Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 1 stycznia 2026 18:15
  • Data zakończenia: 1 stycznia 2026 18:29

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 3 listwy zaciskowej X1
B. Z zaciskiem 4 listwy zaciskowej X1
C. Z zaciskiem A2 stycznika K1
D. Z zaciskiem 22 stycznika K1
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 2

Ile wynosi wartość mocy biernej w symetrycznym układzie trójfazowym przedstawionym na rysunku, jeżeli watomierz wskazuje 100 W?

Ilustracja do pytania
A. 519 var
B. 173 var
C. 100 var
D. 300 var
Poprawna odpowiedź to 173 var, ponieważ w symetrycznym układzie trójfazowym moc bierna jest związana z mocą czynną. Wartość mocy biernej Q można obliczyć za pomocą wzoru Q = √3 * P, gdzie P to moc czynna. W przypadku, gdy watomierz wskazuje 100 W, możemy zastosować ten wzór, co prowadzi nas do obliczenia Q = √3 * 100 W, co daje około 173 var. W praktyce, moc bierna jest istotna w kontekście projektowania instalacji elektrycznych, gdzie ważne jest zrozumienie relacji między mocą czynną a mocą bierną, by zapewnić optymalne działanie urządzeń elektrycznych. W kontekście norm PN-EN 50160, które dotyczą jakości energii elektrycznej, światłowodów i systemów zasilania, umiejętność obliczania tych mocy jest niezbędna dla inżynierów zajmujących się systemami zasilania i ochroną przed przepięciami. Wiedza ta pozwala również na lepsze zarządzanie zużyciem energii i minimalizację strat, co jest kluczowe w działalności przemysłowej oraz w kontekście zrównoważonego rozwoju.

Pytanie 3

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje drgania zwory.
B. Zmniejsza napięcie podtrzymania cewki.
C. Likwiduje magnetyzm szczątkowy.
D. Zmniejsza siłę docisku zwory.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 4

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik kolejności faz.
B. Przekaźnik czasowy.
C. Lampkę sygnalizacyjną trójfazową.
D. Regulator temperatury.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 5

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie B
B. W punkcie A
C. W punkcie C
D. W punkcie D
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.

Pytanie 6

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Indukcyjnego klatkowego.
B. Synchronicznego z obcym wzbudzeniem.
C. Obcowzbudnego prądu stałego.
D. Indukcyjnego pierścieniowego.
Analizując dostępne odpowiedzi, można zauważyć kilka powszechnych nieporozumień związanych z różnymi typami silników elektrycznych. Silnik obcowzbudny prądu stałego jest konstrukcją, która charakteryzuje się oddzielnym źródłem zasilania dla pola magnetycznego, co nie znajduje odzwierciedlenia w schemacie i jego budowie. Silniki tego typu mają zupełnie inną architekturę i przeznaczenie, często używane w aplikacjach wymagających dużej kontroli nad prędkością obrotową, ale nie są w stanie dostarczyć tej samej elastyczności co silniki pierścieniowe. Z kolei silnik indukcyjny klatkowy, który posiada wirnik wykonany w formie klatki, jest prostszy w budowie i nie pozwala na taką regulację momentu obrotowego jak silnik pierścieniowy. Ta konstrukcja jest bardziej powszechna w zastosowaniach przemysłowych, jednak nie ma możliwości tak szczegółowego dostosowania parametrów pracy. Natomiast silnik synchroniczny z obcym wzbudzeniem, który również został wymieniony w odpowiedziach, opiera się na stałym polu magnetycznym i charakteryzuje się innym sposobem działania. W odróżnieniu od silników indukcyjnych, synchroniczne wykorzystują stałe źródło pola, co sprawia, że ich zastosowanie jest inne i wymagające. Zrozumienie różnic między tymi typami silników jest kluczowe, aby podejmować właściwe decyzje w kontekście wyboru odpowiedniej technologii do konkretnych zastosowań przemysłowych. Kluczowe jest, aby pamiętać o specyfikach konstrukcyjnych i ich wpływie na właściwości użytkowe, co może prowadzić do znacznych nieporozumień w praktyce inżynieryjnej.

Pytanie 7

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Prąd upływu.
C. Chwilową moc obciążenia.
D. Rezystancję izolacji.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 8

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 0,03 A i 30 A
B. 3 A i 0,03 A
C. 30 A i 0,03 A
D. 0,003 A i 30 A
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 9

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Obsługa przełącznika zaczepów
B. Weryfikacja poziomu oleju w olejowskazie konserwatora
C. Czyszczenie izolatorów
D. Serwis styków oraz połączeń śrubowych
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.

Pytanie 10

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 6,73 MΩ
B. 6,87 MΩ
C. 7,48 MΩ
D. 6,18 MΩ
Analiza rezystancji izolacji uzwojeń silnika w różnych temperaturach może stanowić wyzwanie, zwłaszcza gdy nie są brane pod uwagę odpowiednie współczynniki przeliczeniowe. W przypadku, gdy odpowiedzi sugerują wartości 6,73 MΩ, 6,87 MΩ, 7,48 MΩ oraz 6,18 MΩ, istotne jest zrozumienie, że każda z tych odpowiedzi opiera się na błędnych założeniach. Wartość 6,18 MΩ, choć może wydawać się poprawna, została obliczona w sposób nieprawidłowy, ponieważ pomija uwzględnienie odpowiednich współczynników przeliczeniowych i ich wpływu na wynik. W przypadku obliczania rezystancji izolacji, temperatura ma kluczowe znaczenie, a różnice między 20°C a 23°C mogą znacząco wpływać na wyniki. Przyjmuje się, że wzrost temperatury wpływa na zmniejszenie rezystancji, co oznacza, że rezystancja w niższej temperaturze powinna być wyższa. Wartości 6,73 MΩ i 6,87 MΩ mogą wynikać z pomyłek w korzystaniu z tabeli współczynników lub niewłaściwego zastosowania wzoru, co prowadzi do zaniżenia wartości izolacji. Natomiast 7,48 MΩ, choć na pierwszy rzut oka może wydawać się bardziej wiarygodne, jest wynikiem błędnych obliczeń, które nie uwzględniają prawidłowego przeliczenia na podstawie temperatury. Wiedza na temat prawidłowego wyznaczania rezystancji izolacji uzwojeń jest niezwykle istotna w kontekście bezpieczeństwa urządzeń elektrycznych oraz ich niezawodności w długotrwałym użytkowaniu.

Pytanie 11

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 2.
B. Wstawkę 3.
C. Wstawkę 4.
D. Wstawkę 1.
Wstawkę kalibrową należy dobierać z uwzględnieniem specyfikacji technicznych wkładki topikowej. W przypadku wkładki typu D, oznaczonej jako gL, kluczowe znaczenie ma dopasowanie takich parametrów jak napięcie znamionowe i prąd znamionowy. Odpowiednia wstawką kalibrową jest wstawką 3, która posiada oznaczenie 'DII 63A 500V', co wskazuje, że jej maksymalne napięcie wynosi 500 V, a prąd do 63 A, co przekracza wymagane 25 A. Taki wybór zapewnia nie tylko poprawne działanie w systemie, ale również bezpieczeństwo użytkowania. Zastosowanie wstawki, która nie spełnia wymagań, mogłoby prowadzić do nieprawidłowej pracy zabezpieczeń i w konsekwencji do uszkodzenia urządzeń. Standardy ochrony obwodów elektrycznych, takie jak IEC 60269, zalecają dobranie wkładek topikowych i wstawek kalibracyjnych zgodnie z parametrami układu oraz wymaganiami systemu. Prawidłowy wybór umożliwia także lepsze monitorowanie i zarządzanie przepływem prądu, co jest szczególnie istotne w instalacjach przemysłowych.

Pytanie 12

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 1000 A
B. 25 A
C. 0,03 A
D. 230 A
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość I<sub>N</sub> (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 13

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K7, K2
B. K1, K5, K4, K6, K3, K2, K7
C. K7, K2, K3, K6, K4, K5, K1
D. K1, K2, K3, K4, K5, K6, K7
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 14

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Rozłącznik.
B. Bezpiecznik.
C. Wyłącznik silnikowy.
D. Przekaźnik termobimetalowy.
Wybór odpowiedzi dotyczącej wyłącznika silnikowego, bezpiecznika lub rozłącznika świadczy o pewnych nieporozumieniach dotyczących funkcji oraz zastosowania tych urządzeń w obwodach elektrycznych. Wyłącznik silnikowy, choć również używany do ochrony silników, działa na zasadzie mechanicznego odłączenia zasilania w przypadku wykrycia awarii, co czyni go innym typem zabezpieczenia. Z kolei bezpiecznik ma na celu przeciwdziałanie zwarciom poprzez przerywanie obwodu w wyniku nadmiernego prądu, jednak nie monitoruje on stanu temperatury, co czyni go nieodpowiednim w kontekście przeciążeń spowodowanych długotrwałymi obciążeniami, które mogą być bardziej niebezpieczne, ale nie muszą natychmiast prowadzić do zwarcia. Rozłącznik natomiast nie zapewnia automatycznego wyłączenia w wyniku przeciążenia - jest to urządzenie służące do ręcznego odłączania obwodu, a jego działanie jest ograniczone do zastosowań, gdzie nie wymagana jest automatyka. Wybór nieprawidłowej odpowiedzi może wynikać z braku zrozumienia różnic między tymi urządzeniami oraz ich specyficznych zastosowań w obwodach elektrycznych. W praktyce, kluczowe jest stosowanie właściwych zabezpieczeń zgodnych z charakterystyką obciążenia oraz wymaganiami norm przemysłowych, co pozwala na efektywne i bezpieczne zarządzanie urządzeniami elektrycznymi.

Pytanie 15

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Rysunek oznaczony literą B. przedstawia pierścienie ślizgowe, które pełnią kluczową rolę w silnikach elektrycznych. Są to elementy, które umożliwiają przekazywanie prądu elektrycznego do wirnika, co jest niezbędne do jego prawidłowego funkcjonowania. Pierścienie te są wykonane z materiałów o wysokiej przewodności elektrycznej oraz odporności na zużycie, co pozwala im działać w warunkach dynamicznych, gdzie występują znaczne siły mechaniczne i elektryczne. W zastosowaniach przemysłowych, pierścienie ślizgowe są wykorzystywane w takich urządzeniach jak silniki asynchroniczne, generatory oraz różnego rodzaju maszyny wirujące. Użycie pierścieni ślizgowych jest zgodne z normami międzynarodowymi, takimi jak IEC 60034, które określają wymogi dla silników elektrycznych. Dzięki zastosowaniu tych elementów, zapewniona jest nie tylko efektywność działania, ale także bezpieczeństwo operacyjne urządzeń, co jest szczególnie istotne w przemyśle energetycznym i automatyce przemysłowej.

Pytanie 16

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego pierścieniowego.
B. Indukcyjnego klatkowego.
C. Komutatorowego prądu stałego.
D. Jednofazowego z kondensatorem pracy.
Odpowiedź wskazująca na silnik indukcyjny klatkowy jest poprawna, ponieważ na przedstawionym rysunku można zauważyć charakterystyczne cechy tego typu silnika. Wirnik klatkowy, który jest kluczowym elementem konstrukcyjnym, składa się z aluminiowych lub miedzianych prętów, które są połączone na obu końcach pierścieniami. Silniki indukcyjne klatkowe są powszechnie stosowane w przemyśle ze względu na swoją prostotę, trwałość oraz efektywność. Na przykład, znajdują zastosowanie w napędach mechanicznych, takich jak pompy, wentylatory czy taśmociągi. Ich zalety to niskie koszty eksploatacji i minimalna potrzeba konserwacji, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej, gdzie preferuje się rozwiązania wymagające jak najmniej interwencji serwisowych. Warto również zaznaczyć, że silniki te działają na zasadzie indukcji elektromagnetycznej, co czyni je bezpiecznymi oraz zdolnymi do pracy w różnych warunkach środowiskowych.

Pytanie 17

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Silnik będzie pracował w stanie jałowym
B. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
C. Silnik będzie zasilany prądem przeciwnym
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 18

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik będzie pracować na biegu jałowym
B. Podczas zasilania silnika jego wirnik będzie stał
C. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
D. Silnik będzie zasilany prądem w kierunku przeciwnym
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 19

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Lampkę sygnalizacyjną trójfazową.
B. Przekaźnik czasowy.
C. Regulator temperatury.
D. Czujnik zaniku fazy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 20

Którym z urządzeń przedstawionych na rysunkach należy zastąpić uszkodzony w instalacji elektrycznej stycznik o oznaczeniu SM 425 230 4Z?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź B jest prawidłowa, ponieważ stycznik Relpol RIK40-40, który ma być użyty jako zamiennik, ma napięcie cewki w zakresie 230-240V, co jest zgodne z wymaganiami technicznymi dla uszkodzonego stycznika SM 425 230 4Z. Dodatkowo, RIK40-40 dysponuje czterema stykami pomocniczymi, co sprawia, że jego parametry są zgodne z wymaganiami systemu. Użycie właściwego stycznika jest kluczowe w instalacjach elektrycznych, aby zapewnić ich niezawodność i bezpieczeństwo. Styczniki są szeroko stosowane w automatyce przemysłowej oraz w systemach sterowania, gdzie precyzyjne dopasowanie parametrów styków i napięcia cewki jest niezbędne dla prawidłowego działania. W przypadku stosowania niewłaściwego stycznika, może dojść do uszkodzenia urządzenia, co prowadzi do przestojów produkcyjnych czy zagrożeń bezpieczeństwa. Dlatego ważne jest, aby przy wymianie styczników zawsze kierować się ich specyfikacjami technicznymi, które powinny być zgodne z wymaganiami dokumentacji projektowej oraz normami branżowymi, takimi jak IEC 60947.

Pytanie 21

Prędkość obrotowa silnika w układzie przedstawionym na schemacie regulowana jest przez zmianę wartości

Ilustracja do pytania
A. rezystancji obwodu twornika.
B. prądu wzbudzenia.
C. częstotliwości napięcia zasilania.
D. napięcia twornika.
Wybór prądu wzbudzenia jako metody regulacji prędkości obrotowej silnika może prowadzić do nieporozumień, ponieważ w rzeczywistości przystosowanie prądu wzbudzenia wpływa na siłę elektromotoryczną (SEM), a nie bezpośrednio na prędkość obrotową. Mimo że zwiększenie prądu wzbudzenia w silniku prądu stałego może w pewnym stopniu zwiększyć moment obrotowy, to nie jest to efektywna metoda regulacji prędkości. Podobnie, zmiana częstotliwości napięcia zasilania jest właściwa dla silników prądu zmiennego, a nie dla silników prądu stałego, gdzie kluczowym parametrem jest napięcie przyłożone do twornika. Rezystancja obwodu twornika także nie jest metodą regulacji prędkości, lecz wpływa na straty mocy oraz wydajność silnika. Często występuje błędne przekonanie, że można regulować prędkość bezpośrednio przez te parametry, co prowadzi do nieefektywności operacyjnych i nieoptymalnych wyników w praktyce. W kontekście zastosowań przemysłowych, wybór niewłaściwej metody regulacji może skutkować nadmiernym zużyciem energii, a także uszkodzeniami silnika, co jest niezgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 22

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 4 i 8
B. 1 i 7
C. 7 i 8
D. 1 i 4
Odpowiedź 7 i 8 jest prawidłowa, ponieważ zgodnie z przedstawionymi schematami w instrukcji fabrycznej, te wyprowadzenia czujnika kontroli i zaniku faz są zaprojektowane do szeregowego połączenia z cewką stycznika. W praktyce oznacza to, że czujnik monitoruje obecność wszystkich faz w układzie. W przypadku zaniku jednej z faz, obwód jest otwierany, co skutkuje deaktywacją cewki stycznika i wyłączeniem silnika. Takie rozwiązanie jest zgodne z najlepszymi praktykami w zakresie automatyki przemysłowej, gdzie ochrona silników przed pracą w warunkach braku fazy jest kluczowa dla ich żywotności i bezpieczeństwa operacyjnego. Zastosowanie czujników zaniku faz w układach zasilania nie tylko zabezpiecza urządzenia przed uszkodzeniami, ale również zwiększa efektywność operacyjną całego systemu, zapewniając ciągłość pracy. Warto zaznaczyć, że zgodność z normami bezpieczeństwa, takimi jak IEC 60204-1, staje się niezbędna w projektowaniu takich układów, aby spełniały one wymogi dotyczące bezpieczeństwa i niezawodności.

Pytanie 23

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. przewodów przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed zwarciami
C. silników przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami
Przy wyborze wkładki topikowej bezpiecznika ważne jest zrozumienie ich specyfikacji oraz przeznaczenia. Odpowiedzi sugerujące, że wkładka gL zabezpiecza silniki przed przeciążeniem i zwarciami, są mylące, ponieważ silniki wymagają specjalnych wkładek, które mogą radzić sobie z chwilowymi prądami rozruchowymi. Odpowiedzi dotyczące zabezpieczenia urządzeń półprzewodnikowych również są nietrafne. Urządzenia te wymagają wkładek o specyficznych charakterystykach, takich jak gG, które są lepiej dostosowane do ochrony przed impulsywnymi prądami zwarciowymi typowymi dla takich urządzeń. W przypadku przewodów wkładki gL oferują niezawodne zabezpieczenie, jednak proponowanie ich użycia w kontekście silników czy półprzewodników dowodzi braku zrozumienia różnorodności typów bezpieczników oraz ich specyficznych zastosowań. Niezrozumienie tych różnic może prowadzić do zastosowania niewłaściwych zabezpieczeń, co z kolei może skutkować poważnymi uszkodzeniami instalacji elektrycznej oraz zagrażać bezpieczeństwu użytkowników. W przemyśle i instalacjach elektrycznych ważne jest stosowanie odpowiednich elementów zabezpieczających zgodnie z zaleceniami producentów oraz normami, co w praktyce oznacza właściwy dobór bezpieczników do specyfiki chronionych obwodów.

Pytanie 24

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Wirnik silnika komutatorowego.
B. Stojan silnika pierścieniowego.
C. Wirnik silnika pierścieniowego.
D. Stojan silnika komutatorowego.
Poprawna odpowiedź to wirnik silnika pierścieniowego, co wynika z analizy przedstawionych ilustracji oraz schematów. Wirnik ten charakteryzuje się pierścieniami ślizgowymi, które są kluczowym elementem jego konstrukcji, umożliwiającym efektywne przechodzenie prądu do uzwojeń wirnika. W silnikach pierścieniowych prąd jest dostarczany do wirnika przez szczotki stykające się z pierścieniami, co pozwala na regulację obrotów silnika, a także na jego rozruch. W praktyce, wirniki silników pierścieniowych są szeroko stosowane w aplikacjach wymagających dużej mocy i momentu obrotowego, takich jak wciągniki, przemysłowe maszyny oraz w pojazdach elektrycznych. Zrozumienie tego elementu jest istotne, ponieważ jego właściwe działanie ma kluczowy wpływ na ogólną wydajność silnika. W branży istnieją standardy dotyczące projektowania i testowania wirników, które zapewniają ich niezawodność i skuteczność w długotrwałej eksploatacji.

Pytanie 25

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Weryfikacja stanu szczelin komutatora
B. Pomiar oporu izolacji
C. Kontrola braku zwarć międzyzwojowych
D. Wyważenie
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 26

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD
A. B.
B. C.
C. A.
D. D.
Odpowiedź D jest prawidłowa, ponieważ zestaw przyrządów składający się z amperomierza i woltomierza jest wystarczający do pomiaru mocy czynnej silnika elektrycznego zasilanego z instalacji jednofazowej. W obwodach jednofazowych moc czynna obliczana jest na podstawie wzoru P = U * I * cos(φ), gdzie U to napięcie, I to natężenie prądu, a cos(φ) to współczynnik mocy. Amperomierz umożliwia pomiar natężenia prądu, natomiast woltomierz pozwala na pomiar napięcia. Znajomość wartości obu tych parametrów pozwala na obliczenie mocy czynnej silnika. Przykładowo, jeśli zmierzymy napięcie w obwodzie jako 230 V i natężenie prądu jako 10 A, a współczynnik mocy ustalimy na 0,8, moc czynna wyniesie P = 230 * 10 * 0,8 = 1840 W. Taka metoda jest zgodna z praktykami stosowanymi w elektrotechnice i jest szeroko akceptowana w branży.

Pytanie 27

Którego silnika elektrycznego dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Szeregowego prądu stałego.
B. Synchronicznego.
C. Synchronizowanego.
D. Bocznikowego prądu stałego.
Odpowiedzi, które wybrałeś, wskazują na pewne nieporozumienia dotyczące klasyfikacji silników elektrycznych. Silnik synchroniczny oraz synchronizowany to typy silników prądu przemiennego, które działają na zasadzie synchronizacji prędkości obrotowej wirnika z częstotliwością prądu zasilającego. Te silniki są często używane w aplikacjach, gdzie wymagana jest stała prędkość obrotowa, jednak nie mają one zastosowania w kontekście schematu, który pokazuje silnik prądu stałego. Silnik bocznikowy prądu stałego, z kolei, charakteryzuje się połączeniem równoległym uzwojenia wzbudzenia, co wpływa na zachowanie momentu obrotowego przy różnych prędkościach. Wybór jednego z tych typów silników do analizy schematu może prowadzić do błędnych wniosków, ponieważ ich zasady działania oraz zastosowania są odmienne od silnika szeregowego. Należy zwrócić uwagę na to, że nieprawidłowe identyfikowanie silników może prowadzić do wyboru niewłaściwych rozwiązań technologicznych w praktyce, co w konsekwencji może skutkować awariami lub zmniejszoną efektywnością systemów, w których są one wykorzystywane. Zrozumienie różnic pomiędzy tymi typami silników oraz ich właściwościami jest kluczowe dla skutecznego projektowania i eksploatacji urządzeń elektrycznych.

Pytanie 28

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik indukcyjny jednofazowy
B. Silnik krokowy
C. Silnik synchroniczny trójfazowy
D. Silnik liniowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 29

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie zasilany prądem w przeciwnym kierunku
B. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
C. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
D. Silnik będzie funkcjonować w trybie jałowym
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 30

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. omomierzem
B. amperomierzem
C. watomierzem
D. woltomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 31

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. jest uszkodzone.
B. izolacja jest uszkodzona.
C. występuje zwarcie między zwojami.
D. działa prawidłowo.
Stwierdzenia sugerujące, że uzwojenie silnika jest sprawne, posiada zwarcie międzyzwojowe lub ma uszkodzoną izolację, są błędne i mogą prowadzić do poważnych konsekwencji w diagnostyce i eksploatacji silników elektrycznych. Uzwojenie, które jest sprawne, charakteryzuje się rezystancją w normatywnym zakresie, co zazwyczaj oscyluje wokół wartości określonej przez producenta, a jego pomiar powinien wykazywać konkretne, mierzalne wartości. W przypadku zwarcia międzyzwojowego, pomiar rezystancji nie wykazywałby nieskończoności, lecz niższą wartość, co świadczyłoby o problemie w strukturze uzwojenia. Tego rodzaju uszkodzenia są często skutkiem przegrzania lub niewłaściwej eksploatacji, a ich objawami są zniekształcenia w pracy silnika, takie jak wzrost poboru prądu czy zmniejszenie momentu obrotowego. Uszkodzenie izolacji również nie prowadziłoby do nieskończonej rezystancji; zamiast tego mogłoby objawiać się jako spadek rezystancji, co skutkowałoby ryzykiem zwarcia do ziemi. Ponadto, ignoracja przerwanego uzwojenia może prowadzić do poważnych uszkodzeń silnika lub rozległych awarii systemu, co jest niezgodne z dobrymi praktykami w zakresie utrzymania ruchu, które zalecają bieżącą kontrolę i natychmiastowe reagowanie na wszelkie nieprawidłowości w działaniu urządzeń elektrycznych.

Pytanie 32

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. SM 25-40
B. Ex9BP-N 4P C10
C. Z-MS-16/3
D. FRCdM-63/4/03
Pozostałe oznaczenia, takie jak SM 25-40, Ex9BP-N 4P C10 oraz FRCdM-63/4/03, nie odnoszą się do wyłączników silnikowych, co może prowadzić do nieporozumień w zakresie ich funkcji i zastosowania. Oznaczenie SM 25-40 zazwyczaj odnosi się do styczników, które służą do załączania i wyłączania obwodów elektrycznych, ale nie mają funkcji ochrony silnika przed przeciążeniem lub zwarciem. Styki w takich urządzeniach są zaprojektowane do pracy w określonych warunkach, lecz nie zrealizują funkcji zabezpieczenia, jaką oferuje wyłącznik silnikowy. Z kolei Ex9BP-N 4P C10 to oznaczenie wyłącznika automatycznego, który może być używany w obwodach elektrycznych, ale nie są one dedykowane do ochrony silników. Zastosowanie tego typu wyłącznika do zabezpieczenia silników może prowadzić do niewłaściwego działania i potencjalnych uszkodzeń. Natomiast oznaczenie FRCdM-63/4/03 wskazuje na urządzenie, które najprawdopodobniej jest wyłącznikiem różnicowoprądowym, stosowanym głównie do ochrony przed porażeniem prądem elektrycznym, a nie przed przeciążeniem silników. Tego typu wyłączniki mają zupełnie inne zastosowanie i nie spełniają wymogów ochrony silników. Właściwe rozróżnienie pomiędzy tymi urządzeniami jest kluczowe w kontekście bezpieczeństwa oraz efektywności pracy instalacji elektrycznych. Użytkownicy powinni być świadomi, że niewłaściwe dobranie urządzenia ochronnego może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i wydajności systemów elektrycznych.

Pytanie 33

Na rysunku przedstawiono wynik uzyskany podczas pomiaru rezystancji izolacji silnika indukcyjnego między zaciskami W2 i PE tabliczki silnikowej. Uzyskany wynik świadczy o

Ilustracja do pytania
A. dobrym stanie izolacji uzwojenia W1 – W2.
B. zbyt małej wartości rezystancji izolacji uzwojenia W1 – W2.
C. zbyt dużej wartości rezystancji izolacji uzwojenia W1 – W2.
D. zwarciu uzwojenia z obudową silnika.
Wybierając odpowiedzi, które sugerują zbyt dużą wartość rezystancji izolacji W1 – W2, zwarcie uzwojenia z obudową silnika lub zbyt małą wartość rezystancji, można wpaść w szereg błędnych wniosków. Każda z tych odpowiedzi nie uwzględnia kluczowych aspektów dotyczących analizy wyników pomiaru rezystancji izolacji. Zbyt duża wartość rezystancji nie jest problematyczna, a wręcz przeciwnie - wskazuje na dobrą izolację. Twierdzenie o zwarciu uzwojenia z obudową jest również mylne, ponieważ pomiar wykazał bardzo wysoką rezystancję, co jasno świadczy o braku takiego zwarcia. Z kolei niska wartość rezystancji izolacji zazwyczaj sugeruje problemy z izolacją, takie jak uszkodzenia mechaniczne lub degradacja materiału, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia silnika czy zagrożenie dla bezpieczeństwa użytkowników. Należy pamiętać, że interpretacja wyników pomiaru rezystancji izolacji wymaga zrozumienia zasad działania silników oraz praktyk inżynieryjnych związanych z bezpieczeństwem elektrycznym. Właściwa analiza danych pomiarowych jest kluczowa do prawidłowej oceny stanu technicznego urządzeń elektrycznych oraz podejmowania odpowiednich działań prewencyjnych.

Pytanie 34

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Synchronicznej.
B. Komutatorowej prądu przemiennego.
C. Indukcyjnej klatkowej.
D. Indukcyjnej pierścieniowej.
Maszyna wirująca przedstawiona na ilustracji to maszyna synchroniczna, której główną cechą charakterystyczną jest zsynchronizowanie prędkości obrotowej wirnika z częstotliwością prądu zasilającego. W przypadku maszyn synchronicznych wirnik posiada bieguny magnetyczne, co można zauważyć na ilustracji, gdzie oznaczone są bieguny S i N. Uzwojenie stojana, rozmieszczone wokół wirnika, generuje pole magnetyczne, które synchronizuje się z polem wirnika. Praktycznym zastosowaniem maszyn synchronicznych są elektrownie, gdzie wykorzystywane są jako generatory prądu. Dzięki swojej stabilności i efektywności, maszyny te są również stosowane w napędach elektrycznych, w aplikacjach wymagających precyzyjnej kontroli prędkości i momentu obrotowego, takich jak w systemach automatyki przemysłowej. Warto również zauważyć, że w porównaniu do innych rodzajów maszyn, maszyny synchroniczne oferują wyższą efektywność energetyczną i mniejsze straty, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 35

Którego aparatu należy użyć w celu zastąpienia bezpieczników topikowych w modernizowanej instalacji w obwodzie zasilającym silnik trójfazowy?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Aparat zabezpieczający oznaczony jako "A" jest najodpowiedniejszym rozwiązaniem do zastąpienia bezpieczników topikowych w nowoczesnych instalacjach zasilających silniki trójfazowe. Posiada on trzy wejścia i wyjścia, co jest kluczowe dla prawidłowego zasilania silnika trójfazowego, gdzie każda faza wymaga oddzielnego obwodu. Oznaczenie "C16" wskazuje na charakterystykę wyzwalania, co oznacza, że aparat ten zadziała w odpowiednim czasie w przypadku przeciążenia, a także przy zwarciach, chroniąc w ten sposób silnik przed uszkodzeniem. W przypadku silników trójfazowych, zgodnie z normami IEC 60947-4-1, ważne jest, aby zabezpieczenia były dobrane odpowiednio do prądu znamionowego silnika oraz jego charakterystyki pracy. Należy również pamiętać, że stosowanie nowoczesnych aparatów zabezpieczających, takich jak wyłączniki automatyczne, zapewnia większą niezawodność oraz łatwość w obsłudze w porównaniu do tradycyjnych bezpieczników topikowych, które wymagają wymiany po zadziałaniu. Profesjonalne podejście do doboru zabezpieczeń jest kluczowe dla efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 36

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 5-10 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 37

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
B. Generują napięcie remanentu
C. Obniżają rezystancję obwodu twornika
D. Usuwają niekorzystne efekty wynikające z działania twornika
Uzwojenia pomocnicze w silniku prądu stałego to naprawdę ważny temat, bo mają spory wpływ na to, jak ten silnik działa. Kiedy silnik jest w ruchu, to nieuniknione są pewne zjawiska, jak efekt rozbiegowy czy spadek momentu obrotowego. Uzwojenia pomocnicze, poprzez swoje połączenia, pomagają w stabilizacji tego momentu obrotowego i wpływają na ogólną wydajność silnika. W praktyce widać to na przykład w elektromagnesach czy w napędach maszyn przemysłowych, gdzie te uzwojenia zwiększają stabilność pracy silnika. Co więcej, ich zastosowanie pomaga w poprawie charakterystyk silnika, gdy obciążenie się zmienia, co jest naprawdę istotne w inżynierii elektrycznej. Warto też zwrócić uwagę na to, że dobrze zaprojektowane uzwojenia pomocnicze mogą zmniejszyć wahania prądu i wydłużyć żywotność silnika. Zgodność z normami IEC i IEEE przy ich implementacji jest kluczowa, żeby silnik działał na optymalnym poziomie i był niezawodny przez długi czas.

Pytanie 38

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. W odstępach czasu kolejno: K1M, K42M, K41M
B. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
C. W odstępach czasu kolejno: K41M, K42M, K1M
D. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
Wybór innej odpowiedzi, która sugeruje inną kolejność włączania styczników w układzie, zawiera poważne błędy koncepcyjne, które mogą prowadzić do nieprawidłowego działania silnika i potencjalnego uszkodzenia systemu. Na przykład, jeżeli stycznik K1M zostanie włączony jako pierwszy, a K41M nie zostanie aktywowany, silnik zacznie pracować w pełnym obciążeniu bez wcześniejszego zmniejszenia prądu rozruchowego. Taki proces może prowadzić do nadmiernego prądu, co z kolei zwiększa ryzyko przegrzania i uszkodzenia uzwojeń silnika. Włączenie stycznika K42M przed K41M nie tylko nie jest zgodne z zasadami bezpieczeństwa, ale także może prowadzić do nieprawidłowego działania silnika w trybie gwiazdy, co neguje jego zalety. W kontekście dobrych praktyk, stosowanie się do ustalonej sekwencji włączania styczników jest kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy układów elektrycznych. Niewłaściwe podejście do rozruchu silnika może skutkować poważnymi konsekwencjami finansowymi i operacyjnymi, dlatego tak ważne jest przestrzeganie ustalonych procedur, które opierają się na zasadzie minimalizacji ryzyka i maksymalizacji efektywności działania całego układu.

Pytanie 39

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 450W
B. 350W
C. 800W
D. 1150W
Wybór odpowiedzi 350W, 800W lub 1150W może wynikać z błędnych założeń dotyczących interpretacji wskazań watomierzy. Pierwsza z tych wartości, 350W, odpowiada jedynie odczytowi watomierza W1 po zamianie zacisków, co nie odzwierciedla rzeczywistego całkowitego poboru energii przez odbiornik. Ignorowanie wskazań W2, które są kluczowe dla pełnej analizy mocy, prowadzi do niekompletnego obrazu sytuacji. Kolejna wartość – 800W, będąca wskazaniem watomierza W2, również jest myląca, ponieważ wskazuje na moc dostarczoną przez źródło, a nie na moc pobraną przez odbiornik. Ostatnia opcja, 1150W, jest sumą mocy wskazywanych przez oba watomierze bez uwzględniania ich charakterystyki, co prowadzi do fałszywego wniosku, że całkowita moc pobierana przez odbiornik wynosi tyle, ile suma odczytów, co jest błędne. W praktyce, przy pomiarach energii elektrycznej, konieczne jest rozumienie zasadów działania watomierzy, gdzie pomiar może wskazywać moc ujemną w przypadku niewłaściwego podłączenia. Ważne jest, aby zrozumieć, że moc dostarczana przez źródło i moc pobierana przez odbiorniki muszą być traktowane w kontekście całego układu, co pozwala na dokładne obliczenia i unikanie nieporozumień w analizie mocy w systemach elektrycznych.

Pytanie 40

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Przerwa na zaciskach odbiornika Z2 lub Z3.
B. Przerwa w przewodzie neutralnym.
C. Zwarcie pomiędzy dwoma przewodami fazowymi.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.