Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:05
  • Data zakończenia: 7 grudnia 2025 10:15

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. zmienić przewody na nowe o większym przekroju
B. zamontować końcówki oczkowe na przewodach
C. zagiąć oczka na końcach przewodów
D. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 4

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP44
B. IP32
C. IP22
D. IP11
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 5

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. drgań
B. charakterystyki stanu jałowego
C. rezystancji uzwojeń
D. izolacji łożysk
Pomiar rezystancji uzwojeń silnika indukcyjnego jest kluczowym etapem w diagnostyce stanu technicznego tego urządzenia. Wartość rezystancji uzwojeń pozwala ocenić ich stan, a także zidentyfikować ewentualne uszkodzenia. W praktyce, pomiar ten powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 60034-1, które określają metody badania właściwości elektrycznych maszyn elektrycznych. Rezystancja uzwojeń wpływa na straty mocy, a ich zbyt wysoka wartość może wskazywać na problemy z przewodami lub złączeniami. Regularne monitorowanie rezystancji uzwojeń umożliwia wczesne wykrywanie problemów, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności pracy maszyny. W praktyce, wartości rezystancji uzwojeń porównuje się z danymi producenta oraz z wynikami pomiarów z przeszłości, co pozwala na identyfikację trendów i potencjalnych zagrożeń dla pracy silnika.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby obniżyć prędkość obrotową
B. Aby poprawić przeciążalność
C. Aby zredukować prąd rozruchowy
D. Aby zwiększyć moment rozruchowy
Twierdzenie, że przełącznik gwiazda-trójkąt zwiększa moment rozruchowy jest błędne, ponieważ w rzeczywistości jego głównym celem jest zmniejszenie prądu rozruchowego, jak wcześniej wspomniano. W przypadku silników indukcyjnych, moment obrotowy podczas rozruchu jest proporcjonalny do kwadratu napięcia zasilającego. Dlatego przy uruchamianiu w układzie gwiazdy, gdzie napięcie jest niższe, moment obrotowy również będzie mniejszy. Zmniejszenie prędkości obrotowej nie jest również celem tego przełącznika; prędkość obrotowa silnika jest determinowana przez częstotliwość zasilania i liczbę par biegunów, a układ gwiazda-trójkąt nie wpływa na te parametry. Ponadto, zwiększenie przeciążalności w kontekście przełącznika gwiazda-trójkąt jest pojęciem mylnym. Przeciążalność to zdolność silnika do pracy przy wyższych niż nominalne obciążeniach przez krótki czas, co nie jest celem działania tego układu. Kluczowe jest zrozumienie, że przełącznik gwiazda-trójkąt stanowi tylko tymczasowe połączenie, które ma na celu zminimalizowanie prądu podczas rozruchu, a nie zwiększenie momentu czy prędkości. Zatem, podstawowym błędem myślowym jest mylenie funkcji przełącznika z innymi właściwościami silnika oraz jego pracy w różnych warunkach obciążeniowych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Prądu upływu w przewodzie ochronnym
B. Impedancji pętli zwarcia
C. Rezystancji izolacji przewodu ochronnego
D. Rezystancji uziomu
Pomiary takie jak rezystancja izolacji przewodu ochronnego, prąd upływu w przewodzie ochronnym oraz rezystancja uziomu, mimo że są istotne dla ogólnego bezpieczeństwa systemów elektrycznych, nie potwierdzają bezpośrednio ciągłości przewodu ochronnego w sieci TN-S. Rezystancja izolacji odnosi się do stanu izolacji przewodów, co ma na celu zapobieganie wyciekom prądów do ziemi, jednak nie daje jednoznacznych informacji o ciągłości przewodu ochronnego. Prąd upływu może wskazywać na problemy związane z izolacją, ale jego pomiar nie dostarcza danych na temat ciągłości samego przewodu ochronnego. Z kolei rezystancja uziomu dotyczy przewodów uziemiających, a nie ochronnych, i ma na celu zapewnienie, że prąd zwarciowy skutecznie przepływa do ziemi, co jest innym zagadnieniem. Często myląc te parametry, można dojść do błędnych wniosków, co może prowadzić do niewłaściwego diagnozowania problemów z instalacją i w konsekwencji do zagrożenia bezpieczeństwa. Zrozumienie różnych ról tych pomiarów jest kluczowe dla właściwej oceny stanu instalacji elektrycznych i zapewnienia odpowiednich środków ochrony przed porażeniem prądem elektrycznym.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Rdzeń magnetyczny
B. Izolatory ceramiczne
C. Uchwyty do podłączenia przewodów
D. Silnik synchroniczny
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 12

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Przerwa w uzwojeniu pierwotnym
B. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
C. Przerwa w uziemieniu neutralnego punktu
D. Niesymetryczne obciążenie transformatora
Przerwa w uziemieniu punktu neutralnego, niesymetryczne obciążenie czy przerwa w uzwojeniu pierwotnym nie są bezpośrednimi przyczynami zadziałania przekaźnika Buchholtza. Uziemienie punktu neutralnego jest istotne dla stabilizacji pracy transformatora, ale jego przerwanie nie generuje bezpośrednio warunków do zadziałania przekaźnika ochronnego. Niesymetryczne obciążenie natomiast, choć może prowadzić do przegrzewania uzwojeń, nie wywołuje nagłych zmian w przepływie oleju, które są podstawą działania przekaźnika Buchholtza. Przerwa w uzwojeniu pierwotnym może prowadzić do poważnych uszkodzeń transformatora, jednak nie wywołuje ona sytuacji, w której przekaźnik odnotowuje nieprawidłowy przepływ oleju. W rzeczywistości, aby przekaźnik Buchholtza działał, muszą wystąpić warunki, które wpływają na właściwości fizyczne oleju izolacyjnego, co jest wynikiem zwarcia. Dobrym przykładem jest fakt, że w przypadku zwarcia, olej zaczyna się szybko podgrzewać, co prowadzi do ruchu powietrza w zbiorniku transformatora i zadziałania przekaźnika. Zrozumienie, jak przekaźnik Buchholtza funkcjonuje w kontekście rzeczywistych zagrożeń, jest kluczowe dla prawidłowej eksploatacji transformatorów oraz skutecznego zarządzania ryzykiem w systemach energetycznych.

Pytanie 13

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 25 kΩ
B. 75 kΩ
C. 50 kΩ
D. 10 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Realizowanie pracy w zespole
B. Używanie sprzętu izolacyjnego
C. Przyłączenie wyłączonej linii do uziemienia
D. Ogrodzenie terenu, na którym prowadzone są prace
Wykonywanie prac zespołowo, ogrodzenie miejsca wykonywania pracy oraz uziemienie wyłączonej linii to kluczowe środki ostrożności, które są istotne w kontekście bezpieczeństwa przy pracach przy linii napowietrznej. Pracowanie w zespole pozwala na lepszą koordynację działań oraz szybszą reakcję w sytuacjach awaryjnych, co jest niezbędne w okolicznościach, gdzie ryzyko wypadku jest wyższe. Ogrodzenie miejsca pracy jest podstawowym działaniem w celu zabezpieczenia obszaru, co zapobiega nieautoryzowanemu dostępowi osób trzecich oraz minimalizuje ryzyko przypadkowych incydentów. Uziemienie wyłączonej linii jest fundamentalną praktyką, gdyż pozwala na odprowadzenie wszelkich ładunków elektrycznych, które mogą występować na linii, co znacząco zwiększa bezpieczeństwo pracowników. Ignorowanie tych praktyk może prowadzić do tragicznych konsekwencji, dlatego też każdy pracownik powinien być odpowiednio przeszkolony w zakresie zastosowania tych środków. W branży energetycznej nieprzestrzeganie zasad BHP i standardów, takich jak normy IEC, może skutkować poważnymi wypadkami, dlatego tak istotne jest, aby każdy pracownik był świadomy i przestrzegał ustalonych procedur.

Pytanie 16

Gdy chodzi o odbiornik o dużej mocy, taki jak kuchenka elektryczna, jak należy go zasilać?

A. z wydzielonego obwodu bez własnych zabezpieczeń
B. z wspólnego obwodu oświetleniowego
C. z wspólnego obwodu gniazd wtyczkowych
D. z wydzielonego obwodu z własnym zabezpieczeniem
Odpowiedź, że odbiornik dużej mocy, taki jak kuchenka elektryczna, powinien być zasilany z wydzielonego obwodu z własnym zabezpieczeniem, jest poprawna i zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Kuchenki elektryczne są urządzeniami o dużym zużyciu energii, co oznacza, że wymagają dedykowanego obwodu, który jest w stanie wytrzymać ich obciążenie. Wydzielony obwód zapewnia, że inne urządzenia podłączone do obwodu nie będą wpływać na jego działanie, co minimalizuje ryzyko przeciążenia. Dodatkowo, posiadanie własnego zabezpieczenia, jak na przykład wyłącznik nadprądowy, pozwala na szybkie reagowanie w przypadku zwarcia lub przeciążenia. W praktyce oznacza to, że w przypadku awarii kuchenki, zabezpieczenie automatycznie odłączy zasilanie, chroniąc zarówno urządzenie, jak i instalację elektryczną budynku. Przykładem są przepisy zawarte w normie PN-IEC 60364, które zalecają stosowanie oddzielnych obwodów dla urządzeń o dużym poborze mocy, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 17

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. uszkodzenie silnika.
B. zadziałanie wyłącznika różnicowoprądowego.
C. zmniejszenie momentu rozruchowego.
D. zmniejszenie mocy silnika.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 18

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Asynchroniczny klatkowy
B. Asynchroniczny pierścieniowy
C. Prądu stałego
D. Synchroniczny jawnobiegunowy
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 19

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. otworzyć łączniki instalacyjne i wkręcić żarówki
B. zamknąć łączniki instalacyjne i wykręcić żarówki
C. otworzyć łączniki instalacyjne i wykręcić żarówki
D. zamknąć łączniki instalacyjne i wkręcić żarówki
Otwieranie łączników i wkręcanie żarówek nie jest mądrym pomysłem, bo może to prowadzić do sporych niebezpieczeństw podczas pomiarów rezystancji izolacji. Jak otworzysz łączniki, to instalacja może się niechcący włączyć, co stwarza ryzyko porażenia prądem lub uszkodzenia sprzętu. Wkręcanie żarówek w tym przypadku to zły ruch, bo może to prowadzić do nieplanowanych połączeń elektrycznych, które mogą być niebezpieczne i generować nieoczekiwane napięcia. Pamiętaj, że przy pomiarach izolacji istotne jest, by cała instalacja była odłączona od zasilania. Zgodnie z normą PN-IEC 60079, podstawową zasadą bezpieczeństwa jest unikanie pracy na sprzęcie pod napięciem. Z tego powodu odpowiedzi sugerujące otwieranie łączników są po prostu niezgodne z najlepszymi praktykami. Zawsze, gdy robisz pomiary elektryczne, kluczowe jest, aby podjąć wszelkie środki ostrożności i odpowiednio przygotować instalację, żeby zminimalizować ryzyko niebezpieczeństw.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W celu oceny stanu technicznego silnika indukcyjnego trójfazowego zasilanego napięciem 230/400 V, który nie był uruchamiany od dłuższego czasu, dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
U1-U2V1-V2W1-W2U1-PEV1-PEW1-PE
5,1 Ω4,9 Ω4,7 Ω8,0 MΩ9,5 MΩ7,6 MΩ
A. Wyniki pomiarów pozytywne.
B. Zbyt duża rezystancja uzwojenia U.
C. Uszkodzona izolacja uzwojenia W.
D. Zbyt duża asymetria rezystancji uzwojeń.
Wybór odpowiedzi dotyczących uszkodzonej izolacji uzwojenia lub zbyt dużej asymetrii rezystancji uzwojeń opiera się na błędnym zrozumieniu wyników pomiarów i ich interpretacji. Uszkodzenie izolacji uzwojenia może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia, jednak w przypadku prezentowanych wyników, rezystancje izolacji są wysokie, co wskazuje na ich dobry stan. Typowym błędem myślowym jest nadinterpretacja odchyleń w rezystancjach uzwojeń. Choć różnice w rezystancji mogą sugerować problemy, w podanych wynikach wartości są wystarczająco zbliżone, aby uznać je za akceptowalne. Również, nadmierne zmartwienie o asymetrię rezystancji w sytuacji, gdy wartości są bliskie siebie, jest niewłaściwe. Istotne jest, aby nie mylić pojedynczych pomiarów z ogólną kondycją silnika. Właściwe podejście do oceny stanu technicznego obejmuje dokładne analizowanie wszystkich danych pomiarowych w kontekście praktyk inżynierskich, takich jak te opisane w normach PN-EN. Dobrą praktyką jest stosowanie systematycznego przeglądu maszyn, co pozwala na identyfikację i eliminację potencjalnych problemów przed ich wystąpieniem.

Pytanie 22

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
D. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 23

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

Ilustracja do pytania
A. LgY
B. UTP
C. YKY
D. YDY
Przewód typu YKY jest najlepszym wyborem do wykonania wewnętrznej linii zasilającej (WLZ) w instalacji trójfazowej. Jego konstrukcja, oparta na miedzi i izolacji PVC, zapewnia odporność na różne warunki atmosferyczne oraz mechaniczne uszkodzenia, co jest kluczowe w instalacjach zarówno wewnętrznych, jak i zewnętrznych. W praktyce, YKY jest często stosowany w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagana jest stabilna i bezpieczna dostawa energii elektrycznej. Użycie przewodu YKY pozwala na zachowanie wysokiej wydajności energetycznej oraz minimalizację strat energii. Dodatkowo, zgodność z normami PN-EN 60228 oraz PN-EN 50525 potwierdza jego zastosowanie w instalacjach trójfazowych. Wybór YKY zamiast YDY jest uzasadniony tym, że YDY, mimo że również wykonany z miedzi, ma mniejszą odporność na czynniki zewnętrzne, co może prowadzić do uszkodzeń w trudniejszych warunkach. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznej.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie mogą być powody częstego wypalania się żarówki w żyrandolu?

A. Niewłaściwie dobrane zabezpieczenie przeciążeniowe
B. Luźne połączenie oprawy z instalacją
C. Zainstalowanie żarówki o niewystarczającej mocy
D. Uszkodzenie przewodu ochronnego
Obluzowane podłączenie oprawy do instalacji jest jedną z najczęstszych przyczyn przepalania się żarówek w żyrandolach. Taki stan rzeczy prowadzi do niestabilnego kontaktu elektrycznego, co z kolei generuje dodatkowe ciepło w miejscu połączenia. W przypadku oprawy, która nie jest dobrze zamocowana, może dochodzić do przerywania obwodu, co skutkuje nieprzewidywalnymi skokami napięcia. Te skoki mogą prowadzić do szybkiego zużycia żarówki, a w skrajnych przypadkach mogą też stwarzać zagrożenie pożarowe. Dlatego ważne jest, aby regularnie sprawdzać stan połączeń elektrycznych oraz dbać o ich odpowiednie dokręcenie. Dobrą praktyką jest też korzystanie z usług wykwalifikowanego elektryka przy instalacji i konserwacji oświetlenia, co zapewni bezpieczeństwo i długowieczność komponentów. Kiedy mamy do czynienia z luźnym połączeniem, warto również rozważyć zastosowanie odpowiednich złączy elektrycznych, które zapewnią lepszą stabilność. Przy projektowaniu oświetlenia należy również brać pod uwagę obciążenie elektryczne oraz maksymalne wartości prądów dla używanych komponentów, zgodnie z aktualnymi normami i standardami branżowymi.

Pytanie 26

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. gF 35A
B. gR 20A
C. aM 20A
D. aM 16A
Wybór odpowiedzi gR 20A, aM 16A oraz gF 35A jest nieodpowiedni z kilku kluczowych powodów, które dotyczą zarówno charakterystyki tych bezpieczników, jak i obliczeń prądów związanych z zabezpieczeniem silnika klatkowego. Bezpiecznik gR, który jest stosowany głównie w aplikacjach o charakterze ogólnym, nie jest przystosowany do obsługi dużych prądów rozruchowych, które mogą wystąpić w przypadku silników. W przypadku prądu rozruchowego wynoszącego 60 A, a tym bardziej maksymalnego prądu 180 A, zastosowanie bezpiecznika gR może prowadzić do jego częstego przepalania, co skutkuje przestojami w pracy maszyny. Z kolei bezpiecznik aM 16A, mimo że jest lepszy od gR, wciąż nie wytrzyma prądów rozruchowych, które przewyższają jego zdolności, co prowadzi do niewłaściwego działania zabezpieczenia. Natomiast, wybór gF 35A, mimo że teoretycznie mógłby wydawać się odpowiedni, jest nieodpowiedni ze względu na fakt, że gF to bezpieczniki o charakterystyce szybkiej, które nie tolerują dużych prądów rozruchowych, co może skutkować ich uszkodzeniem w krytycznych momentach rozruchu maszyny. Zrozumienie charakterystyki prądów rozruchowych i wyboru odpowiednich zabezpieczeń jest kluczowe w kontekście bezpieczeństwa i efektywności pracy instalacji elektrycznych, a także w zgodności z normami i najlepszymi praktykami w branży.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W jakim schemacie sieciowym nie można używać wyłączników różnicowoprądowych jako zabezpieczeń przed porażeniem w przypadku uszkodzenia?

A. W systemie TN-S
B. W systemie TT
C. W systemie IT
D. W systemie TN-C
Układ TN-C (z ang. Terre Neutral Combined) charakteryzuje się tym, że neutralny przewód (N) i przewód ochronny (PE) są połączone w jednym przewodzie (PEN) na całej długości instalacji. Z tego powodu, wyłączniki różnicowoprądowe (RCD) nie mogą być stosowane jako elementy ochrony przeciwporażeniowej, ponieważ w przypadku uszkodzenia nie ma możliwości prawidłowego pomiaru prądów różnicowych. W układach TN-C, uszkodzenie przewodu PEN może prowadzić do niebezpiecznej sytuacji, gdzie brak separacji przewodów ochronnych i neutralnych utrudnia detekcję nieprawidłowości. Przykładem stosowania wyłączników różnicowoprądowych są układy TN-S, gdzie przewody N i PE są oddzielone, co umożliwia skuteczne monitorowanie prądów różnicowych. Warto również zaznaczyć, że w kontekście przepisów, zgodnie z normą PN-EN 61008-1, RCD powinny być używane w odpowiednich układach, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym, co w układzie TN-C nie jest możliwe.

Pytanie 29

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Przerwa w uzwojeniu
B. Zwarcie międzyzwojowe
C. Uszkodzenie rdzenia
D. Przeciążenie transformatora
Uszkodzenie rdzenia transformatora może wprawdzie prowadzić do problemów z przenoszeniem mocy, ale nie jest bezpośrednią przyczyną wzrostu temperatury ponad normę. Rdzeń, zbudowany z cienkich, izolowanych blach, jest zaprojektowany tak, aby minimalizować straty mocy i uniknąć przegrzewania. Jeśli jednak rdzeń jest uszkodzony, np. przez mechaniczne zniekształcenia lub korozję, może to wpływać na sprawność transformatora, ale zwykle nie powoduje natychmiastowego wzrostu temperatury. Przerwa w uzwojeniu z kolei skutkuje całkowitym brakiem przepływu prądu przez uszkodzone uzwojenie, co zazwyczaj prowadzi do wyłączenia transformatora. W takim przypadku transformator nie będzie pracował prawidłowo, ale samo uszkodzenie nie podnosi jego temperatury. Zwarcie międzyzwojowe w uzwojeniach transformatora jest poważnym problemem, który może prowadzić do lokalnego wzrostu temperatury. Jednakże, w porównaniu do przeciążenia całego transformatora, zwarcie międzyzwojowe zwykle prowadzi do szybkiego uszkodzenia i wyłączenia się transformatora z eksploatacji. Jest to bardziej katastrofalne uszkodzenie wymagające natychmiastowej naprawy. Warto pamiętać, że wszystkie te problemy wymagają regularnych przeglądów technicznych, aby w porę wykrywać potencjalne usterki i zapobiegać poważnym awariom.

Pytanie 30

Kontrole okresowe instalacji elektrycznych niskiego napięcia powinny być realizowane co najmniej raz na

A. 1 rok
B. 4 lata
C. 5 lat
D. 3 lata
Podawanie krótszych okresów między badaniami, takich jak 1 rok, 3 lata czy 4 lata, może wydawać się rozsądne, jednak w rzeczywistości jest to podejście, które nie odzwierciedla wymogów prawnych oraz najlepszych praktyk w zakresie zarządzania bezpieczeństwem instalacji elektrycznych. Przeprowadzanie kontroli co 1 rok może być zbędne dla wielu instalacji, które są w dobrym stanie technicznym i nie wykazują oznak zużycia. Tego rodzaju częste inspekcje mogą generować niepotrzebne koszty oraz obciążenie dla osób odpowiedzialnych za zarządzanie instalacjami. Z drugiej strony, zbyt długie odstępy, jak 6 lat, mogą stwarzać ryzyko, że ewentualne usterki nie zostaną wykryte na czas, co może prowadzić do niebezpieczeństw związanych z użytkowaniem instalacji. Warto również zauważyć, że niektóre czynniki, takie jak warunki eksploatacji, środowisko czy intensywność użycia instalacji, mogą wymagać dostosowania częstotliwości badań do konkretnych potrzeb. Z tego względu, zalecenie przeprowadzania badań co 5 lat stanowi kompromis pomiędzy bezpieczeństwem a efektywnością kosztową, co jest zgodne z normami i praktykami branżowymi.

Pytanie 31

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. przerwę w uzwojeniu U1 - U2.
B. uszkodzoną izolację w uzwojeniach U1 - U2 oraz V1 - V2.
C. zwarcie między uzwojeniami U1 - U2 oraz W1 - W2.
D. zwarcie międzyzwojowe w uzwojeniu W1 - W2.
Wyniki pomiarów rezystancji izolacji uzwojeń U1 - U2 oraz V1 - V2, które wynoszą 0 Ω, jednoznacznie wskazują na uszkodzenie izolacji tych uzwojeń. Zgodnie z normami branżowymi, rezystancja izolacji powinna być na poziomie minimum 1 MΩ, a wartość zerowa oznacza bezpośrednie zwarcie z obwodem ochronnym (PE). Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem oraz uszkodzenia urządzeń. W praktyce, przed uruchomieniem silników trójfazowych, zawsze należy przeprowadzać pomiary rezystancji izolacji, aby zapewnić ich prawidłowe funkcjonowanie oraz bezpieczeństwo. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić dokładne oględziny oraz ewentualną wymianę uszkodzonego uzwojenia. Regularne monitorowanie tych parametrów jest kluczowe dla minimalizacji ryzyka awarii i zapewnienia długoterminowej niezawodności sprzętu.

Pytanie 32

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm². W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm²?

A. Zmniejszą się o 100%
B. Zmniejszą się o 40%
C. Zwiększą się o 100%
D. Zwiększą się o 40%
Odpowiedzi, które sugerują zwiększenie strat mocy w przewodzie, nie uwzględniają podstawowych zasad dotyczących oporu elektrycznego oraz jego zależności od przekroju i długości przewodu. Zwiększenie przekroju przewodu skutkuje zmniejszeniem jego oporu, co prowadzi do obniżenia strat mocy. W przypadku odpowiedzi, które mówią o zwiększeniu strat o 40% lub 100%, można zauważyć typowy błąd myślowy polegający na braku zrozumienia związku między oporem a mocą. Niektórzy mogą mylnie zakładać, że większy przekrój przewodu oznacza większe straty, co jest całkowicie odwrotne do rzeczywistości. Rozumienie tego zjawiska jest kluczowe w kontekście projektowania systemów elektroenergetycznych, gdzie niewłaściwy dobór przekroju przewodów prowadzi do wyższych kosztów eksploatacji i potencjalnych zagrożeń. W kontekście praktycznym, w wielu instalacjach, gdzie ważne jest minimalizowanie strat energii, stosowanie przewodów o odpowiednich przekrojach zgodnych z normami jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania. Warto również pamiętać, że przy projektowaniu instalacji elektrycznych zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co z kolei może prowadzić do uszkodzeń izolacji i potencjalnych pożarów.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie środki ochrony przed porażeniem stosuje się w przypadku dotyku bezpośredniego w urządzeniach pracujących do 1 kV?

A. Izolacja elektryczna obwodu pojedynczego odbiornika.
B. Automatyczne odłączenie zasilania.
C. Usytuowanie części czynnych poza zasięgiem dłoni.
D. Wykorzystanie izolacji podwójnej lub wzmocnionej.
Umieszczenie części czynnych poza zasięgiem ręki stanowi jedną z kluczowych metod zapobiegania porażeniom prądem, szczególnie w instalacjach niskonapięciowych do 1 kV. Ta strategia opiera się na zasadzie, że fizyczne oddalenie od elementów pod napięciem skutecznie eliminują ryzyko przypadkowego kontaktu. Przykładem takiego rozwiązania są obudowy urządzeń elektrycznych, które są projektowane w sposób, aby niebezpieczne części były niedostępne dla użytkownika. Zgodnie z normami, takimi jak PN-EN 61140, wymagane jest, aby części czynne były umieszczone w miejscach, które są trudne do osiągnięcia bez specjalnych narzędzi lub wiedzy. Dodatkowo, ta metoda ma zastosowanie w wielu obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem. W praktyce, umieszczając elementy elektryczne w trudno dostępnych miejscach, minimalizuje się możliwość przypadkowego dotyku, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jaki parametr transformatora zmieni się, gdy podczas jego przezwajania w uzwojeniu wtórnym użyto drutu nawojowego o mniejszej średnicy?

A. Przekładnia zwojowa
B. Straty w uzwojeniu
C. Przekładnia napięciowa
D. Straty w rdzeniu
Analizując inne odpowiedzi, można zauważyć, że straty w rdzeniu nie ulegają zmianie przy zmianie średnicy drutu uzwojenia wtórnego. Straty w rdzeniu transformatora są ściśle związane z jego konstrukcją, materiałem oraz częstotliwością, przy której pracuje transformator. Wybór drutu do uzwojenia nie wpływa na te parametry, więc odpowiedź dotycząca strat w rdzeniu jest niepoprawna. Ponadto, przekładnia zwojowa oraz przekładnia napięciowa to pojęcia, które odnoszą się do stosunku liczby zwojów w uzwojeniach transformatora oraz napięć na tych uzwojeniach. Zmiana średnicy drutu w uzwojeniu wtórnym nie wpływa bezpośrednio na przekładnię zwojową ani napięciową, o ile liczba zwojów pozostaje taka sama. Przekładnia zwojowa jest funkcją liczby zwojów w uzwojeniach pierwotnym i wtórnym, a nie ich średnicy. Jakiekolwiek błędne myślenie w tym zakresie może prowadzić do nieporozumień dotyczących działania transformatorów. W praktyce, konstruktorzy transformatorów powinni mieć na uwadze rozważenie wszystkich parametrów, aby zminimalizować straty energetyczne i zwiększyć efektywność działania, co jest zgodne z dobrymi praktykami inżynieryjnymi i normami branżowymi.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.