Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 12 listopada 2025 20:26
  • Data zakończenia: 12 listopada 2025 20:35

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. przerwę w uzwojeniu U1 - U2.
B. zwarcie międzyzwojowe w uzwojeniu W1 - W2.
C. zwarcie między uzwojeniami U1 - U2 oraz W1 - W2.
D. uszkodzoną izolację w uzwojeniach U1 - U2 oraz V1 - V2.
Wyniki pomiarów rezystancji izolacji uzwojeń U1 - U2 oraz V1 - V2, które wynoszą 0 Ω, jednoznacznie wskazują na uszkodzenie izolacji tych uzwojeń. Zgodnie z normami branżowymi, rezystancja izolacji powinna być na poziomie minimum 1 MΩ, a wartość zerowa oznacza bezpośrednie zwarcie z obwodem ochronnym (PE). Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem oraz uszkodzenia urządzeń. W praktyce, przed uruchomieniem silników trójfazowych, zawsze należy przeprowadzać pomiary rezystancji izolacji, aby zapewnić ich prawidłowe funkcjonowanie oraz bezpieczeństwo. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić dokładne oględziny oraz ewentualną wymianę uszkodzonego uzwojenia. Regularne monitorowanie tych parametrów jest kluczowe dla minimalizacji ryzyka awarii i zapewnienia długoterminowej niezawodności sprzętu.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Falownik
B. Softstart
C. Rozrusznik
D. Autotransformator
Falownik to urządzenie elektroniczne, które pozwala na płynną regulację obrotów silników indukcyjnych poprzez modulację częstotliwości i napięcia zasilającego. Dzięki zastosowaniu falowników, można precyzyjnie dostosować prędkość obrotową silnika do aktualnych potrzeb aplikacji, co jest szczególnie istotne w procesach przemysłowych, gdzie zmiana prędkości ma kluczowe znaczenie dla efektywności działania. Na przykład, w systemach transportowych, takich jak przenośniki taśmowe, regulacja prędkości pozwala na optymalizację przepływu materiałów. Falowniki są zgodne z normami IEC 61800, które określają wymagania dotyczące regulacji napędów elektrycznych. Ponadto, zastosowanie falowników wpływa na zmniejszenie zużycia energii, co jest zgodne z aktualnymi trendami w kierunku zrównoważonego rozwoju i efektywności energetycznej. Dzięki swojej wszechstronności, falowniki są wykorzystywane w różnych gałęziach przemysłu, w tym w automatyce budynkowej, klimatyzacji i wentylacji, co czyni je niewątpliwie najlepszym wyborem do regulacji obrotów silników indukcyjnych.

Pytanie 5

Podczas diagnostyki silnika elektrycznego stwierdzono, że uzwojenie stojana ma obniżoną rezystancję izolacji. Jakie działania należy podjąć?

A. Zwiększyć częstotliwość napięcia zasilającego
B. Zmniejszyć prąd wzbudzenia
C. Przeprowadzić osuszanie uzwojenia lub wymienić izolację
D. Zastosować dodatkowe uziemienie
Obniżona rezystancja izolacji w uzwojeniu stojana silnika elektrycznego jest poważnym problemem, który może prowadzić do awarii silnika lub nawet zagrożenia bezpieczeństwa. Jednym z podstawowych działań, które należy podjąć, jest osuszanie uzwojenia. Proces ten ma na celu usunięcie wilgoci, która często jest przyczyną obniżonej rezystancji izolacji. Osuszanie można przeprowadzić za pomocą specjalnych urządzeń grzewczych lub wykorzystując energię elektryczną do podgrzania uzwojeń. Jeśli osuszanie nie przynosi oczekiwanych rezultatów, konieczna może być wymiana izolacji na nową, co jest bardziej skomplikowanym i kosztownym procesem. Współczesne normy i dobre praktyki branżowe zalecają regularne monitorowanie stanu izolacji oraz stosowanie materiałów o wysokiej odporności na wilgoć i temperaturę. Dzięki temu można zminimalizować ryzyko wystąpienia tego typu problemów i zapewnić niezawodną pracę urządzeń elektrycznych. Ważne jest, aby wszelkie prace naprawcze były wykonywane zgodnie z wytycznymi producenta oraz normami bezpieczeństwa, co zapewnia długą i bezawaryjną pracę silnika elektrycznego.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. lampy rtęciowe
B. świetlówki
C. żarówki
D. lampy sodowe
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 10

W głównych rozdzielnicach instalacji w budynkach mieszkalnych powinny być montowane urządzenia do ochrony przed przepięciami klasy

A. B+C
B. D
C. A
D. C+D
Wybór odpowiedzi A, D lub C+D może prowadzić do wielu nieprawidłowych wniosków dotyczących ochrony przepięciowej w rozdzielnicach głównych instalacji budowlanych. Klasa A, jako klasa ochrony, nie jest wystarczająca dla rozdzielnic głównych budynków mieszkalnych, ponieważ nie odpowiada ona wymaganym standardom ochrony przed przepięciami, które mogą występować w takich instalacjach. Obejmuje ona jedynie podstawowe mechanizmy ochronne, które nie są w stanie zaspokoić wyższych wymagań bezpieczeństwa. Wybór odpowiedzi D, wskazujący na zastosowanie tylko klasy III, również jest niewłaściwy, ponieważ nie uwzględnia potrzeby ochrony przed dużymi przepięciami, które mogą wystąpić w wyniku uderzeń pioruna. Klasa III jest typowo stosowana na poziomie urządzeń końcowych, ale sama w sobie nie zapewnia kompleksowej ochrony w rozdzielnicach. W przypadku odpowiedzi C+D, mimo że klasa III jest uznawana za skuteczną, jej stosowanie bez klasy II nie zapewnia odpowiedniego zabezpieczenia przed przepięciami o znacznej energii. W kontekście instalacji budynków mieszkalnych konieczne jest stosowanie urządzeń z klasy II, które są przystosowane do ochrony przed bardziej intensywnymi zjawiskami elektrycznymi. Błędy te wynikają z niedostatecznego zrozumienia zasad ochrony przed przepięciami oraz ich praktycznych zastosowań, co może prowadzić do nieodpowiedniego doboru sprzętu ochronnego w instalacjach budowlanych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 50 V AC
B. 230 V AC
C. 110 V DC
D. 12 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 13

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Włączanie i wyłączanie urządzeń
B. Realizowanie przeglądów niewymagających demontażu
C. Przeprowadzanie oględzin wymagających demontażu
D. Monitorowanie urządzeń w trakcie pracy
Dokonywanie oględzin wymagających demontażu nie jest czynnością, która wchodzi w zakres typowych zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne. Eksploatacja urządzeń elektrycznych skupia się głównie na ich bieżącym użytkowaniu, co obejmuje uruchamianie, zatrzymywanie oraz nadzorowanie pracy urządzeń. Przeglądy niewymagające demontażu są zazwyczaj efektywne i zgodne z praktykami, które ograniczają przestoje oraz zwiększają efektywność operacyjną. Oględziny, które wiążą się z demontażem, są zarezerwowane dla specjalistycznych prac, które powinny być przeprowadzane przez wykwalifikowanych techników w celu zapewnienia bezpieczeństwa i zgodności z normami, takimi jak PN-EN 60204-1, dotycząca bezpieczeństwa maszyn. Dlatego też, w kontekście eksploatacji, czynności te powinny być planowane w ramach konserwacji urządzeń, a nie codziennych zadań eksploatacyjnych. Przykładem może być okresowe przeglądanie silników elektrycznych, gdzie demontaż jest konieczny do sprawdzenia stanu uzwojeń, co jest kluczowe dla ich dalszej eksploatacji.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Zwiększenie napięcia zasilającego
B. Zmniejszenie obciążenia silnika
C. Przerwa w zasilaniu jednej fazy
D. Zwarcie pierścieni ślizgowych
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Wybory i konfiguracji urządzeń zabezpieczających
B. Terminów dotyczących prób oraz kontrolnych pomiarów
C. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
D. Danych technicznych instalacji
Kiedy dobierasz urządzenia zabezpieczające, musisz naprawdę wiedzieć, co robisz i przeanalizować, jakie masz parametry techniczne. Instrukcja dotycząca instalacji elektrycznych, które mają wyłączniki nadmiarowo-prądowe, nie musi opisywać wszystkiego na szczegółowo, bo każdy przypadek jest inny i trzeba to dopasować do konkretnej sytuacji. W praktyce dobierasz te urządzenia na podstawie tego, jak duże masz obciążenie, jak wygląda sama instalacja i jakie są warunki pracy. Na przykład, wyłączniki nadmiarowo-prądowe powinny być wybierane zgodnie z normami PN-EN 60898. Ważne jest, żebyś wiedział, jakie są ich cechy – na przykład typ wyłącznika. Powinieneś to określić, analizując obciążenie i możliwe zagrożenia. Dlatego instrukcja eksploatacji koncentruje się na zasadach użytkowania, kontroli i konserwacji – to wszystko jest kluczowe, żeby zapewnić bezpieczeństwo i sprawność systemu.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Dla układu o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω działającego w systemie TN-C nie działa efektywnie dodatkowa ochrona przed porażeniem prądem, ponieważ

A. opór uziemienia jest zbyt niski
B. opór izolacji miejsca pracy jest zbyt duży
C. impedancja sieci zasilającej jest zbyt niska
D. impedancja pętli zwarcia jest zbyt duża
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektroenergetycznych, który wpływa na skuteczność ochrony przed porażeniem prądem elektrycznym. W przypadku układu TN-C, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy, który może wyniknąć z uszkodzenia, jest zbyt niski, aby zadziałały zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. Standardy, takie jak PN-IEC 60364, określają maksymalne wartości impedancji pętli zwarcia, aby zapewnić szybkie wyłączenie zasilania w przypadku awarii. W praktyce, dla instalacji niskonapięciowych, impedancja pętli zwarcia powinna być na tyle niska, aby prąd zwarciowy mógł osiągnąć wartość, która aktywuje zabezpieczenia w krótkim czasie, co minimalizuje ryzyko porażenia prądem. Przykładem może być obliczenie impedancji pętli w instalacji o zainstalowanych zabezpieczeniach, gdzie impedancja nie powinna przekraczać 1 Ω, aby zapewnić efektywność ochrony.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby zredukować prąd rozruchowy
B. Aby poprawić przeciążalność
C. Aby zwiększyć moment rozruchowy
D. Aby obniżyć prędkość obrotową
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Uszkodzenie izolacji uzwojenia w działającym przekładniku może wystąpić na skutek rozłączenia zacisków jego strony

A. wtórnej przekładnika prądowego
B. pierwotnej przekładnika napięciowego
C. pierwotnej przekładnika prądowego
D. wtórnej przekładnika napięciowego
Odpowiedź 'wtórnej przekładnika prądowego' jest prawidłowa, ponieważ uszkodzenie izolacji uzwojenia może wystąpić na skutek rozwarcia obwodu wtórnego przekładnika prądowego, co prowadzi do znacznego wzrostu napięcia na zaciskach wtórnych. Przekładniki prądowe są zaprojektowane do pracy w obwodach zamkniętych, a ich wtórne uzwojenie powinno zawsze być obciążone, aby zapewnić stabilne warunki pracy. W przypadku rozwarcia, natężenie prądu w uzwojeniu pierwotnym nie zmienia się, natomiast napięcie wtórne może osiągnąć niebezpieczne wartości, co skutkuje uszkodzeniami izolacji. Dobre praktyki w instalacjach elektroenergetycznych obejmują stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki nadprądowe i ograniczniki przepięć, które mogą chronić przed takimi uszkodzeniami. Warto również regularnie przeprowadzać inspekcje i testy, aby zminimalizować ryzyko uszkodzeń, co jest zgodne z normami IEC oraz zaleceniami branżowymi dotyczących konserwacji urządzeń elektrycznych.

Pytanie 26

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody z miedzi beztlenowej
B. Przewody o podwyższonej odporności na UV
C. Przewody do instalacji wewnętrznych
D. Przewody aluminiowe
Wybór odpowiednich przewodów do instalacji zewnętrznych jest kluczowy, aby zapewnić ich trwałość i bezpieczeństwo. Przewody aluminiowe, choć lżejsze i tańsze, są mniej odporne na korozję i mają niższą przewodność elektryczną w porównaniu do przewodów miedzianych. Aluminiowe przewody mogą być stosowane w niektórych przypadkach, ale wymagają szczególnej uwagi podczas montażu, aby zminimalizować ryzyko utleniania się i utraty połączeń. Przewody z miedzi beztlenowej charakteryzują się wysoką przewodnością i są często stosowane w audiofilskich zastosowaniach, gdzie zależy nam na minimalizacji strat sygnału. Jednak w kontekście instalacji zewnętrznych ich odporność na czynniki atmosferyczne nie różni się znacząco od standardowych przewodów miedzianych. Przewody do instalacji wewnętrznych są projektowane z myślą o innych warunkach eksploatacyjnych. Nie są one przystosowane do odporności na promieniowanie UV, zmiany temperatury czy wilgotności. Użycie takich przewodów na zewnątrz może prowadzić do ich szybkiej degradacji, co z kolei zwiększa ryzyko awarii systemu. Dlatego ważne jest, aby zawsze stosować przewody odpowiednie do specyficznych warunków środowiskowych, w jakich będą eksploatowane.

Pytanie 27

W jakim schemacie sieciowym nie można używać wyłączników różnicowoprądowych jako zabezpieczeń przed porażeniem w przypadku uszkodzenia?

A. W systemie TN-C
B. W systemie IT
C. W systemie TN-S
D. W systemie TT
Układ TN-C (z ang. Terre Neutral Combined) charakteryzuje się tym, że neutralny przewód (N) i przewód ochronny (PE) są połączone w jednym przewodzie (PEN) na całej długości instalacji. Z tego powodu, wyłączniki różnicowoprądowe (RCD) nie mogą być stosowane jako elementy ochrony przeciwporażeniowej, ponieważ w przypadku uszkodzenia nie ma możliwości prawidłowego pomiaru prądów różnicowych. W układach TN-C, uszkodzenie przewodu PEN może prowadzić do niebezpiecznej sytuacji, gdzie brak separacji przewodów ochronnych i neutralnych utrudnia detekcję nieprawidłowości. Przykładem stosowania wyłączników różnicowoprądowych są układy TN-S, gdzie przewody N i PE są oddzielone, co umożliwia skuteczne monitorowanie prądów różnicowych. Warto również zaznaczyć, że w kontekście przepisów, zgodnie z normą PN-EN 61008-1, RCD powinny być używane w odpowiednich układach, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym, co w układzie TN-C nie jest możliwe.

Pytanie 28

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Grzałki oraz spirale grzejne
B. Termostaty i czujniki temperatury
C. Przekładnie i skrzynki przekładniowe
D. Szczotkotrzymacze oraz szczotki węglowe
Szczotkotrzymacze i szczotki węglowe są kluczowymi elementami w jednofazowych silnikach komutatorowych, które znajdują zastosowanie w większości odkurzaczy. Te części zamienne odpowiedzialne są za przewodzenie prądu do wirnika silnika, co umożliwia jego prawidłowe działanie. W miarę eksploatacji, szczotki węglowe ulegają naturalnemu zużyciu, co jest zjawiskiem oczekiwanym i wynika z tarcia mechanicznego. Regularna kontrola stanu szczotek i ich wymiana jest zatem istotna dla utrzymania efektywności działania odkurzacza. W praktyce, wymiana szczotkotrzymaczy oraz szczotek węglowych jest jednym z najczęściej wykonywanych czynności serwisowych, co potwierdzają zarówno technicy serwisowi, jak i producenci sprzętu. Dobrą praktyką jest stosowanie oryginalnych części zamiennych, co gwarantuje odpowiednią jakość i trwałość. Warto również pamiętać, że niewłaściwe działanie silnika może prowadzić do nadmiernego przegrzewania się, co z kolei może powodować dalsze uszkodzenia, dlatego wymiana tych elementów powinna być stałym punktem serwisowym.

Pytanie 29

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. 2 000 Ω
B. Około 1 660 Ω
C. Około 830 Ω
D. 4 000 Ω
Największa dopuszczalna rezystancja uziomu <i>R<sub>A</sub></i> przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego <i>I<sub>N</sub> = 30 mA</i> i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 30

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. mocy zainstalowanych urządzeń elektrycznych w instalacji
B. maksymalnego spadku częstotliwości w sieci zasilającej
C. impedancji pętli zwarcia instalacji
D. maksymalnej współczynnika przepięć
Odpowiedź dotycząca impedancji pętli zwarcia instalacji jest poprawna, ponieważ ta wartość jest kluczowa dla oceny skuteczności ochrony przeciwporażeniowej realizowanej przez samoczynne wyłączenie zasilania. Impedancja pętli zwarcia wpływa na prąd zwarciowy, który może przepłynąć przez instalację w przypadku awarii. Zgodnie z normami IEC 60364-4-41 oraz PN-IEC 61008-1, istotne jest, aby prąd wyłączający dla zastosowanego zabezpieczenia (np. wyłącznika nadprądowego lub różnicowoprądowego) był odpowiednio wyższy od wartości prądu zwarciowego, co zapewnia szybkie działanie zabezpieczeń. W praktyce, aby zapewnić skuteczność ochrony, projektanci instalacji elektrycznych muszą przeprowadzić obliczenia impedancji pętli zwarcia, co pozwala na dobór odpowiednich zabezpieczeń. Na przykład, w przypadku instalacji o napięciu znamionowym 230 V i użyciu bezpiecznika o prądzie wyłączającym 30 mA, wartość impedancji pętli zwarcia musi być obliczona tak, aby prąd zwarciowy wynosił co najmniej 150 mA, co zapewnia odpowiednie wyłączenie w wymaganym czasie.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L3
B. Przewód N
C. Przewód L1
D. Przewód L2
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 4 A
B. 3 A
C. 1 A
D. 2 A
Wybór niewłaściwego zakresu pomiarowego amperomierza może wynikać z kilku błędnych założeń. Przede wszystkim, niektóre odpowiedzi mogą sugerować, że natężenie prądu będzie znacznie niższe niż w rzeczywistości, co jest wynikiem nieprawidłowego zrozumienia wzorów związanych z mocą oraz współczynnikiem mocy. Na przykład, wybierając zakres 1 A lub 2 A, można zakładać, że wyniki pomiarów będą dostateczne, jednak w praktyce taki amperomierz mógłby ulec uszkodzeniu w przypadku przekroczenia jego maksymalnych wartości. Należy też pamiętać, że obliczana moc bierna, związana z parametrem cosα, wpływa na całkowity prąd pobierany przez silnik. Przy obliczeniu prądu, istotne jest uwzględnienie rzeczywistej mocy czynnej oraz sprawności silnika, co może prowadzić do błędnych wniosków, jeśli te wartości nie zostaną prawidłowo zaimplementowane w obliczeniach. W każdym przypadku przed dokonaniem wyboru sprzętu pomiarowego, warto zapoznać się z wytycznymi dotyczącymi doboru przyrządów, które zalecają wybór urządzeń z odpowiednim marginesem bezpieczeństwa. Aby uzyskać pełen obraz sytuacji, warto również zwrócić uwagę na rzeczywiste warunki pracy silnika oraz charakterystykę obciążenia, które mogą dodatkowo wpływać na wartość prądu. Dobre praktyki wymagają, aby przy doborze amperomierza brać pod uwagę rzeczywiste zastosowanie oraz możliwe zmiany w obciążeniu, co w przypadku silników elektrycznych bywa dość istotne.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.