Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 19 grudnia 2025 21:23
  • Data zakończenia: 19 grudnia 2025 21:43

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do połączenia przerwanego kabla doprowadzającego sygnał telewizyjny do gniazda abonenckiego wykorzystuje się łącznik wtyków F (beczka) przedstawiony na rysunku

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór innej odpowiedzi może wskazywać na pewne nieporozumienia dotyczące zastosowania różnych typów łączników oraz ich funkcji w instalacjach telewizyjnych. Przykładowo, łączniki, które nie są przeznaczone do kabli koncentrycznych, mogą powodować znaczne straty sygnału oraz zakłócenia, co bezpośrednio wpływa na jakość odbioru. Zastosowanie niewłaściwego łącznika, jak np. elementy przeznaczone dla innych typów kabli, nie tylko nie zapewnia odpowiedniej ochrony sygnału, ale również może prowadzić do uszkodzenia sprzętu i nieprawidłowego działania systemu. Ponadto, w przypadku stosowania łączników o innych standardach, może dojść do różnic w impedancji, co dodatkowo destabilizuje sygnał. Podczas pracy z systemami telewizyjnymi, kluczowe jest stosowanie komponentów zgodnych ze standardami branżowymi, aby uniknąć problemów z odbiorem. Zrozumienie, dlaczego odpowiednia selekcja elementów ma znaczenie, pozwala na lepsze zarządzanie instalacjami i minimalizację ryzyka wystąpienia awarii systemu. Ostatecznie, stosowanie łączników F w instalacjach RTV jest uznawane za najlepszą praktykę, co czyni wybór tej odpowiedzi kluczowym dla zapewnienia jakości i niezawodności systemu.

Pytanie 2

Podczas hibernacji komputera zachodzi

A. zamknięcie systemu.
B. reset systemu.
C. zapisanie zawartości pamięci na dysku twardym.
D. przełączanie na zasilanie z UPS.
Hibernacja systemu komputerowego to proces, w którym zawartość pamięci operacyjnej (RAM) jest zapisywana na dysku twardym w celu oszczędzania energii, a następnie system może zostać wyłączony. Ta metoda jest szczególnie przydatna w laptopach oraz urządzeniach mobilnych, gdzie długotrwałe użytkowanie na baterii ma kluczowe znaczenie. Po wznowieniu pracy, system odtworzy stan, w jakim został wstrzymany, przywracając wszystkie otwarte aplikacje i dokumenty. Hibernacja różni się od usypiania, gdzie dane w pamięci są zachowywane tylko na czas aktywnego stanu, przy minimalnym zużyciu energii. W standardach zarządzania energią, taki jak ACPI (Advanced Configuration and Power Interface), hibernacja jest zalecana jako efektywne rozwiązanie do zarządzania mocą, które pozwala na długotrwałe przechowywanie stanu systemu bez potrzeby ciągłego zasilania. Przykładem zastosowania hibernacji może być moment, gdy użytkownik planuje dłuższą przerwę od pracy i chce wrócić do tego samego miejsca w systemie bez utraty postępów.

Pytanie 3

Jakie oznaczenie mają terminale w urządzeniach systemów alarmowych, które służą do podłączenia obwodu sabotażowego?

A. KPD
B. COM
C. TMP
D. CLK
Zaciski CLK, COM oraz KPD nie są związane z obwodami sabotażowymi, co może wprowadzać w błąd osoby niewystarczająco zaznajomione z terminologią używaną w systemach alarmowych. Zaciski CLK (clock) często stosowane są w systemach komunikacji, gdzie synchronizacja czasowa jest kluczowa do prawidłowego funkcjonowania urządzeń. W kontekście systemów alarmowych, błędne przypisanie tego oznaczenia do obwodu sabotażowego może prowadzić do nieprawidłowych instalacji oraz, co gorsza, do braku detekcji manipulacji. Zaciski COM (common) mogą być używane jako wspólne połączenia w obwodach, ale nie mają one specyficznego zastosowania w kontekście obwodów sabotażowych. Zastosowanie tych zacisków w niewłaściwy sposób może prowadzić do obniżenia efektywności ochrony. Oznaczenie KPD (klawiatura podziału stref) odnosi się do urządzeń umożliwiających interakcję z systemem alarmowym, takich jak wprowadzanie kodów dostępu, a nie do obwodów sabotażowych. Prawidłowe zrozumienie funkcji i oznaczeń zacisków jest kluczowe w ich zastosowaniach, dlatego w kontekście systemów alarmowych istotne jest, aby nie mylić tych terminów, co może prowadzić do poważnych błędów w instalacji i programowaniu systemów zabezpieczeń.

Pytanie 4

Jakiego środka ochrony osobistej powinien użyć pracownik podczas kontroli naprawianego odtwarzacza DVD, gdy źródło lasera nie jest zabezpieczone?

A. Obuwie ochronne
B. Rękawice ochronne
C. Okulary z soczewkami, które nie przepuszczają fal o określonej długości
D. Okulary z ciemnymi soczewkami oraz filtrem UV
Okulary z odpowiednimi soczewkami to naprawdę ważna sprawa, bo potrafią skutecznie chronić oczy przed szkodliwym promieniowaniem laserowym, które może się pojawić, na przykład, przy odtwarzaczach DVD. Kiedy używamy takich okularów, to blokują one te niebezpieczne długości fal, które mogą nam zaszkodzić. W przypadku laserów klasy I i II, emitujących światło w zakresie 400-700 nm, potrzebne są specjalne filtry, które pomagają w absorpcji tego promieniowania. Jeśli chodzi o normy, to mówimy tu o EN 207 lub ANSI Z136, które jasno określają, jakie wymagania muszą spełniać środki ochrony oczu podczas pracy z laserami. Używanie takich okularów nie tylko zmniejsza ryzyko uszkodzenia wzroku, ale też poprawia bezpieczeństwo w pracy, co jest super ważne dla BHP.

Pytanie 5

W dziedzinie mikroprocesorowej termin stos odnosi się do

A. sekwencji ostatnio realizowanych rozkazów przez mikroprocesor
B. słowa sterującego, na przykład układem czasowo-licznikowym
C. licznika wewnętrznych impulsów zegarowych mikroprocesora
D. obszaru pamięci użytkowej mikroprocesora, który jest używany na przykład podczas obsługi przerwania
Pojęcie stosu w technice mikroprocesorowej odnosi się do specjalnego obszaru pamięci, który jest wykorzystywany do przechowywania danych i powrotów z podprogramów oraz do obsługi przerwań. Stos działa na zasadzie LIFO (Last In, First Out), co oznacza, że ostatni element dodany do stosu jest pierwszym, który zostanie usunięty. Przykładem zastosowania stosu jest przechowywanie adresów powrotu podczas wywoływania funkcji. Gdy program wchodzi w funkcję, adres następnej instrukcji jest zapisywany na stosie, co pozwala na powrót do tego miejsca po zakończeniu funkcji. Dodatkowo, w mikroprocesorach, obsługa przerwań może wymagać tymczasowego przechowywania stanu rejestrów na stosie, co jest kluczowe dla zachowania ciągłości pracy programu. W praktyce, umiejętne zarządzanie stosem jest istotne dla zapewnienia stabilności i efektywności działania aplikacji. Programiści muszą być świadomi limitów pamięci stosu oraz potencjalnych ryzyk związanych z przepełnieniem stosu, co może prowadzić do błędów krytycznych w oprogramowaniu.

Pytanie 6

Przedstawiony na rysunku przyrząd pomiarowy służy do wykonywania pomiarów w

Ilustracja do pytania
A. instalacjach antenowych.
B. sieciach telewizji kablowej.
C. instalacjach zasilających urządzenia.
D. sieciach komputerowych.
Poprawna odpowiedź to sieci komputerowe, ponieważ przedstawiony na zdjęciu przyrząd to tester kabli sieciowych. Urządzenie to jest kluczowe w diagnostyce i utrzymaniu infrastruktury sieciowej. Tester kabli pozwala na sprawdzenie ciągłości połączeń, identyfikację błędów w okablowaniu oraz testowanie zgodności z normami, takimi jak TIA/EIA-568. Dzięki niemu można szybko zlokalizować problemy, takie jak zwarcia, przerwy czy odwrotne połączenia, co jest niezbędne w utrzymaniu stabilności i wydajności sieci komputerowych. W praktyce, tester kabli jest używany przez techników IT podczas instalacji nowych sieci, a także w trakcie konserwacji istniejących systemów, co zapewnia ich niezawodność. Oprócz tego, urządzenie to przyczynia się do szybszego rozwiązywania problemów, co zmniejsza przestoje i zwiększa efektywność operacyjną.

Pytanie 7

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. w trójkąt
B. w gwiazdę
C. szeregowo
D. równolegle
Łączenie czujek w sposób równoległy, trójkątny czy w gwiazdę to kiepski pomysł dla czujek PIR typu NC. Przy połączeniu równoległym każda czujka działa osobno, co może sprawić, że tylko jedna z nich włączy alarm. To może osłabić bezpieczeństwo, bo jeśli jedna czujka nie działa, to może się zdarzyć, że nie wyczuje ruchu. Metoda trójkątna zupełnie nie pasuje do alarmów i może być trudna w diagnozowaniu problemów. A jak dodasz połączenie w gwiazdę, to jeszcze więcej połączeń, co z kolei może sprawić, że system częściej się psuje. Błędne łączenie czujek bierze się często z niezrozumienia działania obwodów alarmowych. Ważne jest, żeby system działał tak, żeby alarm włączał się przy wykryciu intruza, a to można osiągnąć tylko przez połączenie szeregowe.

Pytanie 8

Podczas serwisowania konkretnego urządzenia elektronicznego, technik zauważył, że można usunąć usterkę poprzez wymianę modułu (koszt zakupu nowego modułu - 230 zł, czas trwania naprawy - 0,5 godziny) lub poprzez naprawę uszkodzonego modułu (koszt zakupu uszkodzonych elementów - 57 zł, czas trwania naprawy - 3 godziny). Koszt jednej roboczogodziny wynosi 68 zł. Koszt dostarczenia naprawionego urządzenia do klienta to 50 zł. Technik zaproponował klientowi najtańsze rozwiązanie, polegające na

A. wymianie całego modułu bez dostarczania naprawionego urządzenia do klienta.
B. wymianie całego modułu z dowozem urządzenia do klienta.
C. naprawie uszkodzonego modułu bez dostarczenia naprawionego urządzenia do klienta.
D. naprawie uszkodzonego modułu z dowozem urządzenia do klienta.
Naprawa uszkodzonego modułu bez dostarczenia naprawionego urządzenia do domu klienta jest najtańszym rozwiązaniem, które zostało zaproponowane przez pracownika. Analizując koszty, naprawa modułu wymaga wydatku 57 zł na zakup uszkodzonych elementów oraz 204 zł za roboczogodziny (3 godziny x 68 zł), co łącznie daje 261 zł. W przypadku wymiany modułu, koszty wynoszą 230 zł za nowy moduł oraz 34 zł za roboczogodziny (0,5 godziny x 68 zł), co daje 264 zł. Do tego należy doliczyć koszt dostarczenia naprawionego urządzenia, który wynosi 50 zł. Kiedy uwzględnimy dostarczenie, całkowity koszt naprawy uszkodzonego modułu wynosi 311 zł, co czyni naprawę bez dostarczenia bardziej opłacalną. Poprawne podejście w sytuacjach tego rodzaju opiera się na analizie kosztów oraz efektywności, co jest kluczowe w pracy serwisanta. Pracownicy powinni kierować się zasadą minimalizacji kosztów przy zachowaniu jakości usług, co jest zgodne z najlepszymi praktykami w branży serwisowej.

Pytanie 9

W trakcie konserwacji działającego zasilacza komputerowego należy

A. zmienić elementy chłodzące
B. wymienić kondensatory filtrujące
C. oczyścić elementy chłodzące
D. wyczyścić styki mikroprocesora sterującego
Wymiana elementów chłodzących, jak również czyszczenie styki mikroprocesora czy wymiana kondensatorów filtrujących, są podejściami, które mogą wprowadzić niepotrzebne komplikacje i koszty. W przypadku wymiany elementów chłodzących można spotkać się z sytuacją, w której nowe komponenty nie są dostosowane do specyfikacji zasilacza. Może to prowadzić do nieefektywnego chłodzenia, a w rezultacie do przegrzewania się urządzenia. Co więcej, wymiana komponentów wymaga odpowiednich umiejętności oraz narzędzi, co nie zawsze jest dostępne dla przeciętnego użytkownika. Czyszczenie styków mikroprocesora jest praktyką, która może być niebezpieczna, ponieważ niewłaściwe podejście może uszkodzić delikatne elementy. Wymiana kondensatorów filtrujących z kolei jest operacją zaawansowaną, wymagającą precyzyjnych narzędzi oraz wiedzy na temat lutowania. Niewłaściwe wykonanie może prowadzić do poważnych uszkodzeń zasilacza, które mogą zniweczyć efekt działań konserwacyjnych. Warto pamiętać, że kluczowym aspektem konserwacji jest nie tylko dbanie o komponenty, ale także ich skuteczne użytkowanie przez regularne czyszczenie oraz monitorowanie stanu technicznego sprzętu.

Pytanie 10

Elementy R, C w układzie generatora, którego schemat przedstawiono na rysunku, spełniają rolę

Ilustracja do pytania
A. blokady składowej stałej.
B. przesuwnika fazy.
C. blokady składowej zmiennej.
D. układu polaryzacji.
Wybranie odpowiedzi, która nie uwzględnia roli przesuwnika fazy, może prowadzić do nieporozumień dotyczących działania układów elektronicznych. Elementy R i C w układzie generatora sinusoidalnego są kluczowe dla generowania oscylacji, a ich głównym zadaniem jest właśnie wprowadzenie przesunięcia fazowego między sygnałem wejściowym a wyjściowym. Wybór odpowiedzi dotyczącej układu polaryzacji jest nieprawidłowy, ponieważ układ polaryzacji dotyczy ustalania punktu pracy tranzystorów, a nie generacji sygnałów. Ponadto, odpowiedzi odnoszące się do blokady składowej zmiennej oraz blokady składowej stałej sugerują, że zrozumienie funkcji elementów w kontekście ich zastosowania w generatorach jest niewłaściwe. Blokada składowej zmiennej odnosi się do eliminacji niepożądanych sygnałów AC w układach, co nie ma związku z wytwarzaniem sygnałów sinusoidalnych. Z kolei blokada składowej stałej to technika stosowana w celu wyeliminowania wpływu składowej stałej w sygnałach, co również nie koresponduje z funkcją przesuwnika fazy. Zrozumienie tych różnic jest kluczowe w elektronice, gdzie precyzyjne projektowanie i zastosowanie odpowiednich komponentów jest niezbędne dla osiągnięcia pożądanych parametrów układu.

Pytanie 11

Którą z czynności serwisowych w instalacji sieciowej można zignorować?

A. Sprawdzenie przewodów sieciowych omomierzem
B. Testowanie przewodów sieciowych za pomocą testera
C. Ocena stanu zewnętrznej powłoki przewodów
D. Wymiana luźnych złączy RJ
Sprawdzanie przewodów sieciowych testerem, wymiana obluzowanych złącz RJ oraz kontrola stanu powłoki zewnętrznej przewodów to wszystkie kluczowe czynności konserwacyjne, które nie powinny być pomijane przy utrzymaniu infrastruktury sieciowej. Tester kablowy jest niezbędnym narzędziem do diagnozowania problemów w okablowaniu. Umożliwia on wykrycie błędów w połączeniach, takich jak zwarcia, przerwy lub zamiany żył, co ma bezpośredni wpływ na jakość i stabilność połączenia sieciowego. Ignorowanie tej czynności może prowadzić do poważnych problemów z wydajnością sieci, co w efekcie może wpływać na całą organizację. Z kolei wymiana obluzowanych złącz RJ jest kluczowa, ponieważ takie złącza mogą prowadzić do utraty sygnału, co skutkuje przerwami w transmisji danych. Stabilne i dobrze zainstalowane złącza są fundamentem niezawodności całej sieci. Kontrola stanu powłoki zewnętrznej przewodów jest również niezbędna, ponieważ uszkodzenia mechaniczne mogą prowadzić do awarii przewodów, a także narażać je na działanie czynników atmosferycznych, co może wpłynąć na ich działanie. W kontekście standardów branżowych, takie jak ISO/IEC 11801, zaleca się regularne przeprowadzanie tych czynności konserwacyjnych, aby zapewnić wysoką jakość usług sieciowych oraz minimalizować ryzyko awarii.

Pytanie 12

Do realizacji instalacji odbiorczej paneli fotowoltaicznych należy użyć kabla rodzaju

A. YDY
B. UTP
C. YTKSY
D. RG58
Kable UTP, RG58 oraz YTKSY nie są odpowiednie do realizacji instalacji odbiorczej ogniw fotowoltaicznych, ponieważ ich zastosowanie i właściwości różnią się od wymagań stawianych przez systemy fotowoltaiczne. Kabel UTP (Unshielded Twisted Pair) jest typowo stosowany w sieciach komputerowych do przesyłania danych, a jego konstrukcja nie jest przystosowana do zasilania urządzeń elektrycznych, co sprawia, że nie można go używać w obwodach niskonapięciowych do paneli słonecznych. Z kolei RG58 jest kablem koncentrycznym, który jest używany głównie w systemach komunikacyjnych, takich jak anteny radiowe czy telewizyjne, a jego zastosowanie w instalacjach elektrycznych nie spełnia norm dotyczących bezpieczeństwa i wydajności. Natomiast kabel YTKSY, znany z zastosowania w telekomunikacji, również nie jest odpowiedni do użycia w systemach fotowoltaicznych, ponieważ jego konstrukcja nie zapewnia wymaganej elastyczności i odporności na czynniki zewnętrzne, co jest kluczowe w kontekście instalacji na otwartym terenie. Użycie niewłaściwego rodzaju kabla w instalacji fotowoltaicznej może prowadzić do awarii systemu, zwiększenia ryzyka uszkodzeń oraz nieefektywnego działania, dlatego ważne jest, aby dobierać materiały zgodnie z ich przeznaczeniem i wymaganiami technicznymi.

Pytanie 13

Na zdjęciu przedstawiony jest

Ilustracja do pytania
A. woltomierz.
B. częstotliwościomierz.
C. amperomierz.
D. watomierz.
Wybór watomierza jako poprawnej odpowiedzi jest uzasadniony, ponieważ przyrząd na zdjęciu jest oznaczony literą 'W', co jednoznacznie wskazuje na jego funkcję jako urządzenia do pomiaru mocy elektrycznej. Watomierz mierzy moc w watach, co jest kluczowe w obliczeniach dotyczących efektywności energetycznej oraz w zastosowaniach przemysłowych i domowych, gdzie kontrola zużycia energii jest istotna. W praktyce, watomierze są używane do monitorowania wydajności urządzeń elektrycznych, co pozwala na lepsze zarządzanie zużyciem energii oraz identyfikowanie urządzeń o wysokim poborze mocy. W kontekście norm, watomierze są często stosowane w zgodzie z ISO 50001, co odnosi się do systemów zarządzania energią. Dlatego poprawny wybór watomierza podkreśla istotność znajomości typów przyrządów pomiarowych oraz ich zastosowania w codziennym życiu i przemyśle.

Pytanie 14

Jaką czujkę powinno się zastosować, aby sygnalizować otwarcie drzwi?

A. Mikrofalową
B. Ultradźwiękową
C. Podczerwieni
D. Kontaktronową
Czujka kontaktronowa jest najodpowiedniejszym rozwiązaniem do sygnalizacji otwarcia drzwi, ponieważ wykorzystuje zasadę działania, która opiera się na zbliżeniu dwóch styków magnetycznych. Gdy drzwi się otwierają, magnes umieszczony na drzwiach oddala się od styków, co powoduje ich rozłączenie. Taki mechanizm jest niezwykle niezawodny i często stosowany w systemach alarmowych oraz zabezpieczeniach budynków. Kontaktrony charakteryzują się prostotą instalacji oraz niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przypadku monitorowania otwarcia drzwi. W praktyce czujki te można znaleźć w różnych aplikacjach, od domowych systemów alarmowych po zabezpieczenia w obiektach komercyjnych. Dobrą praktyką jest także ich integracja z systemami automatyki budynkowej, co zwiększa komfort użytkowania oraz efektywność zabezpieczeń. Warto podkreślić, że kontaktrony są zgodne z normami branżowymi dotyczącymi bezpieczeństwa i ochrony, co potwierdza ich skuteczność i powszechną akceptację w branży.

Pytanie 15

Multimetr oznaczony symbolem X na rysunku mierzy

Ilustracja do pytania
A. napięcie stałe zasilające układ prostownika.
B. napięcie przemienne zasilająca układ prostownika.
C. prąd stały zasilający układ prostownika.
D. prąd przemienny zasilający układ prostownika.
Multimetr oznaczony symbolem X na rysunku rzeczywiście mierzy prąd przemienny zasilający układ prostownika. W kontekście układów elektronicznych ważne jest, aby zrozumieć, że prostowniki są używane do konwersji prądu przemiennego (AC) na prąd stały (DC), co jest kluczowe w wielu aplikacjach elektronicznych i zasilających. Pomiar prądu przemiennego przed mostkiem prostowniczym dostarcza cennych informacji dotyczących efektywności konwersji oraz ewentualnych strat w układzie. Praktycznie, w zastosowaniach przemysłowych i laboratoryjnych wiedza o parametrach prądu AC jest niezbędna do optymalizacji pracy urządzeń. Standardy takie jak IEC 61010 dotyczące bezpieczeństwa przy pomiarach elektrycznych nakładają obowiązek dokładnego pomiaru prądu, co bezpośrednio odnosi się do poprawności pomiarów dokonywanych za pomocą multimetrów. Oprócz tego, zrozumienie różnicy między prądem przemiennym a stałym jest niezbędne w kontekście projektowania układów elektronicznych, co umożliwia inżynierom dobieranie odpowiednich komponentów do konkretnych zastosowań.

Pytanie 16

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. zredukowana zostanie jego impedancja
B. nastąpi wzrost jego impedancji
C. może to prowadzić do obniżenia odporności na zakłócenia
D. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
Wybór odpowiedzi, że zmniejszenie impedancji byłoby wynikiem rozkręcenia par przewodów, jest niepoprawny, gdyż pojęcie impedancji odnosi się do oporu, który przewód stawia przepływowi prądu przemiennego. W kontekście kabli krosowych, rozkręcenie przewodów na większym odcinku wpływa na charakterystykę sygnału, ale nie w sposób, który prowadziłby do jednoznacznego zmniejszenia impedancji. Również stwierdzenie, że kabel stanie się źródłem większego pola elektromagnetycznego, jest mylące; owszem, większe pole elektromagnetyczne może wystąpić, lecz niekoniecznie w wyniku samego rozkręcenia. Całkowita emisja pola elektromagnetycznego zależy od wielu czynników, w tym od konstrukcji kabla, jego ekranowania oraz otaczających go elementów. Warto zauważyć, że zwiększone pole elektromagnetyczne nie jest bezpośrednio związane z zakłóceniami, które mogą wpływać na sygnał. Ostatecznie, stwierdzenie, że nastąpi zwiększenie impedancji, jest również nieprawdziwe, ponieważ impedancja zależy od długości kabla i jego właściwości, a nie od długości rozkręcenia pary. Dlatego tak ważne jest zwracanie uwagi na parametry techniczne instalacji i przestrzeganie standardów, aby zminimalizować ryzyko zakłóceń w systemach komunikacyjnych.

Pytanie 17

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. fartuch bawełniany
B. rękawice ochronne
C. buty na izolowanej podeszwie
D. okulary ochronne
Na pierwszy rzut oka można sądzić, że okulary ochronne, rękawice ochronne i buty na izolowanej podeszwie również mogą być odpowiednimi elementami odzieży ochronnej podczas prac serwisowych. Jednak ich zastosowanie nie jest wystarczające w kontekście wylutowywania podzespołów elektronicznych. Okulary ochronne są ważne do ochrony oczu przed odpryskami i substancjami chemicznymi, jednak nie chronią one całego ciała przed zanieczyszczeniem oraz niepełnym zabezpieczeniem odzieży. Rękawice ochronne mogą być niezbędne, gdy pracujemy z substancjami niebezpiecznymi, jednak w przypadku wylutowywania, ich stosowanie może być niewygodne i obniżać precyzję manipulacji delikatnymi komponentami. Wiele osób może również mylnie sądzić, że buty na izolowanej podeszwie są wystarczające do ochrony w takim środowisku; owszem, chronią one przed porażeniem prądem, ale nie zabezpieczają w wystarczającym stopniu przed chemikaliami czy odpadami, które mogą być wytwarzane podczas prac serwisowych. Dlatego kluczowe jest zrozumienie, że odpowiedni fartuch bawełniany stanowi najbardziej wszechstronną i skuteczną ochronę, zapewniając jednocześnie komfort i bezpieczeństwo. Efektywna odzież ochronna powinna być zgodna z zaleceniami BHP oraz standardami branżowymi, co w praktyce oznacza, że fartuch bawełniany jest najodpowiedniejszym rozwiązaniem w tym przypadku.

Pytanie 18

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. wysoką temperaturą
B. uszkodzeniami mechanicznymi
C. niską wilgotnością
D. porażeniem prądem elektrycznym
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 19

W systemach zabezpieczeń najbardziej podatna na przeciągi w strzeżonym pomieszczeniu jest

A. czujka magnetyczna
B. czujka wibracyjna
C. akustyczna czujka stłuczenia szyby
D. pasywna czujka podczerwieni
Pasywna czujka podczerwieni (PIR) jest zaprojektowana do wykrywania zmian w promieniowaniu podczerwonym, które emitują obiekty w ruchu, takie jak ludzie. Jej wrażliwość na przeciągi wynika z faktu, że czujka ta działa na zasadzie różnicy temperatur między obiektami a otoczeniem. W przypadku przeciągu, zmiany temperatury mogą wpływać na skuteczność wykrywania, co czyni ją bardziej podatną na zakłócenia. W praktyce, w pomieszczeniach, gdzie występuje wzmożony ruch powietrza, zaleca się umieszczanie czujek PIR w taki sposób, aby zminimalizować ich kontakt z bezpośrednim ruchem powietrza, co jest zgodne z dobrymi praktykami instalacji systemów alarmowych. Warto również stosować czujki o różnej technologii w zależności od charakterystyki chronionego obszaru, aby zwiększyć efektywność systemu. Standardy branżowe, takie jak EN 50131, wskazują na konieczność przeprowadzania analizy ryzyka dla każdego rodzaju instalacji, co podkreśla znaczenie odpowiedniego doboru typów czujek w zależności od warunków w pomieszczeniu.

Pytanie 20

Jak nazywa się przedstawiona na rysunku technologia montowania podzespołów elektronicznych na płytce drukowanej?

Ilustracja do pytania
A. Montaż powierzchniowy.
B. Montaż przewlekany.
C. Nitowanie.
D. Klejenie klejem przewodzącym.
Montaż powierzchniowy, czyli SMT (ang. Surface-Mount Technology), to fajna technologia, bo umożliwia umieszczanie elementów elektronicznych bezpośrednio na płytce drukowanej. Widać to dobrze w przedstawionym na rysunku elemencie SMD, który świetnie pokazuje, jak ta metoda działa i czemu jest tak popularna w nowoczesnej elektronice. Dzięki temu, że montaż powierzchniowy pozwala na większą miniaturyzację urządzeń oraz lepszą gęstość montażu niż montaż przewlekany, mamy mniejsze i lżejsze sprzęty. Z własnego doświadczenia wiem, że automatyzacja tego procesu produkcji oszczędza sporo czasu i pieniędzy. SMT to teraz norma w produkcji różnych urządzeń, jak smartfony czy komputery, a normy branżowe, takie jak IPC-A-610, wskazują, jak powinno to wyglądać jakościowo. Właśnie dlatego, dzięki takim technologiom, elektronika dzisiaj jest produkowana w znacznie bardziej efektywny sposób.

Pytanie 21

Jaką liczbę wyjść ma konwerter TWIN?

A. osiem wyjść
B. jedno wyjście
C. cztery wyjścia
D. dwa wyjścia
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 22

Które wiertło należy wykorzystać do wiercenia otworów w ścianie z cegły, w celu zamocowania korytek kablowych, podczas wykonywania instalacji antenowej?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór wiertła udarowego do wiercenia otworów w ścianie z cegły jest kluczowy dla efektywności i jakości pracy. Wiertła udarowe, takie jak wiertło SDS przedstawione w odpowiedzi D, są specjalnie zaprojektowane do pracy z twardymi materiałami budowlanymi, w tym cegłą i betonem. Działają one na zasadzie połączenia ruchu obrotowego z uderzeniowym, co pozwala na skuteczniejsze przełamywanie twardych materiałów. Przykładem praktycznego zastosowania takiego wiertła jest instalacja korytek kablowych, gdzie istotne jest uzyskanie czystych i dokładnych otworów, aby zapewnić stabilność mocowania. W branży budowlanej, zgodnie z normami BHP, zaleca się także stosowanie odpowiednich technik wiercenia, takich jak stosowanie chłodzenia za pomocą wody, co może zwiększyć żywotność wiertła oraz poprawić komfort pracy. Wiedza na temat odpowiednich narzędzi i technik nie tylko zwiększa efektywność, ale również bezpieczeństwo podczas wykonywania instalacji. W związku z tym, wybór odpowiedniego wiertła to fundament, na którym opiera się sukces w każdej budowlanej czy instalacyjnej operacji.

Pytanie 23

Które złącza zaciska się za pomocą narzędzia przedstawionego na rysunku?

Ilustracja do pytania
A. SC
B. PS-2
C. RJ
D. BNC
Odpowiedź BNC jest poprawna, ponieważ narzędzie przedstawione na rysunku to zaciskarka przeznaczona do złącz BNC. Złącze to jest powszechnie stosowane w systemach monitoringu wideo, w tym CCTV, gdzie umożliwia szybkie i efektywne połączenie kabli koncentrycznych. Zaciskarka do złącz BNC jest niezbędnym narzędziem w instalacjach audio-wideo oraz w telekomunikacji, gdzie często wykorzystuje się sygnały RF (radio-frequency). W praktyce, poprawne zaciskanie złącz BNC zapewnia stabilność połączenia oraz minimalizuje straty sygnału, co jest kluczowe w zastosowaniach wymagających wysokiej jakości transmisji, jak np. w systemach zabezpieczeń. Przykładami zastosowania są instalacje CCTV w obiektach komercyjnych oraz systemy wideo w domach. Warto również zaznaczyć, że w branży telekomunikacyjnej i elektronicznej przestrzega się standardów dotyczących jakości połączeń, co podkreśla znaczenie właściwego doboru narzędzi, tak aby zapewnić optymalne działanie systemów.

Pytanie 24

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. zestawić z tunerem satelitarnym.
B. spiąć z odtwarzaczem Blu-ray.
C. włożyć nośnik USB.
D. połączyć go z Internetem.
Podłączenie telewizora do zewnętrznego nośnika USB nie ma wpływu na możliwość korzystania z serwisów streamingowych, takich jak IPLA. USB jest używane głównie do odtwarzania multimediów przechowywanych lokalnie, a nie do strumieniowania treści online. Podobnie, podłączenie do tunera satelitarnego nie zapewnia dostępu do treści streamingowych, ponieważ tuner satelitarny działa na zasadzie odbierania sygnałów telewizyjnych z satelity, co nie ma związku z transmisją danych przez Internet. Odtwarzacz Blu-ray z kolei może być używany do odtwarzania płyt, ale nie jest niezbędny do korzystania z serwisu IPLA, ponieważ większość nowoczesnych telewizorów SMART już zawiera aplikacje do strumieniowania. Częstym błędem myślowym jest zakładanie, że wszystkie urządzenia podłączone do telewizora są równoznaczne z możliwością korzystania z aplikacji streamingowych, podczas gdy kluczowym elementem jest dostęp do Internetu. Również, wiele osób może nie zdawać sobie sprawy, że funkcjonalność SMART telewizora polega przede wszystkim na możliwości instalacji aplikacji, co wymaga dostępu do sieci. Dlatego, dla prawidłowego korzystania z serwisów streamingowych, kluczowe jest skoncentrowanie się na zapewnieniu stabilnego połączenia internetowego, a nie na zewnętrznych urządzeniach, które nie są powiązane z tym procesem.

Pytanie 25

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
B. analogowy na zakresie U=200 V i Rwe=10 kOhm
C. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
D. analogowy na zakresie U=20 V i Rwe=100 kOhm
Wybór innych opcji woltomierzy może prowadzić do nieprecyzyjnych pomiarów z kilku powodów. Użycie woltomierza cyfrowego na zakresie U=200 V z rezystancją wewnętrzną Rwe=10 MOhm może wydawać się logicznym wyborem, jednak zbyt wysoki zakres napięcia nie pozwala na wystarczającą precyzję w pomiarze wartości bliskich 18 V. W takich przypadkach, lepszym rozwiązaniem jest użycie woltomierza o niższym zakresie, co zapewnia wyższą rozdzielczość pomiarową. Z kolei analogowy woltomierz na zakresie U=200 V z rezystancją Rwe=10 kOhm ma znacznie niższą rezystancję wewnętrzną, co skutkuje znacznym obciążeniem obwodu. W praktyce, obniżenie rezystancji wewnętrznej woltomierza prowadzi do błędnych pomiarów, ponieważ wprowadza dodatkowy prąd do obwodu, co zakłóca działanie czujnika. Analogowe woltomierze są również mniej precyzyjne w porównaniu do cyfrowych, co w kontekście pomiarów wysokorezystancyjnych jest kluczowe. Zastosowanie woltomierza analogowego na zakresie U=20 V z Rwe=100 kOhm również nie jest optymalne; chociaż ma on niższy zakres, jego rezystancja wewnętrzna nadal jest za mała w porównaniu do wymagań pomiarowych. W pomiarach, gdzie istotne jest zachowanie dokładności i minimalizacja zakłóceń, kluczowe jest stosowanie odpowiednich narzędzi pomiarowych, co czyni wybór woltomierza z wysoką rezystancją wewnętrzną i odpowiednim zakresem wartości kluczowym dla uzyskania wiarygodnych wyników.

Pytanie 26

Elementy urządzeń elektronicznych przeznaczone do recyklingu nie powinny być

A. składowane w pomieszczeniach bezpośrednio na podłożu
B. demontowane ręcznie, w przypadku gdy zawierają wysoką ilość metali szlachetnych
C. oddzielane od obudowy z materiałów sztucznych
D. demontowane ręcznie, jeśli są wykonane z stali lub aluminium
Ręczne demontowanie elementów urządzeń elektronicznych w przypadku metali szlachetnych oraz oddzielanie ich od obudowy z tworzyw sztucznych mogą wydawać się praktycznymi rozwiązaniami, jednak wymagają one dużej ostrożności oraz odpowiednich umiejętności. Stal i aluminium, będące popularnymi materiałami w elektronice, są zazwyczaj łatwe do demontażu, ale nie powinny być poddawane tej procedurze bez przestrzegania odpowiednich norm. Demontaż elementów zawierających dużą koncentrację metali szlachetnych wymaga szczególnej uwagi ze względu na ich wartość i potencjalne zagrożenia, które mogą wynikać z niewłaściwej obróbki tych materiałów. Ponadto, oddzielanie części z tworzyw sztucznych od innych materiałów jest kluczowe dla procesu recyklingu, ponieważ różne materiały muszą być przetwarzane w odmienny sposób. Jednakże, niewłaściwe podejście do demontażu, takie jak wykonywanie go w nieprzystosowanych warunkach czy bez środków ochrony osobistej, może prowadzić do wypadków oraz nieefektywnego wykorzystania surowców. Kluczowe jest zrozumienie, że wszystkie te czynności muszą być wykonywane zgodnie z regulacjami prawnymi oraz standardami branżowymi, aby zminimalizować ryzyko i stworzyć efektywny proces recyklingu. Dlatego przed podjęciem jakichkolwiek działań związanych z demontażem urządzeń elektronicznych, warto skonsultować się z odpowiednimi specjalistami lub korzystać z usług certyfikowanych firm zajmujących się recyklingiem.

Pytanie 27

Co oznacza opis na przewodzie YTDY 6×0,5?

A. sześciożyłowy z żyłą miedzianą typu linka, o przekroju żyły 0,5 mm2
B. sześciożyłowy z żyłą aluminiową typu drut, o przekroju żyły 0,5 mm2
C. sześciożyłowy z żyłą aluminiową typu linka, o przekroju żyły 0,5 mm2
D. sześciożyłowy z żyłą miedzianą typu drut, o przekroju żyły 0,5 mm2
Odpowiedź wskazująca na przewód sześciożyłowy z żyłą miedzianą typu drut o przekroju żyły 0,5 mm2 jest poprawna, ponieważ oznaczenie YTDY odnosi się do specyfikacji przewodów elektrycznych, w których 'Y' oznacza przewód miedziany, 'T' oznacza, że przewód ma zastosowanie do instalacji w trudnych warunkach, a 'D' i 'Y' oznaczają odpowiednio, że przewód jest wielożyłowy i ma izolację z PVC. Przewody z żyłą miedzianą są powszechnie używane w instalacjach elektrycznych ze względu na dobre przewodnictwo elektryczne oraz odporność na utlenianie. Przykładem zastosowania tego typu przewodu może być okablowanie oświetleniowe w budynkach mieszkalnych, gdzie przewody o małym przekroju są wystarczające do zasilania energooszczędnych źródeł światła. W przypadku instalacji, które nie wymagają znacznych obciążeń, przewody o przekroju 0,5 mm2 są odpowiednie, a ich elastyczność sprawia, że można je łatwo układać w różnych konfiguracjach. Zgodnie z normą PN-EN 60228, przewody tego typu powinny być stosowane zgodnie z określonymi zasadami, co zapewnia bezpieczeństwo użytkowania.

Pytanie 28

Jakie cechy ma przewód U/UTP 4×2×0,5?

A. ekranowany czterożyłowy o przekroju 0,5 mm2
B. nieekranowany czterożyłowy o przekroju 0,5 mm2
C. nieekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
D. ekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
W odpowiedziach, które nie są poprawne, można dostrzec pewne nieporozumienia dotyczące klasyfikacji przewodów. Odpowiedzi sugerujące, że przewód jest ekranowany, są błędne, ponieważ oznaczenie U/UTP samo w sobie oznacza, że przewód jest nieekranowany. Ekranowane przewody, takie jak F/UTP czy S/UTP, różnią się konstrukcją, mają dodatkowe warstwy ochronne, które chronią przed zakłóceniami elektromagnetycznymi, co nie jest przypadkiem przewodów U/UTP. Kolejnym błędem jest mylenie pojęć dotyczących liczby żył i ich przekroju. Odpowiedzi podające, że przewód miałby długość 0,5 m, wprowadzają w błąd, ponieważ oznaczenie 0,5 odnosi się do przekroju żyły, a nie długości przewodu. W praktyce, w instalacjach telekomunikacyjnych, ważne jest, aby prawidłowo rozumieć specyfikacje przewodów, gdyż błędna interpretacja może prowadzić do problemów z jakością sygnału i efektywnością sieci. Mylne koncepcje dotyczące ekranowania i przekroju żył mogą skutkować niewłaściwym doborem kabli do konkretnego zastosowania, co w dłuższej perspektywie wpływa na niezawodność i wydajność całego systemu. Dlatego kluczowe jest, aby dokładnie zapoznać się ze standardami oraz specyfikacjami technicznymi produktów, aby podejmować świadome decyzje w procesie projektowania i instalowania systemów telekomunikacyjnych.

Pytanie 29

W dokumentach technicznych dotyczących magnetofonów kasetowych często można znaleźć terminy "Dolby", "Dolby C". Co to oznacza w kontekście zastosowanego w urządzeniu systemu?

A. wzmocnienia sygnałów o małej amplitudzie
B. podbicia niskich tonów w urządzeniu
C. korekcji amplitudowej dźwięku
D. redukcji szumów
Koncepcje związane z podbiciem niskich tonów, korekcją amplitudową dźwięku oraz wzmocnieniem sygnałów o małej amplitudzie nie mają zastosowania w kontekście funkcji systemów Dolby. Podbicie niskich tonów odnosi się do procesów equalizacji, które mają na celu zmiany w charakterystyce dźwięku, a nie redukcję szumów. Korekcja amplitudowa dźwięku, z kolei, dotyczy zmiany poziomów głośności sygnałów audio, co również nie jest bezpośrednio związane z eliminacją niepożądanych zakłóceń. Wzmocnienie sygnałów o małej amplitudzie odnosi się do technologii wzmacniaczy, które nie są specyficzne dla systemów Dolby. Co więcej, błędne przekonania na temat tych zagadnień często wynikają z nieodpowiedniego zrozumienia funkcji różnych systemów audio. Użytkownicy mogą mylić pojęcia związane z analogowym przetwarzaniem dźwięku, co może prowadzić do fałszywych wniosków dotyczących roli i zastosowania systemów redukcji szumów. Zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania technologii audio oraz dla osiągnięcia pożądanej jakości dźwięku w różnych kontekstach.

Pytanie 30

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Czyszczenie
B. Programowanie
C. Pomiary sprawdzające
D. Regulacja parametrów
Programowanie to głównie takie zajęcie, które polega na tworzeniu i zmienianiu oprogramowania, co pozwala na sterowanie różnymi urządzeniami elektronicznymi. Kiedy mówimy o konserwacji tych urządzeń, to programowanie nie wchodzi w skład typowych działań konserwacyjnych. Tu chodzi o to, żeby sprzęt działał jak należy, więc skupiamy się na czyszczeniu, regulacji i przeprowadzaniu różnych sprawdzeń. Na przykład, czyszczenie wentylatorów czy złączy to coś, co naprawdę może pomóc uniknąć przegrzewania się urządzenia. A regulacja parametrów? To sposób na dostosowanie sprzętu do zmieniających się warunków, co ma ogromne znaczenie dla wydajności. Więc, programowanie jest ważne, ale nie dotyczy bezpośrednio codziennych zadań związanych z konserwacją, które mają na celu utrzymanie sprzętu w dobrej formie.

Pytanie 31

Router to urządzenie wykorzystywane w warstwie

A. prezentacji
B. aplikacji
C. sesji
D. sieci
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 32

Jakie narzędzie jest niezbędne do zainstalowania wtyku kompresyjnego typu F na kablu koncentrycznym?

A. śrubokręt.
B. obcęgi.
C. nóż montażowy.
D. zaciskarkę.
Zaciskarka to narzędzie specjalnie zaprojektowane do montażu wtyków kompresyjnych na kablach koncentrycznych. Dzięki precyzyjnemu mechanizmowi chwytania i zaciskania, pozwala na pewne i trwałe połączenie wtyku z kablem, co jest kluczowe dla uzyskania optymalnej jakości sygnału. Użycie zaciskarki zapewnia, że wtyk jest prawidłowo zamocowany, eliminując ryzyko luzów, które mogłyby prowadzić do zakłóceń sygnału. W branży telekomunikacyjnej oraz w instalacjach antenowych, gdzie jakość sygnału jest kluczowa, stosowanie odpowiednich narzędzi, takich jak zaciskarka, jest zgodne z najlepszymi praktykami. W przypadku kabli koncentrycznych, wtyki kompresyjne oferują lepszą ochronę przed zakłóceniami elektromagnetycznymi, a ich prawidłowy montaż przy użyciu zaciskarki jest niezbędny, aby zapewnić optymalne działanie całego systemu. Warto zwrócić uwagę na standardy, takie jak ISO/IEC 11801, które podkreślają znaczenie odpowiedniego montażu i użycia właściwych narzędzi w celu zapewnienia niezawodności i wydajności systemów transmisji danych.

Pytanie 33

Na fotografii przedstawiony jest multiswitch

Ilustracja do pytania
A. 4-wejściowy i 9-wyjściowy.
B. 4-wejściowy i 4-wyjściowy.
C. 5-wejściowy i 4-wyjściowy.
D. 5-wejściowy i 8-wyjściowy.
Odpowiedź jest prawidłowa, ponieważ multiswitch, który widnieje na zdjęciu, rzeczywiście posiada 5 wejść i 8 wyjść. Wejścia są wyraźnie oznaczone jako LNC A, LNC B, LNC C, LNC D oraz jedno wejście oznaczone jako Ter. Suma tych wejść daje 5. Z kolei wyjścia oznaczone jako REC1, REC2, REC3, REC4, REC5, REC6, REC7 oraz REC8 wskazują na 8 wyjść. Multiswitch jest kluczowym elementem w systemach telewizyjnych, umożliwiającym rozdzielanie sygnału z jednego źródła na wiele odbiorników. W praktyce, stosuje się go w instalacjach, gdzie istnieje potrzeba podłączenia wielu tunerów satelitarnych do jednego zestawu antenowego, co pozwala na jednoczesne odbieranie różnych programów telewizyjnych. Właściwe zrozumienie konfiguracji multiswitcha jest istotne dla zapewnienia stabilności i jakości sygnału, co jest zgodne z branżowymi standardami instalacji telewizyjnych, takimi jak EN 50494 oraz EN 50607.

Pytanie 34

Czujnik kontaktronowy to komponent, który reaguje głównie na zmiany

A. pola magnetycznego
B. wilgotności
C. temperatury
D. natężenia światła
Czujnik kontaktronowy to całkiem ciekawy element. Działa na zasadzie reakcji na zmiany pola magnetycznego. Wygląda to tak, że mamy dwa ferromagnetyczne styki w szklanej rurce, a ta rurka jest wypełniona gazem lub próżnią. Kiedy magnes się zbliża, to pole magnetyczne sprawia, że te styki się zamykają lub otwierają. Jak to się dzieje, generuje sygnał elektryczny. Takie czujniki są często stosowane w alarmach, automatyce budynkowej czy też w różnych urządzeniach w przemyśle. Przykładowo, montuje się je w drzwiach i oknach, żeby informowały, gdy są otwarte lub zamknięte. To jest naprawdę ważne dla bezpieczeństwa. Warto też wspomnieć, że kontaktrony są znane z tego, że są niezawodne i mają długą żywotność, co czyni je bardzo popularnymi rozwiązaniami. Dzięki temu, że są proste w montażu i małe, idealnie nadają się do domowych systemów automatyki i inteligentnych budynków.

Pytanie 35

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 100 kHz
B. 1 kHz
C. 0,1 kHz
D. 10 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 36

Jakie rodzaje układów cyfrowych powinno się wykorzystać, aby zredukować liczbę linii przesyłu danych?

A. Multiplekser i dekoder
B. Koder i transkoder
C. Koder i demultiplekser
D. Multiplekser i demultiplekser
Multiplekser i demultiplekser to kluczowe elementy w systemach cyfrowych, które umożliwiają zmniejszenie ilości linii przesyłu danych. Multiplekser (MUX) działa jako przełącznik, który wybiera jeden z wielu sygnałów wejściowych i przesyła go na pojedynczy kanał wyjściowy. Przykładowo, w telekomunikacji, multipleksery są wykorzystywane do łączenia wielu linii telefonicznych na jednym łączu, co efektywnie redukuje potrzebną infrastrukturę kablową. Demultiplekser (DEMUX) pełni odwrotną funkcję, rozdzielając sygnał na wiele wyjść. Oba te urządzenia są fundamentem w architekturze komunikacji cyfrowej, gdzie ograniczenie liczby linii przesyłowych prowadzi do obniżenia kosztów i zwiększenia wydajności. Stosowanie tych układów jest zgodne z najlepszymi praktykami inżynieryjnymi, które promują efektywność i oszczędność zasobów w projektowaniu systemów elektronicznych. Dodatkowo, w kontekście standardów, takie rozwiązania wspierają technologie, jak TDM (Time Division Multiplexing), co zwiększa ich uniwersalność i zastosowanie w nowoczesnych systemach.

Pytanie 37

W systemie wykorzystano przetwornik o rozdzielczości 8-bitowej. Jaka jest wartość rozdzielczości napięciowej, gdy zakres pomiarowy wynosi od 0 V do 2,56 V?

A. 100 mV
B. 32 mV
C. 10 mV
D. 320 mV
Odpowiedzi 100 mV, 32 mV oraz 320 mV są wynikiem niepoprawnych obliczeń dotyczących rozdzielczości napięciowej przetwornika 8-bitowego. Można zauważyć, że często popełnianym błędem jest mylenie jednostek oraz niewłaściwe interpretowanie zakresu przetwornika. Na przykład, rozdzielczość 100 mV sugerowałaby, że przetwornik reprezentuje tylko 25 poziomów napięcia w skali od 0 V do 2,56 V, co jest niezgodne z jego 256 poziomami. Z kolei rozdzielczość 320 mV w ogóle nie mieści się w zakresie od 0 V do 2,56 V, ponieważ jest większa od maksymalnego napięcia. Niektóre z tych odpowiedzi mogą wynikać z błędnej logiki dzielenia zakresu przez liczbę bitów, zamiast przez liczby poziomów. W praktyce, do obliczania rozdzielczości przetwornika, kluczowe jest zrozumienie, że różnice napięcia muszą być dzielone przez całkowitą liczbę poziomów, co prowadzi do dokładnych i wiarygodnych wyników. Ignorowanie tego fundamentalnego aspektu może prowadzić do poważnych błędów w projektach inżynieryjnych oraz zastosowaniach przemysłowych, gdzie precyzyjne pomiary mają bezpośredni wpływ na efektywność i jakość produkcji.

Pytanie 38

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. typ modulacji
B. współczynnik zawartości harmonicznych
C. zmiana częstotliwości
D. napięcie detektora
Współczynnik zawartości harmonicznych (THD - Total Harmonic Distortion) jest kluczowym parametrem w ocenie jakości sygnału w wzmacniaczach małej częstotliwości. Mierzy on, w jakim stopniu sygnał wyjściowy wzmacniacza zawiera harmoniczne, które nie występują w sygnale wejściowym. W praktyce, im niższy współczynnik THD, tym wyższa jakość dźwięku, ponieważ oznacza to mniejsze zniekształcenia sygnału. Wzmacniacze audio, na przykład, często dążą do uzyskania wartości THD poniżej 1%, co jest standardem w branży audiofilskiej. Dobrze zaprojektowane wzmacniacze powinny minimalizować zniekształcenia w celu wiernego odwzorowania dźwięku. Warto zwrócić uwagę na to, że współczynnik THD można poprawić poprzez odpowiedni dobór komponentów oraz zastosowanie technik, takich jak sprzężenie zwrotne, co jest powszechnie stosowane w inżynierii elektronicznej. Analiza THD jest więc istotna nie tylko dla inżynierów projektujących wzmacniacze, ale także dla użytkowników szukających sprzętu o wysokiej jakości dźwięku.

Pytanie 39

Które z działań nie jest konieczne podczas konserwacji bramy przesuwnej?

A. Smarowanie elementów ruchomych napędu
B. Sprawdzenie ustawień krańcowych bramy
C. Ponowne programowanie pilotów zdalnego sterowania
D. Weryfikacja działania zabezpieczeń mechanicznych
Odpowiedź "Ponowne programowanie pilotów zdalnego sterowania" jest poprawna, ponieważ nie jest to czynność niezbędna do codziennej konserwacji bramy przesuwnej. Regularna konserwacja powinna skupiać się na zapewnieniu prawidłowego działania mechanizmów bramy oraz jej bezpieczeństwa. Sprawdzanie działania zabezpieczeń mechanicznych jest kluczowe, aby uniknąć wypadków i uszkodzeń. Przesmarowanie części ruchomych napędu zapewnia płynność ruchu oraz minimalizuje zużycie elementów, co może wydłużyć ich żywotność. Sprawdzenie położeń krańcowych bramy jest również istotne, ponieważ niewłaściwe ustawienie tych położeń może prowadzić do uszkodzenia bramy oraz systemu napędowego. Warto zaznaczyć, że programowanie pilotów zdalnego sterowania powinno być przeprowadzane tylko w przypadku, gdy zmienia się ich ustawienie lub dodawane są nowe urządzenia. Dlatego nie jest to czynność rutynowa związana z konserwacją bramy.

Pytanie 40

W trakcie diagnozowania awarii sprzętu RTV zasilanego prądem, należy korzystać z narzędzi

A. wykazujących odporność na wysokie temperatury
B. posiadających adekwatną izolację dla napięcia
C. charakteryzujących się wysoką odpornością na uszkodzenia mechaniczne
D. stworzonych z materiałów ze stali chromoniklowej
Odpowiednia izolacja napięciowa narzędzi używanych podczas diagnostyki sprzętu RTV pod napięciem jest kluczowa dla zapewnienia bezpieczeństwa technika oraz dla właściwego przeprowadzania prób i pomiarów. Narzędzia te powinny posiadać odpowiednie certyfikaty, które potwierdzają ich zdolność do pracy przy określonym napięciu. Na przykład, przy pracy z urządzeniami o napięciu do 1000 V, narzędzia muszą posiadać izolację o napięciu co najmniej 1000 V. Stosowanie narzędzi izolowanych minimalizuje ryzyko porażenia prądem, co jest zgodne z zaleceniami norm międzynarodowych, takich jak IEC 60900, dotyczących narzędzi ręcznych do pracy pod napięciem. Ważne jest, aby technicy pamiętali o regularnym sprawdzaniu stanu izolacji narzędzi, ponieważ ich uszkodzenie, np. pęknięcia lub zużycie, może znacznie zwiększyć ryzyko wypadków. Przykładem mogą być izolowane śrubokręty, które pozwalają na bezpieczne dokonywanie napraw bez ryzyka kontaktu z elementami pod napięciem.