala na osiąganie wysokich prędkości transmisji. Standard ten zapewnia przepustowość do 100 MHz, co umożliwia przesyłanie danych z prędkościami sięgającymi 1 Gb/s w odległości do 100 m, zgodnie z normą IEEE 802.3ab dla Ethernetu. Przykładem zastosowania mogą być biura, gdzie sieci komputerowe muszą być niezawodne i wydajne, co czyni kabel UTP 5e odpowiednim wyborem. Warto również zwrócić uwagę, że kabel ten jest powszechnie stosowany w standardzie Ethernet, co czyni go dobrze udokumentowanym i łatwo dostępnym rozwiązaniem w branży IT.

Pytanie 13

Zastosowanie połączenia typu trunk między dwoma przełącznikami umożliwia

A. zablokowanie wszystkich nadmiarowych połączeń na danym porcie
B. przesyłanie ramek z różnych wirtualnych sieci lokalnych w jednym łączu
C. konfigurację agregacji portów, co zwiększa przepustowość między przełącznikami
D. zwiększenie przepustowości dzięki wykorzystaniu dodatkowego portu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Połączenie typu trunk między dwoma przełącznikami rzeczywiście umożliwia przesyłanie ramek z różnych wirtualnych sieci lokalnych (VLAN) przez jedno łącze. Dzięki temu, cały ruch sieciowy, pochodzący z wielu VLAN-ów, może być efektywnie transportowany przez jedno fizyczne połączenie, co prowadzi do oszczędności w infrastrukturze kablowej oraz zwiększenia elastyczności sieci. Praktycznym zastosowaniem trunków jest konfiguracja w środowiskach wirtualnych, gdzie wiele maszyn wirtualnych korzysta z różnych VLAN-ów. Standard IEEE 802.1Q definiuje sposób tagowania ramek Ethernet, co pozwala na identyfikację, z którego VLAN-u pochodzi dana ramka. Dobrą praktyką jest przypisywanie trunków do portów, które łączą przełączniki, aby zapewnić segregację ruchu oraz umożliwić wydajne zarządzanie siecią. Implementując trunkowanie, administratorzy sieci mogą również wprowadzać polityki bezpieczeństwa i zarządzać ruchem w sposób, który optymalizuje wydajność sieci oraz minimalizuje ryzyko kolizji. Przykładowo, w dużych sieciach korporacyjnych, trunking pozwala na segregację ruchu biura i działów, co jest kluczowe dla wydajności i bezpieczeństwa.

Pytanie 14

Które urządzenie sieciowe jest widoczne na zdjęciu?

Ilustracja do pytania
A. Karta sieciowa.
B. Most.
C. Modem.
D. Przełącznik.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przełącznik, widoczny na zdjęciu, to kluczowe urządzenie w sieciach komputerowych, które umożliwia efektywne zarządzanie ruchem danych pomiędzy różnymi urządzeniami w sieci lokalnej (LAN). Działa na warstwie drugiej modelu OSI, co oznacza, że operuje na adresach MAC i potrafi inteligentnie kierować dane tylko do tych portów, które są rzeczywiście potrzebne, co znacznie zwiększa wydajność sieci. Przełączniki pozwalają na podłączenie wielu urządzeń, takich jak komputery, drukarki czy serwery, tworząc lokalne sieci, które mogą być następnie połączone z innymi sieciami za pomocą routerów. W praktyce, przełączniki są niezbędne w biurach i instytucjach, gdzie wiele urządzeń wymaga współdzielenia zasobów. W oparciu o standardy IEEE 802.3, nowoczesne przełączniki mogą obsługiwać różne prędkości transmisji danych, co czyni je elastycznym rozwiązaniem. Zrozumienie roli przełącznika jest kluczowe dla każdego, kto zajmuje się projektowaniem lub zarządzaniem infrastrukturą sieciową.

Pytanie 15

Które z poniższych urządzeń pozwala na bezprzewodowe łączenie się z siecią lokalną opartą na kablu?

A. Punkt dostępowy
B. Modem
C. Media konwerter
D. Przełącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Punkt dostępowy, znany również jako access point, jest kluczowym urządzeniem w kontekście bezprzewodowych sieci lokalnych. Jego głównym zadaniem jest umożliwienie urządzeniom bezprzewodowym, takim jak laptopy, smartfony czy tablety, dostępu do kablowej sieci lokalnej. Punkty dostępowe działają na zasadzie połączenia z routerem lub przełącznikiem za pomocą kabla Ethernet, a następnie transmitują sygnał bezprzewodowy w określonym zasięgu, co pozwala użytkownikom na wygodne korzystanie z internetu bez konieczności używania kabli. Standardy takie jak IEEE 802.11, powszechnie znane jako Wi-Fi, definiują parametry pracy punktów dostępowych, w tym szybkości transmisji danych oraz zakresy częstotliwości. Dzięki implementacji punktów dostępowych w biurach, szkołach czy przestrzeniach publicznych, można zapewnić użytkownikom mobilny dostęp do sieci, co jest niezbędne w dobie pracy zdalnej i mobilności. Przykładem zastosowania punktów dostępowych są sieci hot-spot w kawiarniach lub na lotniskach, gdzie użytkownicy mogą łączyć się z internetem w sposób elastyczny i wygodny.

Pytanie 16

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 320,00 zł
B. 160,00 zł
C. 80,00 zł
D. 800,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wynika z właściwego obliczenia całkowitej długości kabla potrzebnego do zainstalowania 5 podwójnych gniazd abonenckich. Średnia odległość każdego gniazda od punktu dystrybucyjnego wynosi 10 m. Aby zainstalować 5 gniazd, potrzebujemy 5 x 10 m = 50 m kabla. Cena za 1 m kabla UTP kategorii 5e to 1,60 zł, więc koszt zakupu wyniesie 50 m x 1,60 zł/m = 80,00 zł. Jednak zapewne w pytaniu chodzi o łączną długość kabla, co może obejmować także dodatkowe przewody lub zapas na instalację, co prowadzi do wyższych kosztów. W praktyce zaleca się uwzględnienie 20% zapasu materiału, co w tym przypadku daje dodatkowe 10 m, więc całkowity koszt wyniesie 160,00 zł. Użycie kabla UTP kategorii 5e jest zgodne z aktualnymi standardami, zapewniając efektywność transmisji danych w sieci lokalnej, co jest kluczowe w nowoczesnych biurach. Warto również zaznaczyć, że stosowanie kabli o odpowiednich parametrach jest istotne dla utrzymania jakości sygnału oraz minimalizacji zakłóceń.

Pytanie 17

Podczas przetwarzania pakietu przez ruter jego czas życia TTL

A. przyjmuje przypadkową wartość
B. pozostaje bez zmian
C. ulega zmniejszeniu
D. ulega zwiększeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czas życia pakietu (TTL - Time To Live) jest kluczowym parametrem w protokole IP, który decyduje o tym, jak długo pakiet może przebywać w sieci, zanim zostanie odrzucony. Każdy ruter, przez który przechodzi pakiet, zmniejsza wartość TTL o 1. Dzieje się tak, ponieważ TTL ma na celu zapobieganie nieskończonemu krążeniu pakietów w sieci, które mogą być spowodowane błędami w routingu. Przykładowo, jeśli pakiet ma początkową wartość TTL równą 64, to po przejściu przez 3 rutery, jego wartość TTL spadnie do 61. W praktyce, administratorzy sieci powinni być świadomi wartości TTL, ponieważ może to wpływać na wydajność sieci oraz na czas, w którym pakiety docierają do celu. Dobrą praktyką jest monitorowanie TTL w celu optymalizacji tras i diagnozowania problemów z łącznością. W standardach protokołu IP, zmniejszanie TTL jest istotne, ponieważ zapewnia, że pakiety nie będą krążyły w sieci bez końca, co może prowadzić do przeciążenia i degradacji jakości usług.

Pytanie 18

Czy okablowanie strukturalne można zakwalifikować jako część infrastruktury?

A. terenowej
B. dalekosiężnej
C. czynnej
D. pasywnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okablowanie strukturalne jest częścią tzw. infrastruktury pasywnej. Chodzi o te wszystkie fizyczne elementy sieci, które nie potrzebują aktywnego zarządzania, by przechodziły przez nie dane. Mamy tu kable, gniazda, złącza i szafy rackowe – to jak fundament dla całej infrastruktury sieciowej. Dzięki temu urządzenia aktywne, jak switche i routery, mogą ze sobą łatwo komunikować. Na przykład w biurach czy różnych publicznych budynkach dobrze zaprojektowane okablowanie zgodnie z normami ANSI/TIA-568 przyczynia się do wysokiej jakości sygnału oraz zmniejsza zakłócenia. Warto też pamiętać, że dobre projektowanie okablowania bierze pod uwagę przyszłe potrzeby, bo świat technologii zmienia się szybko. Takie podejście nie tylko zwiększa efektywność, ale i umożliwia łatwą integrację nowych technologii w przyszłości, co czyni je naprawdę ważnym elementem każdej nowoczesnej sieci IT.

Pytanie 19

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Kabla współosiowego
B. Fal radiowych
C. Światłowodu jednodomowego
D. Skrętki ekranowanej STP

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 20

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Przełącznik warstwy 3
B. Ruter ADSL
C. Konwerter mediów
D. Punkt dostępu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ruter ADSL jest urządzeniem, które łączy lokalną sieć komputerową z Internetem dostarczanym przez operatora telekomunikacyjnego. Działa on na zasadzie modulacji sygnału ADSL, co pozwala na jednoczesne przesyłanie danych przez linię telefoniczną, bez zakłócania połączeń głosowych. Ruter ADSL pełni funkcję bramy do sieci, umożliwiając podłączenie wielu urządzeń w sieci lokalnej do jednego połączenia internetowego. Zazwyczaj wyposażony jest w porty LAN, przez które można podłączyć komputery, drukarki oraz inne urządzenia. Przykładem zastosowania może być domowa sieć, gdzie ruter ADSL łączy się z modemem telefonicznym, a następnie rozdziela sygnał na różne urządzenia w sieci. Dodatkowo, rutery ADSL często zawierają funkcje zarządzania jakością usług (QoS) oraz zabezpieczenia, takie jak firewall, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. Warto również zauważyć, że rutery ADSL są standardowym rozwiązaniem w przypadku lokalnych sieci, które korzystają z technologii xDSL i są szeroko stosowane w domach oraz małych biurach.

Pytanie 21

Który ze standardów opisuje strukturę fizyczną oraz parametry kabli światłowodowych używanych w sieciach komputerowych?

A. IEEE 802.11
B. IEEE 802.3af
C. RFC 1918
D. ISO/IEC 11801

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
ISO/IEC 11801 to fundamentalny, międzynarodowy standard, który precyzyjnie określa wymagania dotyczące okablowania strukturalnego w budynkach i kampusach, w tym parametry techniczne oraz sposób budowy kabli światłowodowych. W praktyce oznacza to, że instalując sieć – czy to w biurze, czy w szkole, czy nawet w nowoczesnej hali produkcyjnej – trzeba sięgać po wytyczne tego standardu, by zapewnić odpowiednią jakość i kompatybilność komponentów. ISO/IEC 11801 definiuje klasy transmisji, rodzaje włókien, minimalne parametry tłumienia i wymagania dotyczące złącz czy sposobu prowadzenia przewodów światłowodowych. To bardzo przydatne, bo daje gwarancję, że sieć będzie działać niezawodnie i zgodnie z oczekiwaniami – nie tylko dziś, ale też za kilka lat, kiedy pojawi się potrzeba rozbudowy lub modernizacji. Moim zdaniem, w codziennej pracy technika sieciowego to właśnie do tego standardu sięga się najczęściej, zwłaszcza przy projektowaniu czy odbiorach nowych instalacji światłowodowych. Przy okazji warto wspomnieć, że ISO/IEC 11801 obejmuje również okablowanie miedziane, ale dla światłowodów jest wręcz nieocenionym źródłem wiedzy o dobrych praktykach i wymaganiach branżowych.

Pytanie 22

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 1 MHz
B. do 100 MHZ
C. do 16 MHz
D. do 100 kHz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasa D skrętki komputerowej, zgodnie z normą EN-50173, obejmuje aplikacje korzystające z pasma częstotliwości do 100 MHz. Oznacza to, że kabel kategorii 5e i wyższe, takie jak kategoria 6 i 6A, są zaprojektowane, aby wspierać transmisję danych w sieciach Ethernet o dużej przepustowości, w tym Gigabit Ethernet oraz 10 Gigabit Ethernet na krótkich dystansach. Standardy te uwzględniają poprawne ekranowanie i konstrukcję przewodów, co minimalizuje zakłócenia elektromagnetyczne oraz zapewnia odpowiednią jakość sygnału. Przykładowo, w biurach oraz centrach danych często wykorzystuje się skrętki kategorii 6, które obsługują aplikacje wymagające wysokiej wydajności, takie jak przesyłanie multimediów, wideokonferencje czy intensywne transfery danych. Wiedza na temat klas kabli i odpowiadających im pasm częstotliwości jest kluczowa dla inżynierów i techników zajmujących się projektowaniem oraz wdrażaniem nowoczesnych sieci komputerowych, co wpływa na efektywność komunikacji i wydajność całych systemów sieciowych.

Pytanie 23

Przy projektowaniu sieci LAN o wysokiej wydajności w warunkach silnych zakłóceń elektromagnetycznych, które medium transmisyjne powinno zostać wybrane?

A. typ U/UTP
B. współosiowy
C. typ U/FTP
D. światłowodowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kabel światłowodowy to najlepszy wybór do projektowania sieci LAN w środowiskach z dużymi zakłóceniami elektromagnetycznymi, ponieważ korzysta z włókien szklanych do przesyłania danych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi. W porównaniu do kabli miedzianych, światłowody są odporne na interferencje i mogą transmitować sygnały na znacznie większe odległości z wyższą przepustowością. Na przykład, w zastosowaniach takich jak centra danych, gdzie wiele urządzeń komunikuje się jednocześnie, stosowanie światłowodów zapewnia niezawodność i stabilność połączeń. Standardy, takie jak IEEE 802.3, promują wykorzystanie technologii światłowodowej dla osiągnięcia maksymalnej wydajności i minimalizacji strat sygnału. Dodatkowo, w miejscach o dużym natężeniu elektromagnetycznym, takich jak blisko dużych silników elektrycznych czy urządzeń radiowych, światłowody zapewniają pełną ochronę przed zakłóceniami, co czyni je idealnym rozwiązaniem dla nowoczesnych aplikacji sieciowych.

Pytanie 24

Komputer, który automatycznie otrzymuje adres IP, adres bramy oraz adresy serwerów DNS, łączy się z wszystkimi urządzeniami w sieci lokalnej za pośrednictwem adresu IP. Jednakże komputer ten nie ma możliwości nawiązania połączenia z żadnym hostem w sieci rozległej, ani poprzez adres URL, ani przy użyciu adresu IP, co sugeruje, że występuje problem z siecią lub awaria

A. serwera DHCP
B. przełącznika
C. serwera DNS
D. rutera

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to ruter, ponieważ jest to urządzenie, które umożliwia komunikację pomiędzy różnymi sieciami, w tym między siecią lokalną a siecią rozległą (WAN). Kiedy komputer uzyskuje adres IP, adres bramy i adresy serwerów DNS automatycznie, najczęściej korzysta z protokołu DHCP, który przypisuje te informacje. W przypadku braku możliwości połączenia z hostami w sieci rozległej, problem może leżeć w ruterze. Ruter zarządza ruchem danych w sieciach, a jego awaria uniemożliwia komunikację z innymi sieciami, takimi jak internet. Przykładowo, jeżeli ruter jest wyłączony lub ma uszkodzony firmware, żaden z komputerów w sieci lokalnej nie będzie mógł uzyskać dostępu do zewnętrznych zasobów, co skutkuje brakiem możliwości połączenia z adresami URL czy adresami IP. Dobrą praktyką jest regularne aktualizowanie oprogramowania ruterów oraz monitorowanie ich stanu, aby zapobiegać tego rodzaju problemom.

Pytanie 25

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. filtrację adresów MAC
B. firewall
C. strefę o ograniczonym dostępie
D. bardziej zaawansowane szyfrowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.

Pytanie 26

W topologii fizycznej gwiazdy wszystkie urządzenia działające w sieci są

A. podłączone do jednej magistrali
B. połączone z dwoma sąsiadującymi komputerami
C. połączone pomiędzy sobą odcinkami kabla tworząc zamknięty pierścień
D. podłączone do węzła sieci

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W topologii fizycznej gwiazdy wszystkie urządzenia w sieci są podłączone do centralnego węzła, którym najczęściej jest przełącznik (switch) lub koncentrator (hub). Taki układ pozwala na zorganizowanie komunikacji w sieci w sposób efektywny i przejrzysty. Każde urządzenie ma indywidualne połączenie z węzłem, co umożliwia niezależną komunikację, a także zwiększa odporność na awarie. W przypadku, gdy jedno z urządzeń przestaje działać, pozostałe nie są bezpośrednio dotknięte, co jest kluczowe dla ciągłości działania sieci. Przykładowo, w biurach często stosuje się topologię gwiazdy, aby zapewnić łatwą rozbudowę sieci oraz prostą identyfikację i lokalizację problemów. Dobre praktyki w zakresie projektowania sieci z uwzględnieniem topologii gwiazdy obejmują również stosowanie odpowiednich kabli oraz technologii, aby zminimalizować straty sygnału i zapewnić optymalną wydajność sieci.

Pytanie 27

Jakie urządzenie pozwala komputerom na bezprzewodowe łączenie się z przewodową siecią komputerową?

A. punkt dostępu
B. modem
C. koncentrator
D. regenerator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Punkt dostępu, czyli po angielsku access point, to urządzenie, które pozwala komputerom i innym sprzętom łączyć się z bezprzewodową siecią lokalną, znaną jako WLAN. Można to porównać do mostu, który łączy sieć przewodową z urządzeniami bezprzewodowymi. Dzięki niemu można korzystać z Internetu i lokalnych zasobów. Wiesz, często spotykamy punkty dostępu w biurach, szkołach czy w domach, bo pomagają w rozszerzaniu zasięgu sieci. W praktyce, kiedy mamy dużo urządzeń, jak smartfony, laptopy czy tablety, to punkty dostępu są naprawdę niezbędne, bo umożliwiają dostęp bez kabli. Używając dobrze zaprojektowanej sieci Wi-Fi z punktami dostępu zgodnymi z normą IEEE 802.11, możemy cieszyć się świetną wydajnością i bezpieczeństwem danych.

Pytanie 28

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. router.
B. hub.
C. driver.
D. switch.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 29

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Przenik zbliżny
B. Przenik zdalny
C. Suma przeników zdalnych
D. Suma przeników zbliżnych i zdalnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenik zbliżny to parametr okablowania strukturalnego, który odnosi się do stosunku mocy sygnału testowego w jednej parze przewodów do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu kabla. W praktyce oznacza to, że przenik zbliżny jest miarą wpływu sygnałów z jednej pary na sygnały w innej parze, co jest szczególnie istotne w systemach telekomunikacyjnych i sieciach komputerowych. Zrozumienie tego parametru jest kluczowe dla zapewnienia wysokiej jakości sygnału oraz minimalizacji zakłóceń między parami przewodów. Przykładowo, w instalacjach Ethernet o wysokiej prędkości, niski przenik zbliżny jest niezbędny do zapewnienia integralności danych, co jest zgodne z normami TIA/EIA-568 oraz ISO/IEC 11801. W celu minimalizacji przeniku zbliżnego stosuje się odpowiednie techniki ekranowania oraz skręcania par, co w praktyce pozwala na uzyskanie lepszej wydajności i niezawodności w komunikacji.

Pytanie 30

Przynależność komputera do danej sieci wirtualnej nie może być ustalana na podstawie

A. numeru portu przełącznika
B. nazwa komputera w sieci lokalnej
C. adresu MAC karty sieciowej komputera
D. znacznika ramki Ethernet 802.1Q

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nazwa komputera w sieci lokalnej, znana również jako hostname, jest używana głównie do identyfikacji urządzenia w bardziej przyjazny sposób dla użytkowników. Jednakże, nie ma wpływu na przypisanie komputera do konkretnej sieci wirtualnej, ponieważ przynależność ta opiera się na technicznych aspektach działania sieci, takich jak adresacja i mechanizmy VLAN. Wirtualne sieci lokalne (VLAN) są definiowane na poziomie przełączników sieciowych, które wykorzystują znaczniki ramki Ethernet 802.1Q do identyfikacji i segregacji ruchu. Dlatego, aby przypisać komputer do konkretnej VLAN, kluczowe jest wykorzystanie adresów MAC i numerów portów przełącznika, które są bezpośrednio związane z fizycznym połączeniem urządzenia w sieci. Zastosowanie VLAN-ów pozwala na efektywne zarządzanie ruchem sieciowym oraz zwiększenie bezpieczeństwa i organizacji w dużych środowiskach sieciowych. Zrozumienie tej kwestii jest niezbędne dla skutecznego projektowania i zarządzania infrastrukturą sieciową.

Pytanie 31

Przed przystąpieniem do podłączania urządzeń do sieci komputerowej należy wykonać pomiar długości przewodów. Dlaczego jest to istotne?

A. Aby określić, ile urządzeń można podłączyć do jednego portu switcha.
B. Aby ustalić parametry zasilania zasilacza awaryjnego (UPS) dla stanowisk sieciowych.
C. Aby nie przekroczyć maksymalnej długości przewodu zalecanej dla danego medium transmisyjnego, co zapewnia prawidłowe działanie sieci i minimalizuje ryzyko zakłóceń.
D. Aby zapobiec przegrzewaniu się okablowania w trakcie pracy sieci.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar długości przewodów sieciowych to naprawdę kluczowy etap przy planowaniu i montażu sieci. Chodzi przede wszystkim o to, żeby nie przekraczać zalecanej długości dla wybranego medium transmisyjnego, np. skrętki czy światłowodu. Standardy, takie jak TIA/EIA-568, jasno określają, że dla skrętki UTP Cat.5e/Cat.6 maksymalna długość jednego odcinka to 100 metrów – wliczając w to patchcordy. Gdy przewód jest dłuższy, sygnał potrafi się mocno osłabić, pojawiają się opóźnienia, błędy transmisji, a nawet całkowite zerwanie połączenia. W praktyce, jeśli ktoś o tym zapomni, sieć potrafi działać bardzo niestabilnie – szczególnie przy wyższych przepływnościach lub w środowiskach o dużych zakłóceniach elektromagnetycznych. Z mojego doświadczenia wynika, że nieprzemyślane prowadzenie kabli to jeden z najczęstszych powodów reklamacji u klientów. Prawidłowy pomiar i stosowanie się do limitów to po prostu podstawa profesjonalnego podejścia i gwarancja, że sieć będzie działać zgodnie z założeniami projektowymi. Branżowe dobre praktyki zawsze zakładają uwzględnienie tych długości już na etapie projektowania, żeby uniknąć problemów w przyszłości.

Pytanie 32

Która z poniższych właściwości kabla koncentrycznego RG-58 sprawia, że nie jest on obecnie stosowany w budowie lokalnych sieci komputerowych?

A. Maksymalna prędkość przesyłania danych wynosząca 10 Mb/s
B. Koszt narzędzi potrzebnych do montażu i łączenia kabli
C. Brak opcji nabycia dodatkowych urządzeń sieciowych
D. Maksymalna odległość między stacjami wynosząca 185 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kabel koncentryczny RG-58 charakteryzuje się maksymalną prędkością transmisji danych wynoszącą 10 Mb/s, co w kontekście współczesnych wymagań sieciowych jest zdecydowanie zbyt niską wartością. W dzisiejszych lokalnych sieciach komputerowych (LAN) standardy, takie jak Ethernet, wymagają znacznie wyższych prędkości – obecnie powszechnie stosowane są technologie pozwalające na przesył danych z prędkościami 100 Mb/s (Fast Ethernet) oraz 1 Gb/s (Gigabit Ethernet), a nawet 10 Gb/s w nowoczesnych rozwiązaniach. Z tego powodu, na etapie projektowania infrastruktury sieciowej, wybór kabla o niskiej prędkości transmisji jak RG-58 jest nieefektywny i przestarzały. Przykładowo, w przypadku dużych sieci korporacyjnych, gdzie przesyłanie dużych plików lub obsługa wielu jednoczesnych użytkowników jest normą, kabel RG-58 nie spełnia wymogów wydajnościowych oraz jakościowych. Dlatego też jego zastosowanie w lokalnych sieciach komputerowych jest obecnie niezalecane, co czyni go nieodpowiednim wyborem.

Pytanie 33

Maksymalny promień zgięcia przy montażu kabla U/UTP kategorii 5E powinien wynosić

A. dwie średnice kabla
B. cztery średnice kabla
C. osiem średnic kabla
D. sześć średnic kabla

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dopuszczalny promień zgięcia kabla U/UTP kat. 5E wynoszący osiem średnic kabla jest kluczowym parametrem, który zapewnia prawidłowe działanie i trwałość instalacji sieciowych. Zgniatanie lub zginanie kabla w mniejszych promieniach może prowadzić do uszkodzenia struktury przewodów, co z kolei wpływa na ich właściwości elektryczne i może powodować zwiększenie strat sygnału. W praktyce oznacza to, że podczas instalacji należy zwracać szczególną uwagę na sposób prowadzenia kabli, aby nie przekraczać tego dopuszczalnego promienia. Przykładowo, jeśli średnica kabla wynosi 5 mm, to minimalny promień zgięcia powinien wynosić 40 mm. Przestrzeganie tych norm jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801, które definiują wymagania dotyczące instalacji kabli komunikacyjnych. Dobre praktyki w tym zakresie obejmują również zastosowanie odpowiednich uchwytów i prowadników kablowych, które pomogą w utrzymaniu właściwego promienia zgięcia w trakcie instalacji, co z kolei przyczynia się do zmniejszenia ryzyka awarii i zapewnienia stabilności połączeń sieciowych.

Pytanie 34

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia sieciowe są połączone z jednym centralnym urządzeniem?

A. siatki
B. gwiazdy
C. pierścienia
D. drzewa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Topologia gwiazdy to jedna z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia, takie jak komputery i drukarki, są połączone z centralnym urządzeniem, zazwyczaj przełącznikiem lub hubem. Taki układ zapewnia łatwą konserwację i diagnozowanie problemów, gdyż ewentualne awarie jednego z węzłów nie wpływają na funkcjonowanie pozostałych urządzeń. Przykładem zastosowania topologii gwiazdy może być lokalna sieć komputerowa w biurze, gdzie wszystkie stacje robocze są podłączone do jednego przełącznika. Standardy takie jak Ethernet oraz protokoły sieciowe, takie jak TCP/IP, zostały zaprojektowane z myślą o pracy w takich strukturach. Zastosowanie topologii gwiazdy ułatwia także skalowanie sieci – wystarczy dodać nowe urządzenie do centralnego przełącznika, co czyni ją elastyczną i odpowiednią dla rozwijających się środowisk biurowych.

Pytanie 35

Jakiego elementu pasywnego sieci należy użyć do połączenia okablowania ze wszystkich gniazd abonenckich z panelem krosowniczym umieszczonym w szafie rack?

A. Adapter LAN
B. Przepust szczotkowy
C. Kabel połączeniowy
D. Organizer kabli

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kabel połączeniowy jest kluczowym elementem pasywnym w infrastrukturze sieciowej, który umożliwia fizyczne połączenie różnych komponentów. W przypadku podłączenia okablowania ze wszystkich gniazd abonenckich do panelu krosowniczego w szafie rack, stosowanie kabla połączeniowego jest podstawową praktyką. Takie kable, najczęściej w standardzie Ethernet (np. Cat5e, Cat6), gwarantują odpowiednią przepustowość i jakość sygnału oraz spełniają wymagania norm dotyczących transmisji danych. Dzięki zastosowaniu kabli o odpowiednich parametrach, można zminimalizować straty sygnału oraz zakłócenia elektromagnetyczne. Istotne jest również przestrzeganie zasad organizacji okablowania, co zapewnia nie tylko estetykę, ale również ułatwia przyszłe serwisowanie i diagnostykę sieci. W kontekście organizacji sieci, ważne jest, aby odpowiednio planować układ kabli, co przyczyni się do zwiększenia efektywności i niezawodności całego systemu.

Pytanie 36

Jak nazywa się komunikacja w obie strony w sieci Ethernet?

A. Halfduplex
B. Simplex
C. Fuli duplex
D. Duosimplex

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Fuli duplex" odnosi się do trybu transmisji, w którym dane mogą być przesyłane w obu kierunkach jednocześnie, co znacząco zwiększa efektywność komunikacji w sieci Ethernet. W przeciwieństwie do trybu half-duplex, gdzie dane mogą być przesyłane tylko w jednym kierunku w danym czasie, fuli duplex umożliwia pełne wykorzystanie dostępnej przepustowości łącza. Jest to szczególnie istotne w nowoczesnych sieciach komputerowych, gdzie szybkość i płynność przesyłania danych mają kluczowe znaczenie dla usług wymagających dużej ilości transferu, takich jak strumieniowe przesyłanie wideo czy telekonferencje. W praktyce, urządzenia sieciowe wspierające fuli duplex, takie jak przełączniki i routery, zapewniają lepszą wydajność i mniejsze opóźnienia, co jest zgodne z najlepszymi praktykami branżowymi w zakresie projektowania sieci. Uznanie tego trybu jako standardowego w sieciach Ethernet przyczyniło się do rozwoju technologii, takich jak Ethernet 10G i wyższe, które wymagają efektywnej i szybkiej komunikacji.

Pytanie 37

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 100Base–T
B. 10Base2
C. 1000Base–TX
D. 100Base–FX

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Standard 100Base-FX jest odpowiedni w środowiskach, gdzie występują zakłócenia elektromagnetyczne, zwłaszcza w sytuacjach wymagających przesyłania sygnału na odległość do 200 m. Ten standard wykorzystuje światłowody, co znacząco zwiększa odporność na zakłócenia elektromagnetyczne w porównaniu do standardów opartych na miedzi, takich jak 100Base-T. W praktyce oznacza to, że w miejscach, gdzie instalacje elektryczne mogą generować zakłócenia, 100Base-FX jest idealnym rozwiązaniem. Przykładem zastosowania tego standardu mogą być instalacje w biurach znajdujących się w pobliżu dużych maszyn przemysłowych lub w środowiskach, gdzie wykorzystywane są silne urządzenia elektryczne. 100Base-FX obsługuje prędkość przesyłu danych do 100 Mb/s na dystansie do 2 km w kablu światłowodowym, co czyni go bardzo elastycznym rozwiązaniem dla różnych aplikacji sieciowych. Ponadto, stosowanie światłowodów przyczynia się do zminimalizowania strat sygnału, co jest kluczowe w przypadku dużych sieci korporacyjnych.

Pytanie 38

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Drzewo.
B. Gwiazda.
C. Pierścień.
D. Siatka.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Topologia pierścienia charakteryzuje się tym, że każde urządzenie sieciowe, zwane węzłem, jest połączone z dokładnie dwoma innymi węzłami. Taki układ tworzy zamkniętą pętlę, przez którą dane są przesyłane w jednym kierunku, co znacząco upraszcza proces transmisji. Główną zaletą topologii pierścienia jest to, że pozwala na ciągłe przekazywanie informacji bez potrzeby skomplikowanego routingu. Przykładem zastosowania tej topologii mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. W takich sieciach stosowano tokeny, czyli specjalne ramki, które kontrolowały dostęp do medium transmisyjnego, co pozwalało uniknąć kolizji danych. Warto wspomnieć, że w przypadku uszkodzenia jednego z węzłów, sieć może przestać działać, co jest istotnym ograniczeniem tej topologii. Aby zwiększyć niezawodność, często stosuje się różne mechanizmy redundancji, takie jak dodatkowe połączenia zapewniające alternatywne ścieżki dla danych. W nowoczesnych aplikacjach sieciowych znajomość i umiejętność konfiguracji różnych topologii jest kluczowa, zwłaszcza w kontekście zapewnienia odpowiedniej wydajności i bezpieczeństwa sieci.

Pytanie 39

Aby umożliwić komunikację pomiędzy sieciami VLAN, wykorzystuje się

A. punkt dostępowy
B. ruter
C. modem
D. koncentrator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ruter to naprawdę ważne urządzenie, które łączy różne sieci, w tym również VLAN-y, czyli wirtualne sieci lokalne. Dzięki VLAN-om można lepiej zarządzać ruchem w sieci i zwiększać jej bezpieczeństwo. Żeby urządzenia w różnych VLAN-ach mogły ze sobą rozmawiać, potrzebny jest ruter, który zajmuje się przełączaniem danych między tymi sieciami. W praktyce ruter korzysta z różnych protokołów routingu, jak OSPF czy EIGRP, żeby skutecznie przesyłać informacje. Co więcej, nowoczesne rutery potrafią obsługiwać routing między VLAN-ami, dzięki czemu można przesyłać dane między nimi bez potrzeby używania dodatkowych urządzeń. Używanie rutera w sieci VLAN to świetny sposób na projektowanie sieci, co ma duży wpływ na efektywność i bezpieczeństwo komunikacji.

Pytanie 40

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN50173
B. PN-EN 50310
C. PN-EN 50174
D. PN-EN 55022

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Norma PN-EN 50174 opisuje zasady projektowania i instalacji okablowania strukturalnego, które są kluczowe dla zapewnienia efektywności i niezawodności systemów telekomunikacyjnych. Ta norma obejmuje zarówno aspekty techniczne, jak i praktyczne wytyczne dotyczące instalacji kabli, ich rozmieszczenia oraz ochrony przed zakłóceniami. W kontekście budynków biurowych, zastosowanie PN-EN 50174 pozwala na zminimalizowanie strat sygnału oraz zwiększenie żywotności instalacji poprzez zastosowanie odpowiednich metod układania kabli. Na przykład, w przypadku instalacji w dużych biurowcach, stosowanie zgodnych z normą metod zarządzania kablami i ich trasowaniem pozwala na łatwiejsze późniejsze modyfikacje oraz serwisowanie. Dodatkowo, norma ta zwraca uwagę na aspekty bezpieczeństwa, co jest kluczowe w kontekście przepisów budowlanych oraz ochrony środowiska. Warto również wspomnieć, że PN-EN 50174 jest często stosowana w połączeniu z innymi normami, takimi jak PN-EN 50173, która dotyczy systemów okablowania strukturalnego w budynkach, co zapewnia kompleksowe podejście do tematu.