Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 20 grudnia 2025 18:52
  • Data zakończenia: 20 grudnia 2025 19:11

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Który z poniższych czynników może powodować zakłócenia w odbiorze sygnału radiowego w pasmie fal UKF?

A. Źródło promieniowania podczerwonego
B. Niska temperatura otoczenia
C. Działający silnik elektryczny
D. Wysokie ciśnienie powietrza
Pracujący silnik elektryczny może być źródłem zakłóceń w odbiorze sygnału radiowego w zakresie fal UKF (Ultra Krótkich Fal). Dzieje się tak z powodu emisji elektromagnetycznych, które pojawiają się podczas pracy silnika. Silniki elektryczne, zwłaszcza te z komutatorem, generują zakłócenia w postaci szumów, które mogą interferować z sygnałami radiowymi. Przykładem zastosowania tego zjawiska jest konieczność stosowania filtrów przeciwzakłóceniowych w instalacjach radiowych, aby zminimalizować wpływ takich źródeł na odbiór sygnału. Zgodnie z normami ETSI (Europejski Instytut Norm Telekomunikacyjnych), urządzenia radiowe powinny spełniać określone wymagania dotyczące odporności na zakłócenia elektromagnetyczne, a także emisji własnej, co pozwala na zapewnienie wysokiej jakości sygnału. Dodatkowo, w praktyce inżynierskiej często zaleca się przeprowadzanie pomiarów zakłóceń w środowiskach, gdzie znajdują się silniki elektryczne, aby określić ich wpływ na systemy komunikacyjne oraz wprowadzić odpowiednie środki ochronne.

Pytanie 5

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. zmierzyć poziom sygnału w kanale zwrotnym
B. analizować parametry sygnału przy użyciu analizatora widma
C. zbadać parametry kabla za pomocą reflektometru
D. zmierzyć impedancję falową kabla
Mierzenie poziomu sygnału w kanale zwrotnym, choć może dostarczyć pewnych informacji o jakości sygnału, nie jest skuteczną metodą lokalizacji przerwań w kablach. Tego typu pomiar koncentruje się głównie na analizie sygnału, który już dotarł do odbiornika, co nie pozwala na dokładne określenie miejsca awarii. Co więcej, różnice w poziomie sygnału mogą wynikać z wielu czynników, takich jak zakłócenia elektromagnetyczne czy inne problemy w sieci, co czyni tę metodę nieprecyzyjną. Z kolei pomiar impedancji falowej kabla jest istotny dla oceny dopasowania kabla do systemu, ale nie dostarcza informacji o lokalizacji uszkodzenia. Niepoprawne zrozumienie roli impedancji może prowadzić do błędnych wniosków o stanie kabla. Używanie analizatora widma również nie jest optymalne do lokalizacji przerwań, ponieważ jego głównym celem jest analiza widma sygnału, a nie lokalizacja uszkodzeń. Warto zauważyć, że wszystkie te podejścia mogą prowadzić do mylnych interpretacji i opóźnień w naprawach, co wpływa na jakość świadczonych usług. W branży telekomunikacyjnej kluczowe jest stosowanie właściwych narzędzi, takich jak reflektometry, które umożliwiają efektywne diagnozowanie problemów.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Zasilacz napięcia.
B. Transformator separujący.
C. Przemiennik częstotliwości.
D. Ogranicznik poboru mocy.
Pomimo, że niektóre z pozostałych odpowiedzi mogą wydawać się logiczne, każda z nich nieprawidłowo interpretuje funkcję urządzenia przedstawionego na rysunku. Przemiennik częstotliwości, na przykład, jest używany do zmiany częstotliwości sygnału elektrycznego, co jest przydatne głównie w aplikacjach silnikowych, natomiast jego zadaniem nie jest konwersja napięcia AC na DC. Transformator separujący, z drugiej strony, służy do izolacji obwodów elektrycznych, ale nie dokonuje konwersji napięcia, co oznacza, że nie może pełnić funkcji zasilacza napięcia. Ogranicznik poboru mocy jest urządzeniem, które kontroluje ilość energii pobieranej z sieci, co jest zupełnie inną funkcją niż ta, którą realizuje zasilacz napięcia. Wynikowe nieporozumienia mogą wynikać z niepełnego zrozumienia specyfikacji technicznych różnych urządzeń elektrycznych i ich zastosowań w praktyce. Aby skutecznie rozwiązywać problemy związane z wyborami sprzętowymi, kluczowe jest dokładne zrozumienie konkretnej roli każdego urządzenia oraz wiedza na temat ich standardów, co pozwala uniknąć powszechnych błędów w ocenie ich funkcji.

Pytanie 8

W każdej linii kodu, oprócz mnemonika instrukcji, można dodać po średniku sekwencję znaków, która zostanie zignorowana przez asembler. Co to jest?

A. instrukcja.
B. znamie.
C. komentarz.
D. argumenty.
Komentarze w kodzie asemblera są niezwykle istotne, ponieważ pozwalają programistom na dodawanie notatek i wyjaśnień, które ułatwiają zrozumienie działania programu. W asemblerze, ciąg znaków umieszczony po średniku nie wpływa na wykonywanie programu – jest ignorowany przez asembler. Na przykład, w linii kodu 'MOV AX, BX ; Przesunięcie wartości z rejestru BX do AX', wszystko, co znajduje się po średniku, jest traktowane jako komentarz. Tego typu praktyka sprzyja lepszej organizacji kodu oraz umożliwia innym programistom szybkie zrozumienie założeń i celów poszczególnych fragmentów kodu. Standardy programowania, takie jak PEP 8 w Pythonie, podkreślają znaczenie komentarzy i dokumentacji w kodzie, co jest również ważne w kontekście programowania w asemblerze, szczególnie w projektach zespołowych, gdzie przejrzystość kodu jest kluczowa. Dobrą praktyką jest umieszczanie komentarzy nie tylko na początku skomplikowanych bloków kodu, ale również przy każdej istotnej instrukcji, aby zwiększyć czytelność i ułatwić przyszłe modyfikacje.

Pytanie 9

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. kablowych
B. naziemnych
C. satelitarnych
D. z internetu
Odbiornik DVB-C to sprzęt stworzony właśnie do telewizji kablowej. Działa dzięki standardowi DVB-C, czyli Digital Video Broadcasting - Cable. Co to oznacza? Że sygnał jest przesyłany przez kable koncentryczne. Dzięki temu, jakość obrazu i dźwięku jest na naprawdę dobrym poziomie, a do tego można oglądać więcej kanałów niż w tradycyjny sposób. Telewizje kablowe, które korzystają z DVB-C, oferują różne pakiety programowe, co daje użytkownikom dostęp do masy kanałów, w tym tych w jakości HD czy VOD, czyli video na żądanie. To fajne, bo nie tylko można oglądać ulubione programy, ale także korzystać z EPG, czyli elektronicznego przewodnika po programach, oraz interaktywnych usług, co znacząco ułatwia korzystanie z telewizji.

Pytanie 10

Jaką rozdzielczość obrazu oferuje telewizja w standardzie HDTV?

A. 1920x1080
B. 1024x768
C. 1280x1024
D. 1360x768
Wybór rozdzielczości innej niż 1920x1080 wskazuje na zrozumienie określonych standardów obrazu, lecz nieprawidłowe odpowiedzi mogą prowadzić do nieporozumień dotyczących jakości obrazu. Rozdzielczość 1360x768, chociaż zbliżona do parametrów HD, jest w rzeczywistości rozdzielczością, która nie osiąga wysokich standardów jakości obrazu, jakim jest Full HD. Natomiast 1024x768 to rozdzielczość często stosowana w starszych monitorach komputerowych, a jej proporcje nie odpowiadają typowym formatom telewizyjnym, co skutkuje gorszą jakością obrazu w kontekście telewizji. Rozdzielczość 1280x1024 jest także rozdzielczością używaną w monitorach, ale w formacie 5:4, co nie jest zgodne z typowym formatem panoramicznym stosowanym w telewizji. Wiele osób może błędnie sądzić, że mniejsze rozdzielczości mogą być wystarczające dla jakości obrazu w telewizji, co jest mylnym założeniem. Obecnie, w dobie rosnącej dostępności treści w wysokiej rozdzielczości, korzystanie z rozdzielczości poniżej 1920x1080 staje się coraz bardziej nieprzydatne. Warto zaznaczyć, że przy wyborze telewizora, ważne jest także zrozumienie, że rozdzielczość to nie jedyny czynnik wpływający na jakość obrazu, a dodatkowe parametry, takie jak częstotliwość odświeżania, kontrast oraz HDR, mają kluczowe znaczenie dla ostatecznego wrażenia wizualnego.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Z analizy schematu poniższego układu elektronicznego wynika, że wzrost napięcia +Uvar spowoduje

Ilustracja do pytania
A. pojawienie się składowej stałej napięcia na wyjściu układu.
B. wzrost amplitudy sygnału wyjściowego przy częstotliwości fr.
C. przesunięcie charakterystyki częstotliwościowej w lewo (nowa częstotliwość rezonansowa będzie mniejsza od fr).
D. przesunięcie charakterystyki częstotliwościowej w prawo (nowa częstotliwość rezonansowa będzie większa od fr).
Analizując błędne odpowiedzi, można zauważyć kilka powszechnych nieporozumień dotyczących zachowania układów elektronicznych. Odpowiedź wskazująca na wzrost amplitudy sygnału wyjściowego przy częstotliwości fr ignoruje fakt, że wzrost napięcia wpływa na pojemność diody warikapowej, co prowadzi do zmiany częstotliwości rezonansowej, a nie jedynie do zmiany amplitudy sygnału. Inną nieprawidłowością jest założenie, że charakterystyka częstotliwościowa przesunie się w lewo, co sugerowałoby, że częstotliwość rezonansowa zmaleje. W rzeczywistości, zgodnie z zasadami fizyki, zmniejszenie pojemności prowadzi do wzrostu częstotliwości rezonansowej. Przesunięcie charakterystyki w prawo jest zatem poprawne. Ponadto, twierdzenie o pojawieniu się składowej stałej napięcia na wyjściu układu nie uwzględnia dynamiki sygnałów zmiennych w czasie typowych dla obwodów rezonansowych. W przypadku obwodów LC, zmiany napięcia wpływają na charakterystykę, ale nie prowadzą do stałej składowej, co jest zrozumiałe w kontekście teorii obwodów. Zrozumienie mechanizmów działania diod warikapowych i obwodów rezonansowych jest kluczowe dla inżynierów zajmujących się elektroniką, aby unikać tych typowych błędów myślowych.

Pytanie 14

W przypadku wykorzystania w instalacji sieci komputerowej: panelu krosowego kategorii 7, przewodu S/FTP kategorii 6 oraz gniazd abonenckich kategorii 5e, cała instalacja sieciowa będzie

A. kategorii 7
B. kategorii 6
C. kategorii 5e
D. kategorii 3
Odpowiedź o kategorii 5e jest poprawna, ponieważ w instalacjach sieciowych zastosowane komponenty definiują maksymalną kategorię, jaka może być osiągnięta w danej sieci. W tym przykładzie użyto panelu krosowego kategorii 7, który jest urządzeniem pozwalającym na organizację i zarządzanie połączeniami, jednak jego wydajność nie może przewyższać najniższej kategorii w instalacji - w tym przypadku gniazd abonenckich kategorii 5e. Przewody S/FTP kategorii 6 również wspierają wyższe prędkości transferu, ale ich zastosowanie w instalacji z gniazdami 5e obniża całkowitą kategorię do 5e, co oznacza maksymalną prędkość przesyłu danych do 1 Gb/s. Ważne jest, aby przy planowaniu sieci komputerowej stosować komponenty zgodne z wybraną kategorią, tak aby zapewnić optymalną wydajność i uniknąć problemów z kompatybilnością, co jest zgodne z normami ANSI/TIA-568.

Pytanie 15

W zasilaczu buforowym, który zasila system alarmowy, konieczne jest pomiar napięć w trzech lokalizacjach:
1) na wejściu sieciowym transformatora,
2) na wyjściu transformatora 18 V,
3) na terminalach akumulatora 12 V.

Jakie zakresy pomiarowe w multimetrze powinny być ustawione?

A. 1) 750 V AC, 2) 20 V AC, 3) 20 V DC
B. 1) 750 V DC, 2) 200 V AC, 3) 20 V DC
C. 1) 200 V AC, 2) 200 V AC, 3) 20 V DC
D. 1) 750 V AC, 2) 20 V AC, 3) 20 V AC
Wybór odpowiednich zakresów pomiarowych w mierniku uniwersalnym jest kluczowy dla uzyskania dokładnych pomiarów oraz zapewnienia bezpieczeństwa podczas pracy z instalacjami elektrycznymi. W przypadku zasilacza buforowego zasilającego instalację alarmową, istotne jest, aby na wejściu sieciowym transformatora ustawić zakres 750 V AC, co odpowiada typowemu napięciu sieci energetycznej. Pomiar na wyjściu transformatora, gdzie napięcie wynosi nominalnie 18 V, powinien być przeprowadzony w zakresie 20 V AC, co jest zgodne z parametrami transformatora niskonapięciowego. W przypadku pomiaru napięcia na zaciskach akumulatora, które pracuje w systemie 12 V, należy ustawić zakres 20 V DC, co jest standardowym sposobem pomiaru napięć stałych w akumulatorach. Użycie właściwych zakresów zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkownika oraz sprzętu, zgodnie z zasadami BHP oraz dobrą praktyką inżynierską.

Pytanie 16

Jakie rodzaje sił stanowią zagrożenie dla mechanicznych połączeń światłowodowych?

A. Ukośne
B. Wzdłużne
C. Poprzeczne
D. Skrośne
Odpowiedź 'wzdłużne' jest prawidłowa, ponieważ siły wzdłużne mają największy wpływ na stabilność światłowodowych spawów mechanicznych. Siły te działają wzdłuż osi światłowodu i mogą prowadzić do rozciągania lub kompresji spawów, co z kolei wpływa na integralność optyczną połączenia. Przy spawaniu włókien światłowodowych, kluczowe jest, aby spaw był odporny na różnorodne obciążenia mechaniczne, a szczególnie na siły wzdłużne, które mogą wystąpić w wyniku ruchów kabli, naprężeń związanych z instalacją lub dynamicznych obciążeń zewnętrznych. Przykładem może być sytuacja, w której kable są narażone na ciągłe napięcie lub rozciąganie, co może prowadzić do uszkodzenia spawu i w rezultacie do degradacji sygnału. Standardy takie jak IEC 61300-2-4 dotyczące testowania odporności spawów światłowodowych na obciążenia mechaniczne podkreślają znaczenie analizy sił wzdłużnych. W praktyce, odpowiednie zabezpieczenie kabli przed obciążeniami wzdłużnymi jest kluczowe dla zapewnienia długoterminowej niezawodności systemów światłowodowych.

Pytanie 17

Na rysunku przedstawiono czujkę

Ilustracja do pytania
A. zalania.
B. dymu.
C. stłuczeniową.
D. ruchu.
Czujka dymu na zdjęciu jest super ważnym elementem, jeśli chodzi o systemy przeciwpożarowe w budynkach. Jej główna rola to wykrywanie dymu, co jest zazwyczaj pierwszym znakiem, że coś może się dziać z ogniem. Jak tylko czujka wyczuje dym, włącza alarm, dzięki czemu mieszkańcy i odpowiednie służby mogą szybko zareagować. Zwykle montuje się je na sufitach tam, gdzie ryzyko pożaru jest większe, jak w kuchni, salonach czy na korytarzach. Fajnie by było, żebyś pamiętał, że według normy PN-EN 14604, czujki dymu powinny być testowane i konserwowane przynajmniej raz w roku, żeby działały jak należy. Ich stosowanie w różnych budynkach, od mieszkań po biura i zakłady przemysłowe, sprawia, że są naprawdę niezbędne w nowoczesnych systemach bezpieczeństwa przeciwpożarowego.

Pytanie 18

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 540 zł
B. 3 460 zł
C. 3 240 zł
D. 3 080 zł
Aby obliczyć łączny koszt instalacji alarmowej, należy najpierw ustalić wartość materiałów i robocizny, a następnie doliczyć odpowiednie stawki podatku VAT. W tym przypadku wartość materiałów wynosi 2 000 zł netto. Stawka VAT dla materiałów wynosi 23%, co daje kwotę 460 zł (2 000 zł x 0,23). Z kolei koszt robocizny wynosi 1 000 zł netto, a stawka VAT dla robocizny wynosi 8%, co daje kwotę 80 zł (1 000 zł x 0,08). Łączny koszt materiałów z VAT to 2 000 zł + 460 zł = 2 460 zł, natomiast łączny koszt robocizny z VAT to 1 000 zł + 80 zł = 1 080 zł. Sumując te wartości, otrzymujemy całkowity koszt instalacji wynoszący 2 460 zł + 1 080 zł = 3 540 zł. Takie obliczenia są zgodne z obowiązującymi przepisami VAT i są kluczowe w branży budowlanej oraz instalacyjnej, gdzie precyzyjne kalkulacje kosztów mają istotne znaczenie dla rentowności projektów.

Pytanie 19

Na zdjęciu przedstawiono odgałęźnik telewizyjny

Ilustracja do pytania
A. 4-krotny.
B. 3-krotny.
C. 2-krotny.
D. 6-krotny.
Odpowiedź "4-krotny" jest poprawna, ponieważ na zdjęciu przedstawiony jest odgałęźnik telewizyjny oznaczony jako "4-WAY TAP". Tego typu urządzenia są powszechnie stosowane w instalacjach telewizyjnych, szczególnie w budynkach wielorodzinnych oraz domach jednorodzinnych z wieloma punktami odbioru sygnału. Odgałęźniki tego rodzaju umożliwiają podłączenie czterech różnych odbiorników do jednego źródła sygnału, co jest praktycznym rozwiązaniem w wielu sytuacjach. Warto zwrócić uwagę, że stosowanie odpowiedniego odgałęźnika zapewnia nie tylko wygodę w korzystaniu z telewizji, ale także wpływa na jakość sygnału. Zastosowanie odgałęźników telewizyjnych powinno być zgodne z normami branżowymi, takimi jak EN 50083-1, które określają wymagania dotyczące urządzeń używanych w systemach telewizyjnych. Również ważne jest, aby przy instalacji zwrócić uwagę na odpowiednie parametry techniczne, takie jak tłumienie sygnału, co wpływa na jakość odbioru. W praktyce, używanie odgałęźników 4-krotnych pozwala na elastyczność i rozbudowę systemu telewizyjnego bez konieczności dodatkowych inwestycji w nowe źródła sygnału.

Pytanie 20

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. wielkiej i pośredniej częstotliwości
B. separatora sygnałów
C. wzmacniacza obrazu
D. odchylania poziomego i pionowego
Wybór odpowiedzi dotyczących wzmacniacza wizji jest nieprawidłowy, ponieważ wzmacniacz wizji odpowiada za wzmocnienie sygnału wizyjnego po demodulacji, co nie ma bezpośredniego wpływu na odbiór sygnału z anteny. W przypadku braku sygnału z anteny, wzmacniacz wizji nie jest przyczyną problemu, lecz skutkiem złego odbioru. Separator impulsów jest układem używanym w niektórych telewizorach do oddzielania sygnałów synchronizacji od sygnałów wideo, jednak w omawianym przypadku brak obrazu z anteny wskazuje na problem na poziomie sygnałów RF i IF, a nie na poziomie przetwarzania wizyjnego. Uszkodzenie odchylania poziomego i pionowego również nie tłumaczy braku odbioru z anteny, ponieważ te moduły odpowiadają za poprawne wyświetlanie obrazu na ekranie, a nie za jego odbiór. Typowe błędy myślowe prowadzące do takich wniosków to skupienie się na symptomach, a nie na źródłach problemu. Przy diagnozowaniu usterek w odbiornikach telewizyjnych istotne jest przeprowadzenie analizy sygnału na różnych etapach przetwarzania, co pozwala na szybkie zidentyfikowanie rzeczywistych przyczyn problemów z odbiorem sygnału.

Pytanie 21

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
B. Analogowy na zakresie I = 10 A i RWE = 50 Ω
C. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
D. Analogowy na zakresie I = 1 A i RWE = 50 Ω
Wybór cyfrowego amperomierza na zakresie 1 A z wewnętrznym oporem 5 Ω to naprawdę dobry ruch, jeśli chodzi o pomiar natężenia prądu 0,5 A. Osobiście uważam, że cyfrowe amperomierze są znacznie lepsze niż analogowe, bo dają bardziej rzetelne wyniki i mniejsze błędy pomiarowe. Gdy mierzysz 0,5 A, użycie zakresu 1 A to strzał w dziesiątkę – na pewno dostaniesz bardziej dokładne odczyty niż z większym zakresem. Niski opór wewnętrzny, czyli te 5 Ω, jest ważne, bo dzięki temu amperomierz nie wpływa za bardzo na mierzony obwód. To ma znaczenie, gdy masz czujnik o rezystancji 100 Ω, bo wtedy każdy mały wpływ mógłby zniekształcić wyniki. Jak dla mnie, to kluczowe w pomiarach, zwłaszcza w sytuacjach, gdzie liczą się drobne zmiany, jak w czujnikach temperatury czy ciśnienia. Z tego, co pamiętam, standardy jak IEC 61010 mówią, że warto wybierać dobre narzędzia pomiarowe, żeby minimalizować błędy i zapewnić bezpieczeństwo.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. ustawienia czujek ruchu
B. faktury zakupu
C. stanu akumulatora
D. linii sabotażowych
Faktura zakupu nie jest elementem, który należy sprawdzać podczas rutynowej konserwacji instalacji alarmowej. Głównym celem konserwacji jest zapewnienie prawidłowego funkcjonowania systemu, co obejmuje kontrolę komponentów takich jak akumulatory, linie sabotażowe oraz ustawienia czujek ruchu. Stan akumulatora jest kluczowy, ponieważ jego awaria może prowadzić do całkowitego wyłączenia systemu alarmowego. Linie sabotażowe powinny być regularnie testowane, aby upewnić się, że nie zostały uszkodzone lub zneutralizowane, co mogłoby umożliwić intruzji. Ustawienia czujek ruchu również wymagają okresowej weryfikacji, aby zapewnić, że są właściwie skalibrowane do otoczenia i skutecznie reagują na ruch. Standardy branżowe, takie jak normy ISO oraz wytyczne producentów sprzętu, podkreślają znaczenie tych elementów w utrzymaniu sprawności systemów zabezpieczeń. W sytuacji awaryjnej, wiedza o stanie technicznym tych komponentów może być kluczowa w szybkim przywróceniu funkcjonalności systemu.

Pytanie 25

Przedstawione urządzenie to

Ilustracja do pytania
A. korektor graficzny.
B. wzmacniacz akustyczny.
C. mikser stereofoniczny.
D. generator przestrajany.
Wybór niewłaściwej odpowiedzi sugeruje pewne nieporozumienia w zakresie funkcji i zastosowania różnych urządzeń audio. Generator przestrajany, na przykład, jest urządzeniem, które generuje sygnały o różnych częstotliwościach i jest często wykorzystywane w syntezatorach lub instrumentach elektronicznych, a nie w regulacji poziomu sygnału audio w danym zakresie częstotliwości. Z kolei wzmacniacz akustyczny ma na celu zwiększenie mocy sygnału audio, aby móc napędzać głośniki, a jego podstawową funkcją jest wzmocnienie sygnału, a nie jego korekcja. Mikser stereofoniczny, z drugiej strony, umożliwia łączenie różnych źródeł dźwięku i regulację ich poziomów oraz panoramy stereo, ale nie oferuje precyzyjnej regulacji w poszczególnych pasmach częstotliwości tak jak korektor graficzny. W rezultacie, pomylenie tych urządzeń może prowadzić do niewłaściwego użycia i w efekcie do obniżenia jakości dźwięku. Warto pamiętać, że każdy z tych elementów ma swoją unikalną rolę w procesie produkcji audio, a ich funkcje są ściśle określone. Znajomość tych różnic jest kluczowa w pracy z dźwiękiem oraz w zastosowaniach w zakresie inżynierii dźwięku.

Pytanie 26

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. zwiększyć
B. zmniejszyć
C. wyzerować
D. wyrównać
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Przedstawiony interfejs umożliwiający przesyłanie sygnałów: video, RGB, S-Video nazywa się

Ilustracja do pytania
A. S-Video
B. EURO SCART
C. DVI-A
D. HDMI
Odpowiedź EURO SCART jest prawidłowa, ponieważ ten interfejs jest zaprojektowany do przesyłania sygnałów audio i video, w tym RGB oraz S-Video, co czyni go wszechstronnym rozwiązaniem w systemach multimedialnych. EURO SCART, znany także jako SCART, to złącze, które stało się standardem w Europie, umożliwiającym łatwe podłączanie różnych urządzeń, takich jak odtwarzacze DVD, telewizory i konsole do gier. W odróżnieniu od innych typów złącz, EURO SCART pozwala na jednoczesne przesyłanie sygnałów wideo oraz audio, co znacząco upraszcza konfigurację sprzętu. Dzięki szerokiemu wykorzystaniu w branży telewizyjnej i audio-wideo, SCART zyskał popularność jako wspólne złącze, co ułatwia integrację różnych urządzeń. Warto również zauważyć, że pomimo pojawienia się nowoczesnych standardów, takich jak HDMI, SCART wciąż jest używane w wielu starszych systemach, co czyni je istotnym elementem w kontekście retro technologii i urządzeń analogowych.

Pytanie 29

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. amperomierza
B. omomierza
C. częstotliwościomierza
D. woltomierza
Omomierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru rezystancji. Jego działanie opiera się na zasadzie pomiaru napięcia i prądu w obwodzie, co pozwala obliczyć wartość rezystancji zgodnie z prawem Ohma. W praktyce, omomierz jest niezbędny w diagnostyce elektronicznych układów, ponieważ umożliwia identyfikację uszkodzonych komponentów, takich jak rezystory, diody czy tranzystory. W kontekście instalacji elektronicznych, omomierz pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych przerw czy zwarć w obwodzie. Używanie omomierza jest zgodne z najlepszymi praktykami w branży, które zalecają regularne testowanie komponentów w celu zapewnienia ich poprawnego działania oraz bezpieczeństwa. Cały proces pomiaru powinien być przeprowadzany z zachowaniem odpowiednich środków ostrożności, aby uniknąć uszkodzenia sprzętu oraz zapewnić dokładność pomiarów.

Pytanie 30

Na schemacie ideowym elektronicznego urządzenia wskazano wartość rezystancji poprzez oznaczenie k22.
Jaką wartość ma ta rezystancja?

A. 0,22 Ω
B. 22 Ω
C. 22 kΩ
D. 0,22 kΩ
No to tak. Wartość rezystancji, którą mamy oznaczoną jako k22, to tak naprawdę 0,22 kΩ, a to jest równoznaczne z 220 Ω. Ten 'k' w tym przypadku to taki prefiks kilo, który oznacza, że to jest tysięczna wielokrotność jednostki. Ale w tym konkretnym przypadku, pierwsza cyfra '2' to nie dodatkowe zera, tylko pełna wartość. Umiejętność czytania oznaczeń rezystorów jest naprawdę ważna, jak chcesz projektować jakieś obwody elektroniczne. To pozwala dobrze dobrać wszystkie komponenty, co ma wielkie znaczenie dla funkcji i bezpieczeństwa całego układu. Zrozumienie tego systemu jest istotne nie tylko dla inżynierów, ale też dla tych, którzy są hobbystami w elektronice. W dzisiejszych czasach, normy takie jak IPC-2221 kładą duży nacisk na dokładne odczytywanie wartości rezystancji, żeby uniknąć różnych pomyłek w projektowaniu obwodów drukowanych, co jest ważne zarówno w przemyśle, jak i dla użytkowników końcowych.

Pytanie 31

W projekcie kabel oznakowano jako S/FTP, co to oznacza?

A. skrętka z każdą parą foliowaną dodatkowo w ekranie z siatki
B. skrętka z każdą parą w oddzielnym ekranie z folii
C. skrętka ekranowana zarówno folią, jak i siatką
D. skrętka z każdą parą w oddzielnym ekranie z folii, dodatkowo w ekranie z folii
Odpowiedź wskazuje, że kabel S/FTP (Shielded Foiled Twisted Pair) to skrętka, w której każda para przewodów jest dodatkowo ekranowana folią, a całość jest umieszczona w zewnętrznej osłonie z siatki. Taki typ kabla charakteryzuje się wysoką odpornością na zakłócenia elektromagnetyczne, co czyni go idealnym do zastosowań w środowiskach o dużym poziomie zakłóceń, np. w biurach z wieloma urządzeniami elektronicznymi. Ekranowanie folią i siatką zapewnia, że sygnał przesyłany przez pary przewodów jest chroniony zarówno przed wpływem otoczenia, jak i przed wzajemnym zakłócaniem się par. Standardy takie jak ISO/IEC 11801 i ANSI/TIA-568 określają wymagania dotyczące wydajności oraz konstrukcji kabli, co podkreśla znaczenie stosowania odpowiednich materiałów i technologii w celu zapewnienia niezawodności transmisji. W praktyce kable S/FTP są często używane w sieciach lokalnych (LAN), zapewniając stabilną i szybką komunikację między urządzeniami.

Pytanie 32

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik hallotronowy
B. Czujnik tensometryczny
C. Czujnik pojemnościowy
D. Czujnik magnetyczny
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 33

Skrót DVB-T odnosi się do telewizji w formacie cyfrowym

A. przemysłowej
B. naziemnej
C. kablowej
D. satelitarnej
DVB-T, czyli Digital Video Broadcasting - Terrestrial, to tak naprawdę standard, który pozwala nam na odbiór telewizji cyfrowej przez nadajniki na ziemi. Nie trzeba tu kombinować z żadnymi satelitami czy kablówkami. W praktyce oznacza to, że możesz cieszyć się różnymi kanałami w fajnej jakości, bez dodatkowych opłat za usługi kablowe. W Polsce ten standard jest dość popularny i daje nam dostęp do zarówno publicznych, jak i komercyjnych programów. Co więcej, mamy też DVB-T2, który wprowadza jeszcze lepszą jakość obrazu, a nawet 4K. Fajnie, że teraz możemy mieć lepsze wrażenia wizualne, a nie musi to wiązać się z dużymi wydatkami. Również w innych krajach korzystają z DVB-T, co pokazuje, że ten standard działa i ludzie go lubią. Aha, warto dodać, że DVB-T pozwala też na przesyłanie różnych ciekawych dodatków, jak interaktywne dane czy EPG (Electronic Program Guide).

Pytanie 34

Oznaczenie YLY 3×6 mm2 odnosi się do przewodu

A. 3-żyłowego, z żyłami aluminiowymi w izolacji polwinitowej oraz powłoce polwinitowej
B. 6-żyłowego, z żyłami miedzianymi w izolacji polietylenowej oraz powłoce polietylenowej
C. 6-żyłowego, z żyłami aluminiowymi w izolacji polietylenowej oraz powłoce polietylenowej
D. 3-żyłowego, z żyłami miedzianymi w izolacji polwinitowej oraz powłoce polwinitowej
Odpowiedź wskazująca na przewód 3-żyłowy, o żyłach miedzianych w izolacji polwinitowej i powłoce polwinitowej, jest poprawna, ponieważ oznaczenie YLY 3×6 mm² jednoznacznie wskazuje na cechy techniczne tego przewodu. Przewody te są powszechnie stosowane w instalacjach elektrycznych i charakteryzują się dobrą elastycznością oraz odpornością na czynniki mechaniczne. Użycie miedzi jako materiału przewodzącego zapewnia doskonałe właściwości przewodzenia prądu, co jest istotne w kontekście wydajności energetycznej instalacji. Izolacja polwinitowa zapewnia odpowiednią odporność na temperaturę oraz chemikalia, co czyni ten typ przewodu idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych, gdzie może być narażony na niekorzystne warunki atmosferyczne. Dodatkowo, zgodnie z normami IEC 60228 oraz PN-HD 60364, zastosowanie przewodów miedzianych w instalacjach elektrycznych znacznie podnosi bezpieczeństwo operacyjne oraz efektywność systemów energetycznych. W praktyce, przewody YLY 3×6 mm² są często stosowane w domowych instalacjach oświetleniowych oraz do zasilania urządzeń elektrycznych o średnim poborze mocy.

Pytanie 35

Zanim przystąpimy do wymiany uszkodzonej fotokomórki szlabanu wjazdowego na posesję, najpierw należy

A. zdjąć napęd szlabanu
B. odłączyć napięcie zasilające szlaban
C. skonfigurować piloty do sterowania szlabanem
D. usunąć obudowę fotokomórki
Odłączenie napięcia zasilającego szlaban przed przystąpieniem do wymiany uszkodzonej fotokomórki jest kluczowym krokiem zapewniającym bezpieczeństwo pracy. Podstawową zasadą w pracy z urządzeniami elektrycznymi jest zawsze rozłączenie zasilania przed przeprowadzaniem jakichkolwiek czynności naprawczych lub konserwacyjnych. Taki krok minimalizuje ryzyko porażenia prądem, a także chroni komponenty elektroniczne przed uszkodzeniem podczas demontażu. Przykładem zastosowania tej zasady może być sytuacja, gdy fotokomórka nie działa prawidłowo z powodu zwarcia w obwodzie, a podczas wymiany nie odłączenie zasilania mogłoby prowadzić do dalszych uszkodzeń. Ponadto, zgodnie z normami bezpieczeństwa, takimi jak PN-IEC 60364, zanim wykonamy jakiekolwiek prace przy urządzeniach elektrycznych, należy upewnić się, że zasilanie zostało odłączone i odpowiednio zabezpieczone. Takie praktyki są kluczowe w celu zapewnienia bezpieczeństwa oraz integralności systemu, a ich przestrzeganie jest niezbędne w każdej instalacji elektrycznej.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Podstawowym zadaniem zastosowania optoizolacji pomiędzy obwodami elektronicznymi jest

A. zwiększenie wydolności wyjściowej obwodu elektronicznego
B. dopasowanie impedancji obwodów elektronicznych
C. galwaniczne oddzielenie obwodów elektronicznych
D. dopasowanie poziomów napięć między obwodami elektronicznymi
Głównym powodem, dla którego używamy optoizolacji w układach elektronicznych, jest to, żeby odseparować je galwanicznie. To naprawdę podnosi bezpieczeństwo i niezawodność naszych systemów. Optoizolatory, jak fotodiody czy fototranzystory, umożliwiają przesyłanie sygnałów bez fizycznego połączenia elektrycznego, co jest super praktyczne. Dzięki temu, różnice w napięciu i prądzie w poszczególnych układach mogą być skutecznie izolowane. Dobrym przykładem może być użycie optoizolacji w interfejsach między mikrokontrolerami a zewnętrznymi urządzeniami, na przykład przekaźnikami - one często działają na wyższych napięciach. Możemy też zauważyć, że normy, takie jak IEC 61131-2, mówią, że optoizolacja powinna być stosowana w systemach automatyki przemysłowej, żeby chronić przed przepięciami i minimalizować ryzyko uszkodzeń delikatnych podzespołów. A co najważniejsze, optoizolacja pomaga też wyeliminować pętlę masy, co chroni przed zakłóceniami i błędami w przesyłaniu sygnałów. Dlatego jest to naprawdę ważne przy projektowaniu niezawodnych układów elektronicznych.

Pytanie 39

Aby prawidłowo wykonać zakładanie wtyku RJ45, należy użyć

A. płaskiego śrubokręta
B. narzędzia LSA typu KRONE
C. zaciskarki do złączy
D. nóż monterskiego
Zaciskarka złącz to narzędzie kluczowe w procesie instalacji wtyków RJ45, które służy do trwałego połączenia przewodów z wtykiem. Jej konstrukcja umożliwia precyzyjne wciśnięcie metalowych pinów w wtyku w przewody, co zapewnia stabilne i niezawodne połączenie. W przypadku użycia wtyków RJ45, które są powszechnie stosowane w sieciach Ethernet, fundamentalne jest, aby przewody były odpowiednio ułożone w standardzie T568A lub T568B przed ich zaciskiem. Właściwie użyta zaciskarka zapewnia nie tylko poprawne połączenie, ale także minimalizuje ryzyko zakłóceń sygnału, co jest kluczowe dla utrzymania wysokiej wydajności sieci. Dodatkowo, stosowanie zaciskarki z funkcją automatycznego cięcia może przyspieszyć proces instalacji oraz poprawić jakość końcowego połączenia. Znajomość i umiejętność posługiwania się tym narzędziem są niezbędne w pracy technika sieciowego oraz elektrotechnika, co czyni je istotnym elementem szkolenia w tej dziedzinie.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.