Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 grudnia 2025 11:10
  • Data zakończenia: 9 grudnia 2025 11:50

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. multimetrem.
B. fotometrem.
C. daloczułkiem.
D. pirometrem.
Pirometr to urządzenie specjalistyczne, które służy do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekt, co pozwala na określenie jego temperatury bez konieczności fizycznego kontaktu. Takie podejście jest szczególnie przydatne w sytuacjach, gdy obiekt jest zbyt gorący lub niebezpieczny do dotykania, jak w przypadku pieców przemysłowych czy silników. W praktyce, pirometry są powszechnie stosowane w przemyśle metalurgicznym, spożywczym oraz w energetyce, gdzie precyzyjny pomiar temperatury ma kluczowe znaczenie dla bezpieczeństwa i efektywności procesów. Zgodnie z normami branżowymi, pomiar temperatury za pomocą pirometru powinien być wykonywany w odpowiednich warunkach, co obejmuje m.in. kalibrację urządzenia oraz uwzględnienie współczynnika emisji materiału, który mierzony jest dla uzyskania dokładnych rezultatów. Warto również zauważyć, że pirometry są dostępne w różnych wariantach, w tym ręcznych i stacjonarnych, co zwiększa ich uniwersalność w zastosowaniach przemysłowych.

Pytanie 2

Jak należy skojarzyć w napędzie urządzenia mechatronicznego uzwojenie stojana silnika o przedstawionej tabliczce zaciskowej, obciążonego znamionowo i jak podłączyć do sieci 400 V 3/N/PE ~ 50 Hz, aby jego wał obracał się w lewo?

Ilustracja do pytania
A. W gwiazdę i podłączyć U – L1, V – L3, W – L2
B. W trójkąt i podłączyć U – L1, V – L2, W – L3
C. W trójkąt i podłączyć U – L1, V – L3, W – L2
D. W gwiazdę i podłączyć U – L1, V – L2, W – L3
Połączenie silnika w konfiguracji trójkąta (Δ) z zaciskami U – L1, V – L3, W – L2 jest kluczowe dla uzyskania obrotu wału w lewo. W tej konfiguracji prąd wpływa na uzwojenia w sposób, który generuje odpowiednią siłę elektromotoryczną, umożliwiającą zmianę kierunku obrotów. Takie połączenie pozwala na pełne wykorzystanie mocy silnika, co jest istotne przy zastosowaniach przemysłowych, gdzie wydajność jest kluczowa. Przykładowo, w systemach transportowych, gdzie kierunek obrotów jest istotny dla prawidłowego działania taśmociągów, odpowiednia konfiguracja jest niezbędna. W branży elektrotechnicznej często stosuje się standardy IEC, które wskazują na konieczność przeprowadzania odpowiednich prób w celu weryfikacji poprawności połączeń. Dobrze zrozumiane zasady połączeń trójfazowych oraz ich wpływ na kierunek obrotów są fundamentem dla techników i inżynierów zajmujących się automatyką oraz urządzeniami mechatronicznymi.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Silnik bezszczotkowy (ang. BLDC Brushless Direct Current motor) jest zasilany napięciem

A. dwufazowym
B. trójfazowym
C. jednofazowym
D. stałym
Silnik bezszczotkowy (BLDC) zasilany jest napięciem stałym, co jest fundamentalną cechą jego konstrukcji. Ten typ silnika charakteryzuje się brakiem szczotek, co prowadzi do mniejszych strat energii i większej efektywności w porównaniu do tradycyjnych silników komutatorowych. W zastosowaniach przemysłowych, takich jak robotyka, drony czy napędy elektryczne w pojazdach, silniki BLDC zyskują na popularności dzięki swojej niezawodności i długowieczności. Przykładem zastosowania silników bezszczotkowych zasilanych napięciem stałym są napędy w elektrycznych hulajnogach, gdzie wymagane są wysoka wydajność oraz kontrola prędkości. W silnikach BLDC zastosowanie napięcia stałego pozwala na prostotę układów sterujących, które mogą być oparte na zaawansowanych systemach PWM (modulacja szerokości impulsu), co umożliwia precyzyjne dostosowanie momentu obrotowego i prędkości silnika. W praktyce, standardy takie jak IEC 60034 dotyczące maszyn elektrycznych podkreślają znaczenie efektywności energetycznej i niezawodności, które są kluczowe w projektowaniu systemów opartych na silnikach BLDC.

Pytanie 6

Odczytaj wynik pomiaru wykonanego mikrometrem przedstawionym na rysunku.

Ilustracja do pytania
A. 5,030 mm
B. 5,783 mm
C. 5,780 mm
D. 5,583 mm
Poprawna odpowiedź to 5,783 mm, co wynika z precyzyjnego odczytu mikrometru. Odczyt z mikrometru składa się z dwóch głównych elementów: wartości głównej skali oraz precyzyjnego odczytu z bębna. W tym przypadku główna skala wskazuje 5 mm, a na bębnie odczytujemy 0,78 mm. Dodatkowo, biorąc pod uwagę drobne podziałki, które w tym przypadku dodają 0,003 mm, całkowity wynik osiąga wartość 5,783 mm. W praktyce, takie dokładne pomiary są kluczowe w inżynierii i produkcji, gdzie precyzyjne wymiary komponentów mają ogromne znaczenie dla ich funkcjonowania oraz kompatybilności. Standardy takie jak ISO 9001 kładą nacisk na stosowanie narzędzi pomiarowych o wysokiej precyzji, co pozwala na minimalizowanie błędów produkcyjnych oraz zwiększa jakość wyrobów. Dlatego umiejętność prawidłowego odczytu mikrometru jest niezwykle ważna w wielu branżach, w tym w mechanice precyzyjnej i obróbce materiałów.

Pytanie 7

Jakie jest zastosowanie transoptora?

A. galwanicznej izolacji obwodów
B. zamiany impulsów elektrycznych na promieniowanie świetlne
C. galwanicznego połączenia obwodów
D. sygnalizacji transmisji
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów. Jego podstawową funkcją jest zapewnienie separacji elektrycznej pomiędzy dwoma obwodami, co eliminuje ryzyko przeniesienia zakłóceń, przepięć oraz różnic potencjałów między nimi. Przykładem zastosowania transoptora jest w układach sterowania, gdzie sygnał z jednostki sterującej (np. mikroprocesora) jest izolowany od obwodu mocy, co jest kluczowe dla zabezpieczenia delikatnych komponentów. Transoptory znajdują szerokie zastosowanie w systemach automatyki przemysłowej, gdzie są używane do interfejsowania czujników z systemami sterującymi, a także w telekomunikacji, gdzie pozwalają na przesyłanie sygnałów bezpośrednio między różnymi poziomami potencjału. Stosowanie transoptorów jest zgodne z najlepszymi praktykami w inżynierii elektronicznej, które kładą duży nacisk na bezpieczeństwo oraz niezawodność układów elektronicznych, zwłaszcza w środowiskach przemysłowych.

Pytanie 8

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 1,9 mm
B. 2,1 mm
C. 2,0 mm
D. 2,3 mm
Odpowiedź 2,1 mm jest poprawna, ponieważ przy wykonywaniu otworów pod nity ważne jest, aby zapewnić odpowiedni luz montażowy. Nit o średnicy 2 mm wymaga otworu o nieco większej średnicy, aby umożliwić właściwe wprowadzenie nitu oraz zapewnić odpowiednią przestrzeń do rozprężenia. Zgodnie z normami dotyczącymi montażu nitów, zaleca się, aby średnica otworu była o 0,1 mm do 0,3 mm większa od średnicy samego nitu. W praktyce, luz ten pozwala na łatwiejsze osadzenie nitu oraz eliminuje ryzyko uszkodzenia materiału, w który wprowadzany jest nit. Zbyt wąski otwór może prowadzić do trudności w montażu i do uszkodzeń. W przypadku materiałów o dużej twardości lub w zastosowaniach wymagających precyzyjnego zamocowania, zachowanie odpowiednich standardów luzu jest kluczowe dla długowieczności połączenia. Warto również zwrócić uwagę na materiały, z których wykonane są elementy, ponieważ różne rodzaje metali mogą wymagać różnych tolerancji w zakresie średnicy otworu, co jest podkreślone w standardach takich jak ISO 286-1.

Pytanie 9

Symbol graficzny którego siłownika, z bezstykową sygnalizacją położenia tłoka jest przedstawiony na rysunku?

Ilustracja do pytania
A. Pneumatycznego dwustronnego działania z hamowaniem dwustronnym.
B. Hydraulicznego dwustronnego działania z hamowaniem jednostronnym.
C. Hydraulicznego dwustronnego działania z hamowaniem dwustronnym.
D. Pneumatycznego dwustronnego działania z hamowaniem jednostronnym.
Poprawna odpowiedź to pneumatyczny siłownik dwustronnego działania z hamowaniem dwustronnym, co znajduje odzwierciedlenie w symbolice graficznej. Siłownik tego typu umożliwia ruch tłoka w obu kierunkach, co jest jednoznacznie oznaczone dwoma strzałkami. Bezstykowa sygnalizacja położenia tłoka sugeruje zastosowanie czujników, które są kluczowe w nowoczesnych systemach automatyzacji, zapewniając precyzyjne monitorowanie pozycji. Hamowanie dwustronne, przedstawione przez prostokąty z przekątnymi liniami, jest szczególnie istotne w kontekście bezpieczeństwa operacji, ponieważ pozwala na kontrolowane zatrzymywanie tłoka zarówno w ruchu w przód, jak i w tył. Tego typu siłowniki znajdują zastosowanie w różnych dziedzinach przemysłu, w tym w automatyzacji procesów produkcyjnych oraz w robotyce. Użycie pneumatyki zamiast hydrauliki, co sugeruje brak lini falistych, może zredukować ciężar systemu oraz koszty eksploatacji, co jest zgodne z najlepszymi praktykami w projektowaniu maszyn. Warto również dodać, że zgodnie z normą ISO 4414, zastosowanie odpowiednich rozwiązań pneumatycznych jest kluczowe dla poprawy efektywności energetycznej oraz bezpieczeństwa w pracy.

Pytanie 10

Na rysunku przedstawiono zawór rozdzielający przystosowany do sterowania

Ilustracja do pytania
A. elektrycznego.
B. mechanicznego.
C. hydraulicznego.
D. pneumatycznego.
Zawór rozdzielający przedstawiony na rysunku jest przeznaczony do systemów pneumatycznych, co można potwierdzić po symbolice oraz oznaczeniach na urządzeniu. W praktyce, zawory pneumatyczne są kluczowymi komponentami w wielu aplikacjach przemysłowych, w tym w automatyce oraz produkcji. Ich główną funkcją jest kontrolowanie przepływu powietrza w systemach, co pozwala na precyzyjne sterowanie napędem pneumatycznym. Zawory te są zaprojektowane do pracy w warunkach, gdzie maksymalne ciśnienie robocze wynosi 10 barów, co jest typowe dla systemów pneumatycznych, a ich konstrukcja musi spełniać odpowiednie normy, takie jak ISO 6431 czy ISO 15744, dotyczące wymagań dla elementów pneumatycznych. Stosowanie zaworów pneumatycznych w aplikacjach takich jak pakowanie, montaż czy manipulacja materiałami przyczynia się do zwiększenia efektywności procesów produkcyjnych. Systemy pneumatyczne są szczególnie cenione za swoją szybkość, niezawodność oraz stosunkowo niskie koszty operacyjne, co czyni je popularnym wyborem w nowoczesnym przemyśle.

Pytanie 11

Jaką wartość rezystancji powinien mieć rezystor Rl ograniczający prąd diody w obwodzie, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 120,0 kΩ
B. 12,0 kΩ
C. 1,2 kΩ
D. 1 200,0 kΩ
Odpowiedź 1,2 kΩ jest prawidłowa, ponieważ rezystor Rl jest odpowiedzialny za ograniczenie prądu do wartości 0,01 A, co jest kluczowe dla prawidłowego działania diody. Przykładowo, w przypadku diod LED, ich maksymalne natężenie prądu powinno być ściśle kontrolowane, aby uniknąć ich uszkodzenia. W obwodach elektronicznych stosujemy prawo Ohma, które definiuje związek między napięciem (V), natężeniem prądu (I) i rezystancją (R). Wzór V = I * R pozwala obliczyć, że przy napięciu zasilania wynoszącym 12 V, odpowiedni rezystor Rl o wartości 1,2 kΩ jest w stanie ograniczyć prąd do żądanej wartości. Zastosowanie odpowiedniego rezystora jest zgodne z najlepszymi praktykami w projektowaniu obwodów elektronicznych, gdzie precyzyjne ograniczenie prądu jest kluczowe dla niezawodności i trwałości komponentów. Dodatkowo, warto znać metody obliczania rezystancji w obwodach szeregowych i równoległych, co może być przydatne w bardziej złożonych projektach.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Który rodzaj zasilania jest wykorzystywany do pracy urządzenia mechatronicznego przedstawionego na rysunku?

Ilustracja do pytania
A. Elektryczny i pneumatyczny.
B. Elektryczny i hydrauliczny.
C. Tylko elektryczny.
D. Tylko pneumatyczny.
Poprawna odpowiedź to 'Elektryczny i hydrauliczny' ponieważ na zdjęciu przedstawiona jest prasa hydrauliczna, która jest typowym przykładem urządzenia mechatronicznego. W tego typu maszynach zasilanie elektryczne jest kluczowe, gdyż to elektryczny silnik napędza pompę hydrauliczną. Pompa ta generuje ciśnienie w układzie hydraulicznym, co pozwala na efektywne działanie prasy. W praktyce, połączenie zasilania elektrycznego z hydraulicznym umożliwia precyzyjne sterowanie siłą i ruchem, co jest niezbędne w wielu zastosowaniach przemysłowych, takich jak formowanie metalu, prasowanie czy tłoczenie. Takie rozwiązania są zgodne z najlepszymi praktykami w inżynierii mechatronicznej, gdzie integracja różnych systemów zasilania pozwala na uzyskanie większej efektywności oraz funkcjonalności urządzenia. Przykładem zastosowania mogą być linie produkcyjne w przemyśle motoryzacyjnym, gdzie prasy hydrauliczne odgrywają istotną rolę w procesie produkcji elementów samochodowych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Zastępować przewody pneumatyczne
B. Usuwać kondensat
C. Dostosowywać ciśnienie powietrza
D. Wymieniać szybkozłączki
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 18

Cyfrowy tachometr jest narzędziem do mierzenia

A. natężenia przepływu powietrza
B. naprężeń w metalach
C. lepkości cieczy
D. prędkości obrotowej wału silnika
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 19

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Lutowanie twarde
B. Lutowanie miękkie
C. Klejenie
D. Zgrzewanie
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 20

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 2 440 zł
B. 1 440 zł
C. 1 220 zł
D. 2 200 zł
Aby obliczyć całkowity koszt urządzenia elektronicznego, należy uwzględnić zarówno koszt materiałów, jak i koszt wykonania, a także podatek VAT. Koszt materiałów wynosi 1 000 zł. Koszt wykonania, który wynosi 100% ceny materiałów, również jest równy 1 000 zł. W związku z tym całkowity koszt przed naliczeniem VAT wynosi 1 000 zł (materiały) + 1 000 zł (wykonanie) = 2 000 zł. Następnie należy obliczyć podatek VAT, który wynosi 22% z kwoty 2 000 zł. Obliczenie podatku wygląda następująco: 2 000 zł * 0,22 = 440 zł. Zatem całkowity koszt urządzenia, uwzględniając podatek VAT, wynosi 2 000 zł + 440 zł = 2 440 zł. Przykładem zastosowania tej wiedzy w praktyce może być wycena projektów w branży elektroniki, gdzie znajomość kosztów i podatków jest niezbędna do efektywnego zarządzania budżetem.

Pytanie 21

Układ, którego schemat przedstawiono na rysunku, wymaga zasilania

Ilustracja do pytania
A. olejem hydraulicznym i energią elektryczną.
B. wyłącznie sprężonym powietrzem.
C. sprężonym powietrzem i energią elektryczną.
D. sprężonym powietrzem i olejem hydraulicznym.
Odpowiedź, która wskazuje na zasilanie układu sprężonym powietrzem i energią elektryczną, jest prawidłowa z kilku powodów. Układy pneumatyczne, takie jak te przedstawione na schemacie, wykorzystują sprężone powietrze do działania siłowników. Siłowniki pneumatyczne, jak 1A1 i 2A1, przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w wielu procesach automatyk, takich jak przenoszenie, podnoszenie czy formowanie. Dodatkowo, układy elektroniczne, reprezentowane przez czujniki położenia S1 i S2 oraz elektrozawory 1V2 i 2V2, wymagają energii elektrycznej do monitorowania oraz kontrolowania pozycji siłowników. Stosowanie obu rodzajów zasilania jest zgodne z najlepszymi praktykami w branży automatyki, gdzie integrowane systemy pneumatyczne i elektryczne zwiększają efektywność i precyzję operacyjną. W wielu zastosowaniach przemysłowych, takich jak linie produkcyjne, połączenie tych dwóch typów zasilania pozwala na tworzenie bardziej złożonych i elastycznych systemów, co jest niezbędne w dynamicznie zmieniającym się środowisku produkcyjnym.

Pytanie 22

Wskaż kod barwny rezystora o rezystancji 26 kΩ.

KolorWartośćMnożnikTolerancja
1 pasek2 pasek3 pasek4 pasek
brak---± 20 %
srebrny--10-2 Ω± 10 %
złoty--10-1 Ω± 5 %
czarny-0100 Ω-
brązowy11101 Ω± 1 %
czerwony22102 Ω± 2 %
pomarańczowy33103 Ω-
żółty44104 Ω-
zielony55105 Ω± 0,5 %
niebieski66106 Ω± 0,25 %
fioletowy77107 Ω± 0,1 %
szary88108 Ω± 0,05 %
biały99109 Ω-
A. brązowy, zielony, pomarańczowy, żółty.
B. czerwony, niebieski, pomarańczowy, żółty.
C. żółty, szary, pomarańczowy, żółty.
D. pomarańczowy, fioletowy, pomarańczowy, żółty.
Kod barwny dla rezystora 26 kΩ wygląda tak: 'czerwony' dla 2, 'niebieski' dla 6, a 'pomarańczowy' to mnożnik, czyli 10^3. Tak więc mamy 26 x 10^3 Ω. Zrozumienie tych kodów jest naprawdę ważne w elektronice, bo pozwala szybko sprawdzić wartość rezystora bez multimetru. W praktyce, umiejętność szybkiego rozpoznawania wartości komponentów to coś, co się przydaje, szczególnie gdy robimy prototypy czy naprawiamy różne urządzenia. Dobrze jest też pamiętać o tolerancji, czyli tym, jak bardzo realna wartość może różnić się od tej nominalnej. W sytuacjach, kiedy dokładność ma duże znaczenie, odpowiednia tolerancja może decydować o tym, czy wszystko działa, jak powinno. Dlatego znajomość tych kodów to podstawa w nauce elektroniki.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Szeregowy
B. Krokowy
C. Asynchroniczny
D. Bocznikowy
Silnik krokowy, mimo że ma swoje zastosowania w precyzyjnych systemach sterowania położeniem, nie jest optymalnym rozwiązaniem do aplikacji wymagających wysokiego momentu rozruchowego. Jego działanie opiera się na sekwencyjnym wzbudzaniu uzwojeń, co ogranicza jego zdolność do generowania dużych momentów na starcie. Silnik asynchroniczny, pomimo że jest powszechnie stosowany w przemyśle, nie charakteryzuje się odpowiednim momentem rozruchowym, ponieważ jego moment rozruchowy jest zazwyczaj mniejszy od momentu znamionowego. W silnikach asynchronicznych występuje zjawisko poślizgu, co powoduje, że przy rozruchu mogą mieć problemy z osiągnięciem wymaganej wydajności w ciężkich aplikacjach. Silnik bocznikowy, choć jest w stanie dostarczyć wyższy moment obrotowy niż silnik asynchroniczny, nie jest tak skuteczny jak silnik szeregowy w kontekście generowania dużego momentu przy rozruchu. W praktyce, wybór silnika do zadania powinien opierać się na szczegółowej analizie wymagań aplikacji, a nie tylko na ogólnych zaletach poszczególnych typów silników. Kluczowe jest zrozumienie, że silniki szeregowe mają unikalną konstrukcję, która czyni je bardziej odpowiednimi w specyficznych warunkach wymagających dużego momentu rozruchowego.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16
A. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
B. Steruje kierunkiem przepływu cieczy.
C. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.
D. Otwiera i zamyka przepływ cieczy roboczej.
Wybór odpowiedzi sugerującej, że urządzenie utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy, nie uwzględnia podstawowych zasad działania pomp hydraulicznych. Pompy nie pełnią funkcji stabilizowania ciśnienia, a ich głównym zadaniem jest generowanie przepływu oleju. Utrzymywanie stałego ciśnienia w systemie hydrauliczny jest osiągane przez zastosowanie innych komponentów, takich jak zawory ciśnieniowe czy regulatory. Kolejna nieprawidłowa koncepcja sugeruje, że urządzenie steruje kierunkiem przepływu cieczy. Choć dostęp do określonych kierunków przepływu może być istotny w układach hydraulicznych, zadanie to leży w gestii zaworów kierunkowych, a nie pomp. Ostatnia błędna odpowiedź, dotycząca otwierania i zamykania przepływu cieczy roboczej, również jest mylna, ponieważ te funkcje realizowane są przez zawory sterujące. Typowe błędy myślowe prowadzące do tego rodzaju mylnych wniosków obejmują pomieszanie funkcji różnych elementów systemu hydraulicznego, co jest częstym problemem wśród osób uczących się o hydraulice. Ważne jest zrozumienie, że każdy komponent w układzie hydraulicznym odgrywa specyficzną rolę, a pompy są dedykowane do generowania przepływu, a nie do regulacji ciśnienia czy kierunku przepływu.

Pytanie 27

Na podstawie zamieszczonych danych technicznych wybierz model zasilacza do układu elektropneumatycznego, w którym cewki elektrozaworów przystosowane są do zasilania napięciem stałym o wartości 24 V.

Dane techniczne

ModelMDR-40-5MDR-40-12MDR-40-24MDR-40-48
WyjścieNapięcie wyjściowe DC5V12V24V48V
Prąd znamionowy6A3,33A1,7A0,83A
Zakres prądu0-6A0~3,33A0-1,7A0-0,83A
Moc znamionowa30W40W40W40W
Tętnienia i szumy (max.)2)80mVp-p120mVp-p150mVp-p200mVp-p
Regulacja napięcia5-6V12-15V24-30V48-56V
Tolerancja napięcia3)±2,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach zasilania
±1,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach obciążenia
±5,0%±3,0%±3,0%±2,0%
Czas ustalania, narastania500ms, 30ms/230VAC500ms, 30ms/115VAC przy znamionowym obciążeniu
Czas podtrzymania50ms/230VAC20ms/115VAC przy znamionowym obciążeniu
WejścieZakres napięcia85-264VAC120-370VDC
Zakres częstotliwości47-63 Hz
Sprawność (typ.)78%86%88%88%
A. MDR-40-24
B. MDR-40-5
C. MDR-40-48
D. MDR-40-12
Model zasilacza MDR-40-24 jest właściwy dla układu elektropneumatycznego z cewkami elektrozaworów zaprojektowanymi do zasilania napięciem stałym 24 V. W kontekście aplikacji przemysłowych, takie zasilacze są kluczowe, ponieważ zapewniają stabilne i niezawodne napięcie, co jest niezbędne do prawidłowego działania elektrozaworów. Użycie odpowiedniego zasilacza wpływa bezpośrednio na wydajność systemu pneumatycznego, a także na jego bezpieczeństwo, zapobiegając uszkodzeniom komponentów z powodu niewłaściwego napięcia. Przykładowo, w systemach automatyki przemysłowej, wybór zasilacza zgodnego z wymaganiami napięciowymi cewki elektrozaworów gwarantuje, że siłowniki będą mogły działać w odpowiednich parametrach. Stosując zasilacz MDR-40-24, spełniamy normy wydajności i niezawodności, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki oraz elektropneumatyki.

Pytanie 28

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. uzwojenia.
B. łożysk.
C. komutatora.
D. szczotek.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 29

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Spawania
B. Klejenia
C. Zgrzewania
D. Zaginania
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 30

Przedstawiony element to

Ilustracja do pytania
A. szybkozłączka optyczna.
B. szybkozłączka pneumatyczna.
C. złącze grzybkowe.
D. szybkozłączka elektryczna.
Szybkozłączka pneumatyczna to element układów pneumatycznych, który umożliwia szybkie i beznarzędziowe łączenie oraz rozłączanie węży i narzędzi pneumatycznych. Jej metalowa konstrukcja oraz obecność gwintów pozwalają na solidne i trwałe połączenie, co jest kluczowe w aplikacjach przemysłowych. Ten typ złącza jest powszechnie stosowany w różnych branżach, takich jak przemysł motoryzacyjny czy budowlany, gdzie wykorzystywane są narzędzia pneumatyczne do wykonywania prac. Zastosowanie szybkozłączek pneumatycznych przyczynia się nie tylko do zwiększenia efektywności pracy, ale także do poprawy bezpieczeństwa operacji, ponieważ umożliwiają one łatwe i szybkie odłączenie narzędzi w razie potrzeby. Dobry dobór szybko złączek w systemie pneumatycznym, zgodny z normami branżowymi, zapewnia optymalną wydajność oraz niezawodność pracy urządzeń.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Ile minimalnie 8 bitowych portów we/wy powinien posiadać mikrokontroler PIC wyposażony w szeregowy
8-bitowy przetwornik analogowo-cyfrowy oznaczony ADC0831, aby można było zrealizować układ mechatroniczny przedstawiony na rysunku?

Ilustracja do pytania
A. 4 porty.
B. 5 portów.
C. 3 porty.
D. 2 porty.
Odpowiedź, że mikrokontroler PIC powinien mieć minimum 2 porty we/wy, jest prawidłowa z uwagi na sposób komunikacji z przetwornikiem analogowo-cyfrowym ADC0831 oraz wymagania dotyczące sterowania silnikiem krokowym. Przetwornik ADC0831 wykorzystuje szeregowy interfejs komunikacyjny, co pozwala na przesyłanie danych za pomocą jednego portu. Dokładniej, jeden port wejściowy jest wymagany do odbioru 8-bitowej informacji analogowej przetworzonej na sygnał cyfrowy. Z drugiej strony, do sterowania silnikiem krokowym EDE1200 potrzebny jest przynajmniej jeden port wyjściowy, który będzie odpowiedzialny za przekazywanie sygnałów sterujących, takich jak kierunek oraz impulsy krokowe. W praktyce, wiele systemów mechatronicznych stosuje minimalizację liczby portów, co jest zgodne z dobrą praktyką inżynieryjną, aby uprościć projekt oraz zmniejszyć koszty produkcji. Dzięki temu, odpowiedź sugerująca 2 porty we/wy stanowi optymalne rozwiązanie, które spełnia wymagania funkcjonalne układu, jednocześnie pozwalając na efektywne zarządzanie zasobami mikrokontrolera.

Pytanie 33

Jaką jednostką prędkości kątowej posługujemy się w układzie SI?

A. m/s
B. km/h
C. rad/s
D. obr/min
Jednostką prędkości kątowej w układzie SI jest radian na sekundę (rad/s). Prędkość kątowa definiuje, jak szybko obiekt porusza się wokół osi obrotu, co jest kluczowe w wielu dziedzinach, takich jak inżynieria mechaniczna czy fizyka. Przykładem może być ruch planet wokół Słońca, gdzie prędkość kątowa pozwala opisać, jak szybko planeta przebywa kąt w przestrzeni kosmicznej. W zastosowaniach praktycznych, jak w silnikach elektrycznych, monitorowanie prędkości kątowej jest niezbędne do optymalizacji wydajności i zapewnienia bezpieczeństwa. Zastosowanie jednostki rad/s w obliczeniach jest zgodne z normami międzynarodowymi, co ułatwia porównywanie wyników oraz standaryzację procesów inżynieryjnych. Ponadto, prędkość kątowa jest często używana w analizie drgań, gdzie precyzyjne określenie prędkości obrotowej jest kluczowe dla poprawnego funkcjonowania struktur mechanicznych.

Pytanie 34

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fotodiodzie
B. Fotoogniwie
C. Fototranzystorze
D. Fotorezystorze
Fotoogniwo jest urządzeniem, które przekształca energię promieniowania słonecznego na energię elektryczną poprzez zjawisko fotowoltaiczne. Proces ten polega na generowaniu par elektron-dziura w materiale półprzewodnikowym, takim jak krzem, w wyniku absorpcji fotonów. Kiedy foton uderza w atom w strukturze półprzewodnika, przekazuje swoją energię elektronowi, co prowadzi do jego wzbudzenia i możliwości swobodnego poruszania się w strukturze materiału. W rezultacie tego procesu powstaje prąd elektryczny. Fotoogniwa są szeroko stosowane w systemach energii odnawialnej, takich jak panele słoneczne montowane na dachach budynków czy farmach fotowoltaicznych, przyczyniając się do zrównoważonego rozwoju i redukcji emisji CO2. W branży energetycznej fotoogniwa zgodne są z normami IEC 61215 i IEC 61730, które dotyczą testowania modułów słonecznych, zapewniając ich jakość i bezpieczeństwo w eksploatacji.

Pytanie 35

Z którym czujnikiem współpracuje magnes zamontowany w siłowniku w sposób przedstawiony na rysunku?

Ilustracja do pytania
A. Optycznym.
B. Indukcyjnym.
C. Ciśnienia.
D. Kontaktronowym.
Czujnik indukcyjny, czujnik ciśnienia oraz czujnik optyczny to urządzenia, które działają na zupełnie innych zasadach niż czujnik kontaktronowy i w związku z tym nie są w stanie współpracować z magnesem w taki sposób, jak to przedstawiono w pytaniu. Czujniki indukcyjne działają na zasadzie wykrywania zmian w polu elektromagnetycznym, co pozwala na detekcję obiektów metalowych, ale nie reagują na pole magnetyczne generowane przez magnes. Często mylone są z czujnikami magnetycznymi, jednak ich zastosowanie jest znacznie węższe. Z kolei czujniki ciśnienia mierzą fizyczne ciśnienie cieczy lub gazów i nie są zaprojektowane do detekcji obiektów magnetycznych. Z kolei czujniki optyczne operują na zasadzie odbicia lub przerwania wiązki światła, co również nie ma związku z magnetyzmem. Wybór niewłaściwego czujnika może prowadzić do nieefektywności systemu, a także potencjalnych awarii. Zrozumienie zasad działania różnych typów czujników oraz ich zastosowań jest kluczowe dla prawidłowego projektowania systemów automatyki. Należy również zwrócić uwagę na kontekst, w jakim dany czujnik ma być stosowany oraz warunki, w których będzie działać, co może znacząco wpłynąć na jego efektywność i niezawodność.

Pytanie 36

Który rodzaj połączenia przedstawiono na rysunku?

Ilustracja do pytania
A. sworzniowe.
B. klinowe.
C. kołkowe.
D. wciskowe.
Odpowiedź 'kołkowe' jest prawidłowa, ponieważ rysunek ilustruje połączenie kołkowe, które wykorzystuje cylindryczny element, zwany kołkiem, do łączenia dwóch komponentów. Kołki są szeroko stosowane w budowie maszyn i konstrukcji, ponieważ oferują solidne połączenie, które jest łatwe do zainstalowania i demontażu. Kołkowe połączenia są szczególnie popularne w konstrukcjach drewnianych oraz metalowych, gdzie zapewniają stabilność i wytrzymałość. W kontekście inżynierii mechanicznej, połączenia kołkowe mogą być klasyfikowane według różnych norm, takich jak PN-EN 15048 dotycząca połączeń stałych. W praktyce, przykładem zastosowania połączenia kołkowego może być montaż elementów konstrukcyjnych w budynkach, gdzie kołki zapewniają odpowiednią nośność i odporność na siły działające na konstrukcję. Warto zwrócić uwagę, że odpowiednie dobieranie materiałów oraz średnicy kołków jest kluczowe dla zapewnienia trwałości i niezawodności połączenia.

Pytanie 37

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik indukcyjny
B. Czujnik magnetyczny
C. Czujnik tensometryczny
D. Czujnik optyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

W przedstawionym na schemacie układzie pneumatycznym można regulować

Ilustracja do pytania
A. tłumienie końca skoku.
B. siłę pchającą tłoka.
C. prędkość ruchu tłoka.
D. skok siłownika.
Odpowiedzi takie jak "skok siłownika", "prędkość ruchu tłoka" oraz "tłumienie końca skoku" są błędne, ponieważ nie mogą być regulowane za pomocą zaworu redukcyjnego. Skok siłownika jest zdefiniowany przez jego konstrukcję mechaniczną, a nie przez ciśnienie w układzie. To oznacza, że długość ruchu tłoka jest stała i nie można jej zmieniać, zmieniając ciśnienie. Prędkość ruchu tłoka, chociaż mogłaby być teoretycznie dostosowywana poprzez regulację przepływu powietrza, nie jest bezpośrednio związana z działaniem zaworu redukcyjnego, który koncentruje się na stabilizacji ciśnienia. Ponadto, tłumienie końca skoku odnosi się do mechanicznych rozwiązań, takich jak tłumiki, które absorbują energię w momencie osiągnięcia skrajnego położenia tłoka. Tego rodzaju błędne założenia mogą wynikać z niepełnego zrozumienia działania układów pneumatycznych oraz różnicy pomiędzy różnymi elementami sterującymi. W inżynierii pneumatycznej kluczowe jest rozróżnienie pomiędzy regulacją ciśnienia a innymi parametrami, co jest fundamentem efektywnego projektowania i eksploatacji systemów automatyki.

Pytanie 40

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
B. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
C. oblać dłoń wodą utlenioną i nałożyć opatrunek
D. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.