Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 17:10
  • Data zakończenia: 17 grudnia 2025 17:12

Egzamin niezdany

Wynik: 5/40 punktów (12,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 14,5 lm/W
B. 81,4 lm/W
C. 206,9 lm/W
D. 1 180,0 lm/W
Skuteczność świetlna to mega ważny parametr. Mówi nam, jak dobrze żarówka zamienia energię elektryczną na światło. W tym przypadku widzimy, że strumień świetlny to 1180 lumenów, a moc to 14,5 W. Więc żeby obliczyć skuteczność świetlną, dzielimy strumień przez moc, co daje nam 81,4 lm/W. To pokazuje, że ta żarówka jest całkiem oszczędna, co świetnie wpisuje się w to, co teraz modne w branży oświetleniowej - chodzi o oszczędzanie energii! Generalnie skuteczność świetlna powyżej 80 lm/W to bardzo dobry wynik, zwłaszcza dla LEDów i świetlówek. Fajnie jest to wiedzieć, bo to pomaga nie tylko projektantom, ale też nam, zwykłym ludziom, w wyborze lepszych, bardziej ekologicznych produktów.

Pytanie 2

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
B. Użycie transformatora separacyjnego do zasilania
C. Montaż ochronników przepięciowych w głównej rozdzielnicy
D. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
W kontekście wykonywania instalacji elektrycznej na tynku na zewnątrz budynku mieszkalnego, wiele osób może być skłonnych do myślenia, że zastosowanie transformatora separacyjnego jest kluczowe. Choć transformatory separacyjne mają swoje miejsce w zastosowaniach, ich rola w kontekście ochrony przewodów elektrycznych przed działaniem promieni słonecznych jest nieznaczna. Transformator ten oddziela obwody od źródła zasilania, ale nie zapewnia ochrony przed dolegliwościami związanymi z ekspozycją na promieniowanie UV, co czyni go niewłaściwym wyborem w tej konkretnej sytuacji. Z kolei zastosowanie wyłączników różnicowoprądowych wysokoczułych, choć istotne dla ochrony przed porażeniem prądem, nie ma bezpośredniego wpływu na zabezpieczenie przewodów przed działaniem promieni słonecznych. Wyłączniki te działają na zasadzie wykrywania różnic prądów, co jest ważne, ale nie chroni instalacji przed uszkodzeniami spowodowanymi przez czynniki zewnętrzne. Ochronniki przepięciowe w rozdzielnicy głównej są istotne dla ochrony instalacji przed przepięciami, ale ich zastosowanie nie zastąpi fizycznych osłon przewodów, które są niezbędne w zewnętrznych instalacjach. Wszelkie te koncepcje mogą prowadzić do błędnego wniosku, że wystarczy zastosować te elementy, aby zapewnić bezpieczeństwo instalacji, podczas gdy kluczowym aspektem pozostaje zabezpieczenie przed działaniem promieni słonecznych przez odpowiednie osłony.

Pytanie 3

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór innej odpowiedzi może wynikać z tego, że nie wszyscy znają podstawowe funkcje narzędzi pomiarowych. Rysunki innych urządzeń pomiarowych mogą być mylące, bo każde z nich ma swoje konkretne zastosowanie. Na przykład, niektóre z nich mierzą wilgotność albo temperaturę, co kompletnie nie ma związku z lokalizowaniem przewodów. Czasami ludzie mylą różne urządzenia z funkcjami detektora, co jest typowym błędem. W praktyce, wiele osób może nie wiedzieć, że detektory przewodów są stworzone specjalnie do prac elektrycznych, więc to naprawdę kluczowe narzędzie w budownictwie. Ignorowanie faktu, że odpowiednie narzędzia są istotne podczas remontów, może powodować poważne skutki, jak uszkodzenie kabli, co może prowadzić do ryzyka pożaru. Normy bezpieczeństwa kładą duży nacisk na używanie odpowiednich urządzeń, co pokazuje, jak ważne jest, aby znać właściwe zastosowanie narzędzi w praktyce.

Pytanie 4

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. 1 - niesprawny, 2 - sprawny.
B. 1 - sprawny, 2 - niesprawny.
C. Oba sprawne.
D. Oba niesprawne.
Stwierdzenie, że oba wyłączniki są niesprawne, jest niewłaściwe z kilku powodów. Przede wszystkim, analiza wyników pomiarów powinna opierać się na zrozumieniu zakresów prądów różnicowych, które są kluczowe dla oceny stanu technicznego wyłączników. W przypadku wyłączników EFI-2-25/003, prawidłowy zakres różnicowego prądu zadziałania wynosi od 0,5 do 1 IΔN. Użytkownicy często mylą pojęcia związane z parametrami technicznymi i mogą błędnie interpretować wartości pomiarów. Nieprawidłowe wnioski mogą się również wynikać z braku znajomości norm i standardów dotyczących testowania wyłączników różnicowoprądowych. Wiele osób zakłada, że wartości prądów, które są znacznie niższe od nominalnych, są sygnałem awarii, co jest mylące. Wyłączniki, które zadziałały przy odpowiednich wartościach, są w istocie sprawne i spełniają swoją funkcję ochronną. Kluczowe jest, aby użytkownicy mieli świadomość, że różnicowe prądy są tylko jednym z wielu parametrów, które należy brać pod uwagę przy ocenie stanu technicznego wyłączników. Wiedza na temat tego, jak prawidłowo interpretować wyniki pomiarów, jest niezbędna dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 5

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Klucza nasadowego
B. Wiertarki udarowej z wiertłem widiowym
C. Klucza imbusowego
D. Wkrętarki akumulatorowej z odpowiednim bitem
Użycie klucza imbusowego w kontekście wykonywania połączeń w listwach zaciskowych śrubowych jest niewłaściwe, ponieważ narzędzie to jest przeznaczone głównie do luzowania i dokręcania śrub z gniazdem sześciokątnym. W przypadku listw zaciskowych, które zazwyczaj wymagają bardziej elastycznego podejścia do różnych typów śrub, klucz imbusowy nie zapewnia optymalnej efektywności ani szybkości. Wkrętarka akumulatorowa z dopasowanym bitem jest narzędziem, które pozwala na szybką wymianę bitów w zależności od wymagań konkretnego zadania. Z kolei wiertarka udarowa z wiertłem widiowym jest przeznaczona do wiercenia otworów, a nie do dokręcania śrub, co czyni jej użycie w tym kontekście niepraktycznym. Klucz nasadowy, mimo że może być używany do różnych zastosowań, w przypadku listw zaciskowych również nie oferuje takiej uniwersalności i efektywności jak wkrętarka akumulatorowa. Typowym błędem myślowym jest założenie, że każde narzędzie do dokręcania jest odpowiednie do wszystkich zastosowań. W rzeczywistości, wybór narzędzia powinien być uzależniony od specyfiki zadania oraz wymagań dotyczących precyzji, szybkości i bezpieczeństwa pracy. Właściwe narzędzie przyczynia się nie tylko do efektywności, ale również do jakości wykonania instalacji elektrycznej, co jest kluczowe dla jej długotrwałego funkcjonowania.

Pytanie 6

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP33
B. IP44
C. IP55
D. IP20
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 7

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S301 B16
B. P301 40A
C. P301 25A
D. S304 C25
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia roli wyłączników w instalacjach elektrycznych. Wyłącznik P301 25A oraz P301 40A to urządzenia delikatnie różniące się w zakresie wartości prądowych, jednak nie są one odpowiednie do rozwiązywania problemu prądu doziemienia. Odpowiedź P301 25A byłaby niewłaściwa, ponieważ przy prądzie 2,5 A wyłącznik różnicowoprądowy zadziałałby, ale jedynie w kontekście ochrony przed porażeniem, co nie jest wystarczające w przypadku większych wartości prądu. Wartości prądów znamionowych, takie jak 16A (S301 B16) czy 25A (S304 C25), dotyczą wyłączników nadprądowych, które innego rodzaju sytuacjach mogą być przydatne, lecz nie oferują odpowiedniej ochrony przed prądem różnicowym. W przypadku prądów doziemnych, kluczowe jest korzystanie z wyłączników różnicowoprądowych, które działają na zasadzie monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Wybór wyłącznika różnicowoprądowego zgodnie z odpowiednią normą, taką jak PN-EN 61008, jest kluczowy dla zapewnienia bezpieczeństwa elektrycznego. Ważne jest, aby nie mylić tych dwóch rodzajów wyłączników i ich zastosowania w praktyce, ponieważ prowadzi to do potencjalnych zagrożeń dla użytkowników instalacji elektrycznej.

Pytanie 8

Który osprzęt przedstawiono na zdjęciu?

Ilustracja do pytania
A. Złączki skrętne.
B. Dławnice.
C. Kapturki termokurczliwe.
D. Mufy przelotowe.
Dławnice kablowe to naprawdę ważne elementy w instalacjach elektrycznych. Jak widać na zdjęciu, mają za zadanie chronić miejsce, gdzie przewód wchodzi do obudowy urządzenia. Dzięki nim przewody są mniej narażone na różne uszkodzenia mechaniczne czy na wpływ wilgoci i brudu. Wiele razy spotykam się z tym, że w trudnych warunkach, jak na przykład w przemyśle, bez dławnic byłoby ciężko zapewnić bezpieczeństwo. Dławnice są często wykorzystywane w silnikach elektrycznych i skrzynkach przyłączeniowych, żeby wszystko dobrze uszczelniało się i działało jak należy. Dobrze też wiedzieć, że są zgodne z normami IEC 62262 oraz IEC 60529, które mówią, jak powinno wyglądać zabezpieczenie przed ciałami obcymi i wilgocią. Także odpowiedni dobór tych elementów ma ogromne znaczenie, bo źle dobrana dławnica może nie spełniać swojego zadania. Warto o tym pamiętać, bo brak dławnic w kluczowych miejscach w instalacji może prowadzić do sporych problemów, a więc zawsze lepiej stosować je tam, gdzie to konieczne.

Pytanie 9

Która z przedstawionych opraw oświetleniowych najlepiej nadaje się do oświetlenia ogólnego?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór innych opraw oświetleniowych, które nie są żyrandolami, może prowadzić do niewłaściwego oświetlenia pomieszczeń. Na przykład, jeżeli wybierzesz kinkiety, które są przeznaczone głównie do oświetlenia akcentującego, mogą one nie zapewnić wystarczającego rozproszenia światła w przestrzeni, co skutkuje niejednorodnym oświetleniem i tworzeniem cieni, które mogą być uciążliwe w codziennym użytkowaniu. Kinkiety są z reguły montowane na ścianach i skierowane na konkretne obszary, co sprawia, że są bardziej odpowiednie do podkreślania wybranych elementów dekoracyjnych lub do stworzenia przytulnej atmosfery, a nie do ogólnego oświetlenia. Ponadto, jeśli rozważasz zastosowanie lamp podłogowych, mogą one być niewystarczające, ponieważ często wymagają dodatkowego źródła światła, aby efektywnie oświetlić całe pomieszczenie. Typowe błędy myślowe związane z tymi wyborami polegają na nieuwzględnieniu faktu, że różne oprawy mają różne funkcje i zastosowania, co może prowadzić do nieefektywnego oświetlenia oraz niezadowolenia z komfortu użytkowania przestrzeni. Właściwe zrozumienie funkcji i zastosowania konkretnego rodzaju opraw oświetleniowych jest kluczowe dla osiągnięcia optymalnych warunków świetlnych w każdym pomieszczeniu.

Pytanie 10

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. pośredniego.
B. bezpośredniego.
C. przeważnie bezpośredniego.
D. przeważnie pośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 11

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Przekaźnik priorytetowy.
C. Regulator oświetlenia.
D. Regulator temperatury.
Jak wybrałeś regulator oświetlenia, regulator temperatury lub przekaźnik priorytetowy, to wpadłeś w kilka pułapek dotyczących ich funkcji i działania. Regulator oświetlenia, w przeciwieństwie do przekaźnika bistabilnego, nie zapamiętuje stanu po wyłączeniu prądu. Po prostu kontroluje intensywność światła. Regulator temperatury ma za zadanie utrzymywać temperaturę w pomieszczeniach, a to całkiem inna bajka. No i ten przekaźnik priorytetowy zajmuje się zarządzaniem zasilaniem dla różnych urządzeń, co również nie ma nic wspólnego z tym, co robi przekaźnik bistabilny. Używając tych terminów, można się gubisz w kontekście projektowania instalacji elektrycznych. Uważam, że ważne jest, aby dobrze rozumieć różnice między tymi urządzeniami, bo błędy w wyborze komponentów mogą prowadzić do problemów w działaniu systemów. Lepiej być ostrożnym, żeby wszystko działało bez zarzutu.

Pytanie 12

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. D.
B. A.
C. C.
D. B.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 13

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
Nie wszystkie wymienione zestawy narzędzi są odpowiednie do montażu aparatury elektrycznej i wykonywania połączeń w rozdzielnicy. Wśród dostępnych opcji brakuje kluczowych narzędzi, które zapewniają prawidłowe i bezpieczne połączenia elektryczne. Na przykład, szczypce płaskie oraz młotek, chociaż mogą się wydawać użyteczne, nie są kluczowe w kontekście precyzyjnego montażu instalacji elektrycznej. Użycie młotka do montażu może prowadzić do uszkodzenia delikatnych komponentów, co jest niepożądane w przypadku rozdzielnic, gdzie precyzja jest kluczowa. Ponadto, przymiar taśmowy, mimo że użyteczny przy pomiarach, nie jest narzędziem niezbędnym do samego montażu i połączeń elektrycznych. Wiele osób może myśleć, że nóż monterski wystarczy do usunięcia izolacji, co jest błędne; niewłaściwe użycie noża może prowadzić do uszkodzenia przewodów. Również wkrętarka, choć użyteczna w niektórych sytuacjach, nie jest podstawowym narzędziem do pracy z przewodami, a korzystanie z niej może nie gwarantować właściwego dokręcenia połączeń. Kluczową kwestią jest zrozumienie, że do pracy w rozdzielnicy potrzebne są specjalistyczne narzędzia, które zapewniają nie tylko efektywność, ale także bezpieczeństwo, co jest niezbędne do prawidłowego działania całej instalacji elektrycznej.

Pytanie 14

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Rozdzielnica natynkowa, jak wskazuje odpowiedź D, jest konstrukcją zaprojektowaną do montażu na powierzchni ścian, co odróżnia ją od modeli podtynkowych, które są osadzone w murze. W odpowiedzi D widzimy wyraźnie rozdzielnicę z drzwiczkami, co umożliwia dostęp do osprzętu elektrycznego, takiego jak bezpieczniki czy wyłączniki. W praktyce, rozdzielnice natynkowe są często stosowane w budynkach użyteczności publicznej, biurach oraz obiektach przemysłowych, gdzie zapewniają łatwy dostęp do instalacji elektrycznych. Dobrze zaprojektowana rozdzielnica powinna przestrzegać norm bezpieczeństwa, takich jak PN-EN 61439, która reguluje wymagania dotyczące rozdzielnic niskonapięciowych. W kontekście aplikacji, uwagę należy zwrócić na odpowiednie rozmieszczenie urządzeń w rozdzielnicy oraz ich oznakowanie, co wspomaga zarówno wykonanie prac serwisowych, jak i codzienną eksploatację instalacji elektrycznej.

Pytanie 15

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Przerwa w obwodzie wzbudzenia
B. Zerwanie połączenia wału silnika z maszyną napędzającą
C. Zwarcie międzyzwojowe w uzwojeniu twornika
D. Uszkodzenie łożysk silnika
Zerwanie połączenia wału silnika z maszyną napędzaną jest jedną z najczęstszych przyczyn nagłego rozbiegania się silnika szeregowego prądu stałego. W przypadku, gdy wał silnika nie jest połączony z obciążeniem, silnik nie ma przeciwdziałającego momentu obrotowego. Silniki szeregowe są zaprojektowane do pracy pod obciążeniem, co wpływa na ich charakterystykę pracy. Gdy obciążenie jest nagle usunięte, prędkość obrotowa silnika wzrasta, co prowadzi do zjawiska nazywanego rozbiegiem. W praktyce, w przypadku rozbiegu, silnik może osiągnąć niebezpieczne prędkości, co może prowadzić do uszkodzenia wewnętrznych komponentów silnika, a także do niebezpiecznych sytuacji w systemie napędowym. Dlatego w projektowaniu systemów napędowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak systemy przeciążeniowe oraz czujniki, które monitorują stan pracy silnika i mogą automatycznie odłączyć zasilanie w przypadku wykrycia anomalii. Zastosowanie takich rozwiązań przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemów opartych na silnikach szeregowych prądu stałego.

Pytanie 16

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Rezystancji uziemienia
B. Czasu działania wyłącznika RCD
C. Prądu zadziałania wyłącznika RCD
D. Rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja izolacji jest kluczowym parametrem w kontekście ochrony przeciwporażeniowej podstawowej, gdyż pomaga ocenić, czy elementy instalacji elektrycznej są odpowiednio zabezpieczone przed przenikaniem prądu do ziemi. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane, co minimalizuje ryzyko porażenia prądem w przypadku uszkodzenia. Zgodnie z normą PN-EN 61010-1, rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla urządzeń o napięciu do 1000 V. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach przemysłowych, gdzie odpowiednia izolacja jest niezbędna dla bezpieczeństwa pracowników. Regularne pomiary rezystancji izolacji mogą wykrywać problemy, zanim dojdzie do uszkodzenia, co jest szczególnie ważne w przypadku starszych instalacji, które mogą mieć uszkodzenia wynikające z degradacji materiałów izolacyjnych.

Pytanie 17

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. YDY 5×2,5 mm2
B. YLY 7×2,5 mm2
C. DY 2,5 mm2
D. LY 2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 18

Którą z wymienionych wielkości fizycznych można zmierzyć w instalacji elektrycznej przyrządem pomiarowym przedstawionym na rysunku?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Czas wyłączenia wyłączników instalacyjnych nadprądowych.
C. Rezystancję izolacji przewodów.
D. Prąd różnicowy wyłącznika różnicowoprądowego.
Pomiar czasu wyłączenia wyłączników instalacyjnych nadprądowych dotyczy parametrów zabezpieczeń w instalacji elektrycznej, które są określane w kontekście ochrony przed przeciążeniem i zwarciem. Czas ten jest zazwyczaj mierzony przy pomocy specjalistycznych urządzeń, takich jak analizatory parametrów sieci czy testery wyłączników, a nie mierników izolacji. Przyrząd prezentowany na zdjęciu nie jest przystosowany do takich pomiarów, co jest częstym błędem myślowym wśród osób rozpoczynających pracę w branży elektrycznej. Z kolei impedancja pętli zwarcia to parametr, który również wymaga dedykowanych narzędzi, takich jak mierniki impedancji. Tego rodzaju pomiary są kluczowe w ocenie skuteczności działania zabezpieczeń, ale nie są związane z pomiarami wykonywanymi miernikiem izolacji. Również prąd różnicowy wyłącznika różnicowoprądowego jest mierzony przy użyciu odpowiednich testerów, a nie mierników izolacji, które nie są w stanie dostarczyć potrzebnych wyników. Przyzwyczajenie do mylenia tych typów pomiarów jest powszechne, ale przysparza problemów w diagnostyce i ocenie stanu instalacji elektrycznych. Zrozumienie różnic pomiędzy tymi parametrami i ich odpowiednimi metodami pomiaru jest fundamentalne dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznych.

Pytanie 19

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na załączonym wyłączniku
B. Naciskając przycisk TEST na wyłączonym wyłączniku
C. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 20

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 1000 A
B. 230 A
C. 25 A
D. 0,03 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość I<sub>N</sub> (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 21

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Przesyłowych
B. Wytwórczych
C. Pomocniczych
D. Odbiorczych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 22

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjną klatkową.
B. Synchroniczną z biegunami utajonymi.
C. Komutatorową prądu przemiennego.
D. Synchroniczną jawnobiegunową.
Wybierając odpowiedzi, które wskazują na inne rodzaje maszyn, użytkownik może napotkać nieporozumienia związane z podstawowymi zasadami działania maszyn elektrycznych. Maszyna indukcyjna klatkowa, na przykład, nie ma wyraźnie zaznaczonych biegunów magnetycznych, co jest kluczowym elementem dla poprawnej identyfikacji maszyny na rysunku. Indukcyjne maszyny klatkowe działają na zasadzie indukcji elektromagnetycznej, gdzie wirnik nie ma stałych biegunów, a moment obrotowy jest generowany przez różnicę prędkości między wirnikiem a polem magnetycznym. Z kolei maszyny synchroniczne z biegunami utajonymi również różnią się pod względem budowy, ponieważ ich bieguny nie są bezpośrednio widoczne, co może prowadzić do pomyłek. W przypadku maszyn komutatorowych prądu przemiennego, kluczowe są inne mechanizmy pracy, w których używane są komutatory do zmiany kierunku prądu w uzwojeniach wirnika. Zrozumienie różnic między tymi typami maszyn jest istotne, aby móc prawidłowo identyfikować ich zastosowania w przemyśle. W praktyce, wiele z tych błędnych odpowiedzi wynika z niepełnego zrozumienia zasad działania i konstrukcji tych maszyn, co może prowadzić do niewłaściwego doboru urządzeń w aplikacjach przemysłowych, a tym samym do obniżenia efektywności systemów elektrycznych.

Pytanie 23

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
B. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
C. Prąd znamionowy 10 A oraz charakterystykę B
D. Prąd znamionowy 16 A oraz charakterystykę B
Jeśli wybierzemy złe parametry dla wyłącznika różnicowoprądowego, to często wynika to z niejasności co do ich funkcji. Odpowiedzi z prądem znamionowym 16 A i charakterystyką B to wpadka, bo nie spełniają zwykłych wymagań dla domowych instalacji. Charakterystyka B jest dla obwodów z silnikami, a to nie jest to, co zazwyczaj mamy w domach. Prąd 16 A jest za mały dla typowych obciążeń i może się przepalić. Mylące jest też podanie 30 mA jako prądu znamionowego, bo prąd różnicowy powinien być niższy. Jak podasz 10 A i charakterystykę B, to też będzie zgrzyt, bo to nie pasuje do norm dla domu. Kluczowe jest zrozumienie, jak działają te prądy, bo od tego zależy, jakie urządzenia wybierzesz. Wiedza o tym jest naprawdę istotna dla bezpieczeństwa w instalacjach elektrycznych.

Pytanie 24

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YKY
B. YALY
C. YAKY
D. YLY
Odpowiedzi YLY, YAKY oraz YALY są niepoprawne, ponieważ każdy z tych typów przewodów ma inne właściwości i zastosowania. Przewód YLY, na przykład, charakteryzuje się izolacją z poliwęglanu, co czyni go mniej odpornym na wysoką temperaturę i nieodpowiednim do zastosowań w trudnych warunkach. Z kolei YAKY, będący przewodem aluminiowym, jest stosowany tam, gdzie niezbędne jest zredukowanie kosztów związanych z materiałem, ale nie jest zalecany w sytuacjach, gdzie wymagane są wysokie parametry przewodzenia energii elektrycznej. Przewód YALY ma podobne ograniczenia i nie nadaje się do instalacji, które muszą spełniać normy dotyczące odporności na czynniki zewnętrzne. Wybór niewłaściwego przewodu może prowadzić do awarii systemu, zagrożeń związanych z bezpieczeństwem a także nieefektywności energetycznej. Osoby zajmujące się projektowaniem systemów elektrycznych muszą być świadome różnic pomiędzy różnymi typami przewodów, aby uniknąć typowych błędów myślowych, takich jak założenie, że wszystkie przewody są uniwersalne. Wiedza ta jest kluczowa dla zapewnienia bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 25

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór niewłaściwego wyłącznika różnicowoprądowego, który nie posiada wskaźnika prądu upływu, może prowadzić do poważnych konsekwencji w eksploatacji instalacji elektrycznej. Osoby decydujące się na użycie wyłączników bez takich wskaźników mogą być narażone na niebezpieczeństwo, ponieważ nie są w stanie monitorować potencjalnych zagrożeń związanych z prądem upływu. Brak wskaźnika oznacza, że użytkownik nie otrzymuje informacji o niewłaściwym działaniu instalacji, co może skutkować poważnymi uszkodzeniami sprzętu elektrycznego lub, w najgorszym wypadku, porażeniem prądem elektrycznym. Często spotykanym błędem jest założenie, że wszystkie wyłączniki różnicowoprądowe działają w ten sam sposób i oferują te same funkcjonalności. To mylne przekonanie prowadzi do niewłaściwego doboru urządzeń, co może skutkować nieodpowiednim zabezpieczeniem całego systemu elektrycznego. Warto zauważyć, że zgodnie z obowiązującymi normami, takim jak PN-EN 61008, wyłączniki różnicowoprądowe powinny być wyposażone w dodatkowe funkcje monitorujące, aby zapewnić maksymalne bezpieczeństwo użytkowania. Dokonując wyboru, należy zwracać uwagę na specyfikacje techniczne oraz dostępne funkcje, aby uniknąć potencjalnych zagrożeń i w pełni wykorzystać możliwości, jakie oferują nowoczesne rozwiązania w zakresie zabezpieczeń elektrycznych.

Pytanie 26

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zwarcie w systemie elektrycznym
B. zagrożenie porażeniem prądem elektrycznym
C. uszkodzenie urządzenia elektrycznego
D. przeciążenie systemu elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 27

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalacz elektromagnetyczny wyłącznika toru prądowego jest kluczowym elementem w obwodach elektrycznych, który zadziała w przypadku nadmiernego prądu. Odpowiedź "B" jest poprawna, ponieważ symbol ten jest standardowym przedstawieniem wyzwalacza elektromagnetycznego w schematach elektrycznych, co można znaleźć w normach takich jak IEC 60617. Wyzwalacze elektromagnetyczne działają na zasadzie przyciągania rdzenia magnetycznego, który w momencie przegrzania lub przeciążenia powoduje otwarcie obwodu. To zastosowanie jest niezwykle istotne w systemach ochronnych, gdzie funkcja wyłączenia obwodu zapobiega uszkodzeniom urządzeń oraz pożarom. W praktyce, zrozumienie funkcji i symboliki wyzwalaczy elektromagnetycznych jest niezbędne dla inżynierów i techników w branżach elektrycznych oraz automatyki, ponieważ pozwala to na właściwe projektowanie systemów zabezpieczeń oraz ich efektywne wdrażanie.

Pytanie 28

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 3.
C. Symbolem 2.
D. Symbolem 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź oznaczona symbolem 4 jest poprawna, ponieważ w schematach ideowych instalacji elektrycznych stosuje się ściśle określone symbole graficzne. Łącznik świecznikowy, będący kluczowym elementem w instalacjach oświetleniowych, posiada swój specyficzny symbol, który wyróżnia go spośród innych urządzeń. W kontekście norm, takich jak PN-EN 60617, symbol ten jest przedstawiany jako wyłącznik z dodatkowym oznaczeniem, co sugeruje możliwość regulacji oświetlenia. Przykładowo, w praktyce instalacyjnej, łącznik świecznikowy jest często stosowany w pomieszczeniach mieszkalnych, gdzie użytkownik ma potrzebę łatwego włączania i wyłączania oświetlenia, a także jego przyciemniania. Prawidłowe rozpoznanie symboli w schematach ideowych jest kluczowe dla właściwego montażu i późniejszej eksploatacji instalacji elektrycznej, co z kolei ma wpływ na bezpieczeństwo użytkowników oraz efektywność energetyczną budynku.

Pytanie 29

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 304 25-30-AC
B. P 344 C-16-30-AC
C. P 302 25-30-AC
D. P 312 B-16-30-AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 30

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,8 s
B. 0,4 s
C. 0,1 s
D. 0,2 s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalny dopuszczalny czas wyłączenia w układach sieci typu TN przy napięciu zasilania 230 V wynosi 0,4 s, zgodnie z normą PN-IEC 60364-4-41:2000. Czas ten jest kluczowy w kontekście bezpieczeństwa użytkowników i ochrony instalacji elektrycznych. W układzie TN zastosowanie przewodów ochronnych oraz odpowiedniego zabezpieczenia (np. wyłączników nadprądowych i różnicowoprądowych) ma na celu zminimalizowanie ryzyka porażenia prądem. Przykładowo, w przypadku uszkodzenia izolacji, szybkie wyłączenie zasilania ogranicza czas, w którym występuje niebezpieczne napięcie na obudowach urządzeń elektrycznych. Z tego względu, normy te zalecają właśnie ten czas wyłączenia, który pozwala pełni zabezpieczyć użytkownika przed skutkami awarii. W praktyce, odpowiednie dobranie elementów zabezpieczających oraz ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, co czyni tę wiedzę niezbędną dla każdego specjalisty w tej dziedzinie.

Pytanie 31

Który z wymienionych elementów chroni nakrętki przed poluzowaniem?

A. Podkładka dystansowa
B. Podkładka sprężysta
C. Tuleja kołnierzowa
D. Tuleja redukcyjna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 32

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 3 listwy zaciskowej X1
B. Z zaciskiem A2 stycznika K1
C. Z zaciskiem 22 stycznika K1
D. Z zaciskiem 4 listwy zaciskowej X1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 33

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/300 V
B. 300/500 V
C. 450/750 V
D. 600/1000 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 34

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q17 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 2NO + 1NC
B. 3NC + 1NO + 2NC
C. 3NC + 2NO + 1NC
D. 3NO + 1NO + 2NC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 3NO + 2NO + 1NC jest poprawna, ponieważ na podstawie analizy schematu, stycznik Q17 rzeczywiście wymaga trzech zestyków normalnie otwartych (3NO), dwóch dodatkowych zestyków normalnie otwartych (2NO) oraz jednego zestyków normalnie zamkniętego (1NC). W praktycznych aplikacjach automatyki stosuje się styczniki do sterowania obwodami, gdzie zestyk NO (normalnie otwarty) umożliwia przepływ prądu po załączeniu stycznika, a zestyk NC (normalnie zamknięty) blokuje przepływ prądu. Taki dobór zestyków pozwala na realizację skomplikowanych układów automatyki, zapewniając równocześnie bezpieczeństwo i efektywność. Uwzględnienie odpowiedniej liczby zestyków jest zgodne z normami branżowymi, co jest kluczowe dla prawidłowego działania układów elektrycznych oraz spełnienia wymogów dotyczących zabezpieczeń. Wiedza o tym, jak dobierać elementy takie jak styczniki, jest niezbędna dla każdego inżyniera czy technika zajmującego się automatyką, co przekłada się na praktyczne zastosowanie w różnych aplikacjach przemysłowych.

Pytanie 35

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. niebieski
B. żółty
C. czerwony
D. szary

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 36

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie zasilany prądem w przeciwnym kierunku
B. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
C. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
D. Silnik będzie funkcjonować w trybie jałowym
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 37

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
B. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
C. Kontrola zabezpieczeń i stanu osłon części wirujących
D. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 38

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie B
B. W punkcie A
C. W punkcie D
D. W punkcie C
Wybór punktów B, C albo D jakby nie do końca trafiony. To może sugerować, że nie do końca rozumiesz, jak działa charakterystyka prądowo-napięciowa diody. Te punkty są w strefie, gdzie zmiany napięcia nie powodują szybkiego wzrostu prądu, co jest kluczowe do określenia momentu przebicia. Punkt B zazwyczaj jest w okolicach nasycenia diody, a nie w miejscu, gdzie zachodzi przebicie lawinowe. Punkt C to z kolei obszar zaporowy, w którym zwiększenie napięcia nie wpływa na przewodnictwo. Punkt D najczęściej pokazuje, że napięcie przekracza dopuszczalne wartości, co może uszkodzić diodę. Często myli się te punkty z momentem, kiedy dioda zaczyna przewodzić. Dlatego ważne jest, żeby naprawdę przyjrzeć się tej charakterystyce prądowo-napięciowej i wiedzieć, jakie parametry są kluczowe do prawidłowego działania diod w układach.

Pytanie 39

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór innych rysunków może wynikać z nieporozumienia co do roli pierścieni ślizgowych w konstrukcji silników elektrycznych. Rysunki, które nie przedstawiają pierścieni, mogą pokazywać inne istotne elementy silnika, takie jak wirnik czy stojan, ale nie są one odpowiednie w kontekście zadania. Niezrozumienie funkcji pierścieni ślizgowych często prowadzi do błędnej interpretacji ich lokalizacji i roli. Pierścienie ślizgowe są integralną częścią konstrukcji, umożliwiającą przekazywanie prądu do wirnika, co jest kluczowe dla funkcjonowania silnika. Wybierając rysunki, które nie pokazują tych elementów, można mylnie przyjąć, że inne części silnika pełnią tę funkcję, co jest niezgodne z rzeczywistością. Dodatkowo, w kontekście standardów branżowych, każdy element silnika ma swoją specyfikę i funkcję, co jest kluczowe w projektowaniu i eksploatacji. Ignorowanie tej zasady może prowadzić do nieprawidłowego działania maszyny, a w konsekwencji do poważnych awarii. Dlatego znajomość konstrukcji silników oraz poszczególnych komponentów jest niezbędna dla każdego inżyniera zajmującego się automatyką lub energetyką.

Pytanie 40

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,7 A
B. 10,5 A
C. 12,2 A
D. 11,1 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.