Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 12:39
  • Data zakończenia: 9 grudnia 2025 13:02

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. PE
B. PEN
C. FE
D. FB
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 2

Który z poniższych jest podstawowym elementem ochrony przeciwporażeniowej w instalacjach elektrycznych?

A. Wyłącznik nadprądowy
B. Przekaźnik czasowy
C. Wyłącznik różnicowoprądowy
D. Bezpiecznik topikowy
Wyłącznik różnicowoprądowy jest kluczowym komponentem systemu ochrony przeciwporażeniowej w instalacjach elektrycznych. Jego główną funkcją jest wykrywanie prądów upływowych, które mogą świadczyć o uszkodzeniu izolacji lub innym zagrożeniu dla bezpieczeństwa użytkowników. Gdy wyłącznik różnicowoprądowy wykryje prąd upływowy przekraczający określoną wartość, zazwyczaj 30 mA, natychmiast odłącza zasilanie, co skutecznie zapobiega porażeniu prądem elektrycznym. Jest to szczególnie ważne w miejscach, gdzie użytkownicy mogą mieć kontakt z wodą, np. w łazienkach czy kuchniach. Wyłączniki różnicowoprądowe są zgodne z normami międzynarodowymi, takimi jak IEC 61008 i IEC 61009, oraz stanowią część standardowych wymagań instalacyjnych w wielu krajach. Ich zastosowanie w praktyce pozwala na zwiększenie bezpieczeństwa eksploatacji instalacji elektrycznych, dlatego są one nieodzownym elementem każdej nowoczesnej instalacji. Poprawna instalacja i regularne testowanie wyłączników różnicowoprądowych są kluczowe dla skutecznej ochrony użytkowników przed skutkami porażenia prądem elektrycznym.

Pytanie 3

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
B. Kontrola zabezpieczeń i stanu osłon części wirujących
C. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
D. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 4

Przewód zastosowany na odcinku obwodu elektrycznego wskazanym strzałką powinien mieć żyły o izolacjach w kolorze

Ilustracja do pytania
A. żółtozielonym, niebieskim i czarnym lub brązowym.
B. tylko czarnym lub brązowym.
C. żółtozielonym i czarnym lub brązowym.
D. niebieskim i czarnym lub brązowym.
Odpowiedź "tylko czarnym lub brązowym" jest prawidłowa, ponieważ zgodnie z normami PN-IEC 60446 dotyczącymi kolorystyki izolacji przewodów elektrycznych, przewody fazowe powinny być oznaczone kolorami czarnym, brązowym lub szarym. W kontekście obwodów elektrycznych, przewody fazowe są tymi, które przenoszą prąd do urządzeń, dlatego ich identyfikacja jest kluczowa dla bezpieczeństwa i prawidłowego działania instalacji. W praktyce, stosowanie przewodów o odpowiednich kolorach izolacji jest wymogiem, który ma na celu zapobieganie pomyłkom podczas instalacji oraz serwisowania systemów elektrycznych. Na przykład, gdy elektryk pracuje nad naprawą lub modernizacją instalacji, znajomość kolorów przewodów fazowych pozwala na szybkie i bezbłędne zidentyfikowanie, które przewody są pod napięciem, co minimalizuje ryzyko porażenia prądem. Dlatego też, wybierając przewody do instalacji, zawsze należy kierować się zasadami określonymi w normach, aby zapewnić bezpieczeństwo i zgodność z przepisami.

Pytanie 5

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 2,3 Ω
C. 3,8 Ω
D. 6,6 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 6

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
C. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
D. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 7

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Natychmiastowe odłączenie zasilania i wymiana przewodu.
B. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
C. Kontynuowanie użytkowania do czasu planowanej konserwacji.
D. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 8

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Zabezpieczenie silnika powinno być otwarte.
B. Przewód ochronny powinien być odłączony.
C. Wyłącznik główny powinien być zamknięty.
D. Zabezpieczenie główne powinno być zamknięte.
Kiedy mierzysz rezystancję izolacji w instalacji elektrycznej, na pewno ważne jest, żeby wszystko, co może wpłynąć na wynik, było odłączone. Przy silnikach elektrycznych, jeżeli ich zabezpieczenie jest zamknięte, to ich wewnętrzna rezystancja może podać ci błędne informacje o stanie izolacji. Dlatego warto, żeby zabezpieczenie silnika było otwarte. Moim zdaniem, aby uzyskać naprawdę rzetelne wyniki pomiarów, trzeba trzymać się norm, takich jak PN-EN 61557, które mówią, jak to wszystko powinno wyglądać. Dobre przygotowanie do pomiaru, z wymienionymi urządzeniami, daje pewność, że wynik pokaże prawdziwą rezystancję izolacji. A to jest przecież kluczem do bezpiecznej i niezawodnej instalacji elektrycznej.

Pytanie 9

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Przeciążenie jednej z faz.
B. Zawilgocenie izolacji jednej z faz.
C. Zwarcie międzyfazowe.
D. Jednofazowe zwarcie doziemne.
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 10

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
B. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
C. Maksymalny prąd zwarciowy
D. Najwyższy czas zadziałania
Kod literowo-cyfrowy C10 umieszczony na wyłączniku nadmiarowo-prądowym odnosi się do charakterystyki czasowo-prądowej oraz prądu znamionowego wyłącznika. W przypadku 'C' oznacza to, że wyłącznik jest przeznaczony do ochrony urządzeń, które mogą mieć duże prądy rozruchowe, jak silniki elektryczne. Liczba '10' wskazuje, że prąd znamionowy wynosi 10 A. Tego rodzaju wyłączniki są powszechnie stosowane w instalacjach elektrycznych, gdzie konieczne jest zabezpieczenie przed przeciążeniem oraz zwarciami, a jednocześnie umożliwienie chwilowego przepływu większego prądu, co jest istotne w przypadku urządzeń indukcyjnych. Dobrze dobrany wyłącznik nadmiarowo-prądowy chroni instalację przed uszkodzeniami, a także zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że wybór odpowiedniego wyłącznika powinien być zgodny z normami PN-EN 60898, które regulują wymagania i metody badań związanych z wyłącznikami nadmiarowo-prądowymi.

Pytanie 11

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Synchronicznych.
B. Uniwersalnych.
C. Asynchronicznych klatkowych.
D. Asynchronicznych pierścieniowych.
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 12

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 13

Na którym schemacie przedstawiono prawidłowy sposób połączenia rozdzielnicy mieszkaniowej z wewnętrzną linią zasilającą?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź D jest faktycznie na miejscu. Pokazuje, jak powinno się podłączać przewody w rozdzielnicy, co jest naprawdę ważne z perspektywy bezpieczeństwa w instalacjach elektrycznych. Przewód neutralny (N) i ochronny (PE) są dobrze połączone, co jest kluczowe dla ochrony użytkowników. Dzięki temu zabezpieczenia nadmiarowoprądowe działają jak należy, więc w razie awarii odcinają prąd, a to chroni całą instalację przed uszkodzeniem. Dodatkowo, umiejscowienie licznika energii elektrycznej (kWh) przed zabezpieczeniem to zgodne z zasadami podejście, które ułatwia kontrolowanie zużycia energii. Właściwe materiały i przestrzeganie norm, takich jak PN-IEC 60364, to podstawa. Z mojego doświadczenia, dobre podłączenie w rozdzielnicy wpływa na całą instalację, co przekłada się na jej niezawodność i bezpieczeństwo.

Pytanie 14

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Synchroniczną jawnobiegunową.
B. Indukcyjną klatkową.
C. Komutatorową prądu przemiennego.
D. Synchroniczną z biegunami utajonymi.
Maszyna przedstawiona na rysunku to synchroniczna maszyna jawnobiegunowa, co można zauważyć dzięki wyraźnym biegunom magnetycznym oznaczonym jako S i N. W takich maszynach, w przeciwieństwie do maszyn z biegunami utajonymi, bieguny są wyraźnie widoczne na wirniku. W kontekście zastosowań, maszyny synchroniczne jawnobiegunowe są powszechnie wykorzystywane w energetyce, na przykład w generatorach prądu przemiennego w elektrowniach. Ich główną zaletą jest możliwość utrzymania stałej prędkości obrotowej niezależnie od obciążenia, co czyni je idealnymi do zastosowań wymagających wysokiej stabilności. Dodatkowo, maszyny te cechują się wysoką sprawnością i zdolnością do pracy w szerokim zakresie prędkości, co sprawia, że są wykorzystywane w aplikacjach takich jak napędy elektryczne w transporcie czy w przemyśle. Wiedza na temat maszyn synchronicznych jawnobiegunowych jest kluczowa dla inżynierów zajmujących się projektowaniem systemów energetycznych, ponieważ ich zrozumienie pozwala na efektywne wykorzystanie takich maszyn w różnych konfiguracjach sieciowych.

Pytanie 15

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
C. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
To, co napisałeś, jest trochę nie tak. Wybór złej sekwencji działań przed pomiarem rezystancji izolacji może prowadzić do różnych kłopotów, zarówno z bezpieczeństwem, jak i z jakością wyników. Na przykład, jeśli nie wymontujesz źródeł światła i nie wyłączysz jednofazowych odbiorników, to narażasz się na ryzyko porażenia prądem. Włączenie ich przed testem może dać złe wyniki i stwarza niebezpieczeństwo dla osoby przeprowadzającej pomiar. To jest sprzeczne z zasadą, że trzeba upewnić się, że wszystko jest odcięte od prądu. Dobrze jest pamiętać, że podłączanie urządzeń bez wcześniejszego ich rozłączenia może wprowadzić niechciane napięcia do obwodu, co grozi uszkodzeniem sprzętu pomiarowego i może wprowadzić zamieszanie w diagnozowaniu stanu izolacji. Często takie pomyłki wynikają z braku wiedzy o odpowiednich zasadach bezpieczeństwa oraz testów elektrycznych, co może prowadzić do błędów w pomiarach, a nawet do zagrożenia dla zdrowia i życia. Dlatego ważne jest, żeby zawsze trzymać się ustalonych norm i dobrych praktyk przed przystąpieniem do jakichkolwiek prac związanych z instalacją elektryczną.

Pytanie 16

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
B. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
C. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
D. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
No, wybrałeś dobrą odpowiedź! Do montażu oprawy oświetleniowej potrzebujesz paru specjalnych narzędzi. Wiertarka jest mega ważna, bo to ona pozwala nawiercić otwory w ścianie, żeby wsadzić dyble. Klucz nasadowy przyda się do wkręcania śrub, a to ważne, żeby oprawa była stabilna. Wkrętak płaski może być użyty do drobnych poprawek, żeby wszystko ładnie pasowało. Nóż monterski z kolei dobrze posłuży do przygotowania przewodów, a ściągacz izolacji to konieczność, by pozbyć się izolacji z końców, bo musimy je dobrze podłączyć. Jak znasz te narzędzia i wiesz, do czego służą, to już jesteś na dobrej drodze w elektrotechnice, a to zwiększa bezpieczeństwo i jakość naszej pracy.

Pytanie 17

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Odpowiedź D jest prawidłowa, ponieważ symbol graficzny przedstawiony przy tej opcji to standardowy symbol miernika analogowego, powszechnie używanego do pomiaru napięć stałych. Mierniki te są kluczowym narzędziem w elektrotechnice, umożliwiającym dokładne pomiary w obwodach elektrycznych. W praktyce, miernik analogowy potrafi zmierzyć napięcie stałe w różnych aplikacjach, takich jak diagnostyka układów zasilających oraz pomiar parametrów akumulatorów. Warto zaznaczyć, że korzystanie z miernika analogowego wymaga umiejętności odczytu wskazań wskazówki na skali, co może być mniej intuicyjne niż w przypadku nowoczesnych multimetra cyfrowego. Jednakże, w pewnych aplikacjach, analogowy miernik może zapewnić lepszą wizualizację zmian napięcia w czasie. Dlatego znajomość tego symbolu i umiejętność korzystania z takiego sprzętu jest fundamentalna dla każdego technika elektryka.

Pytanie 18

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź "C" jest uzasadniona, ponieważ oprawa oświetleniowa zaprezentowana na zdjęciu charakteryzuje się szczelną konstrukcją, co jest kluczowe w pomieszczeniach o zwiększonej wilgotności, takich jak piwnice. Zgodnie z normami, takimi jak PN-EN 60529, oprawy przeznaczone do użytku w warunkach wilgotnych powinny posiadać odpowiedni stopień ochrony IP, który zapewnia ochronę przed wnikaniem wody oraz pyłu. Dla piwnic zwykle zaleca się oprawy z stopniem IP65 lub wyższym, co oznacza, że są one całkowicie chronione przed kurzem i zabezpieczone przed strumieniem wody. Zastosowanie odpowiedniej oprawy oświetleniowej w takich miejscach nie tylko zapewnia bezpieczeństwo użytkowników, ale również przedłuża żywotność urządzenia, minimalizując ryzyko uszkodzenia spowodowanego wilgocią. Przykładem mogą być oprawy LED dostosowane do warunków zewnętrznych, które często spełniają te wymagania, oferując równocześnie efektywność energetyczną.

Pytanie 19

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 0,5
B. 5
C. 1
D. 0,1
Odpowiedź 0,1 jest poprawna, ponieważ w kontekście narzędzi pomiarowych oznacza najwyższą klasę dokładności. Klasa dokładności narzędzia pomiarowego wskazuje, jak blisko pomiar może być rzeczywistej wartości mierzonych wielkości. W przypadku narzędzi pomiarowych, im mniejsza wartość podana w jednostce, tym wyższa ich dokładność. W praktyce, narzędzia o dokładności 0,1 stosowane są w sytuacjach wymagających precyzyjnych pomiarów, takich jak laboratoria badawcze, przemysł precyzyjny czy metrologia. Na przykład, w pomiarach długości, takie narzędzia mogą być wykorzystywane do pomiarów w konstrukcji maszyn, gdzie minimalne odchylenie może prowadzić do dużych błędów w finalnym produkcie. Klasyfikacja narzędzi pomiarowych opiera się na standardach ISO, które definiują wymagania dotyczące dokładności i precyzji pomiarów. W praktyce, wybór narzędzia pomiarowego powinien być dostosowany do specyfikacji zadania, aby zapewnić optymalne wyniki pomiarów.

Pytanie 20

Rysunek przedstawia oprawę oświetlenia

Ilustracja do pytania
A. pośredniego - klasy V
B. przeważnie pośredniego - klasy IV
C. przeważnie bezpośredniego - klasy II
D. bezpośredniego - klasy I
Oprawa oświetleniowa przedstawiona na rysunku charakteryzuje się osłoną nieprzezroczystą, co ma kluczowe znaczenie dla klasyfikacji jej rodzaju. Oprawy pośrednie, do których ta należy, emitują światło w sposób rozproszony, co oznacza, że kierują je w dół, ale także odbijają od powierzchni, na które padają. Taki system oświetlenia jest szczególnie efektywny w przestrzeniach biurowych oraz handlowych, gdzie ważne jest równomierne oświetlenie, a nie bezpośrednie źródło światła, które mogłoby powodować olśnienie. W kontekście standardów oświetleniowych, oprawy pośrednie są zalecane w przypadku przestrzeni wymagających komfortu wizualnego, ponieważ minimalizują kontrast między oświetleniem a otoczeniem. Dodatkowo, zgodnie z normami EN 12464, oprawy klasy V zapewniają odpowiednią jakość światła, co jest kluczowe dla pracy i bezpieczeństwa użytkowników. Warto również wspomnieć o zastosowaniach dekoracyjnych takich opraw, które mogą wpływać na estetykę wnętrz, przyczyniając się do stworzenia przyjemnej atmosfery w przestrzeniach publicznych.

Pytanie 21

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. cewkę przekaźnika z opóźnionym działaniem.
B. wyzwalanie cieplne.
C. cewkę przekaźnika z opóźnionym odpadaniem.
D. wyzwalanie elektroniczne.
Zrozumienie symboliki używanej w instalacjach elektrycznych jest kluczowe dla właściwego projektowania i analizy systemów zabezpieczeń. Jednakże, odpowiedzi takie jak wyzwalanie elektroniczne, cewka przekaźnika z opóźnionym działaniem oraz cewka przekaźnika z opóźnionym odpadaniem nie oddają właściwego znaczenia symbolowi przedstawionemu na schemacie. Wyzwalanie elektroniczne odnosi się do mechanizmów, które wykorzystują układy elektroniczne do detekcji przeciążeń i zwarć, a nie do działań opartych na cieple. Oznacza to, że wyzwalanie elektroniczne ma swoje zastosowanie, ale nie jest to rozwiązanie ukierunkowane na zabezpieczenia przed przeciążeniem termicznym. Podobnie, cewki przekaźników z opóźnionym działaniem i odpadaniem dotyczą mechanizmów, które wprowadzają czasowy aspekt do działania przekaźnika, co może być użyteczne w innych kontekstach, jednak nie są one związane z wyzwalaniem cieplnym. W praktyce, wielu inżynierów może popełnić błąd, zakładając, że te mechanizmy są wymienne, co jest mylnym podejściem. Wiedza na temat różnic między tymi rozwiązaniami jest niezbędna dla skutecznego projektowania systemów elektrycznych, które są zarówno bezpieczne, jak i efektywne. Warto zaznaczyć, że każdy z tych typów wyzwalania ma swoje specyficzne zastosowanie i zrozumienie ich różnic jest kluczowe w kontekście ochrony systemów elektrycznych przed różnymi typami awarii.

Pytanie 22

Którym symbolem graficznym oznacza się na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Poprawna odpowiedź to B, ponieważ symbol ten dokładnie odwzorowuje sposób prowadzenia przewodów elektrycznych przedstawiony na zdjęciu. Przewody prowadzone są podtynkowo w rurach instalacyjnych i rozdzielają się w pewnym punkcie na trzy inne przewody. W branży elektrycznej, zgodnie z normami IEC 60617, symbole graficzne mają na celu uproszczenie zrozumienia rozkładu instalacji elektrycznej, a poprawny wybór symbolu B jest kluczowy dla właściwej interpretacji schematów przez techników i inżynierów. Przewody podtynkowe w rurach są standardowym rozwiązaniem w nowoczesnych instalacjach, co zapewnia ochronę mechaniczną oraz estetykę. W praktyce, zastosowanie odpowiednich symboli na planach instalacyjnych ułatwia lokalizację potencjalnych problemów oraz ich przyszłą konserwację. Zrozumienie i poprawne stosowanie symboli jest niezbędne w codziennej pracy każdego elektryka, a ich znajomość wpływa na bezpieczeństwo i efektywność instalacji elektrycznych.

Pytanie 23

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Narzedzie przedstawione na rysunku C. to szczypce do zaciskania końcówek tulejkowych izolowanych, co czyni tę odpowiedź prawidłową. Te szczypce są specjalnie zaprojektowane do precyzyjnego zaciskania końcówek, co zapewnia solidne połączenie elektryczne. W praktyce, zastosowanie takich narzędzi jest kluczowe w instalacjach elektrycznych, gdzie jakość połączeń wpływa na bezpieczeństwo i niezawodność systemów. Szczypce te charakteryzują się odpowiednio wyprofilowanymi końcówkami, które umożliwiają równomierne rozłożenie siły podczas zaciskania, co zapobiega uszkodzeniu izolacji oraz samej końcówki. W standardach branżowych, takich jak IEC 60947, podkreśla się wagę stosowania właściwych narzędzi do obróbki końcówek w celu zapewnienia wysokiej jakości połączeń. Prawidłowo używane szczypce do zaciskania przyczyniają się do długotrwałej eksploatacji instalacji oraz minimalizują ryzyko awarii związanych z słabymi połączeniami elektrycznymi.

Pytanie 24

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Serwis styków oraz połączeń śrubowych
B. Obsługa przełącznika zaczepów
C. Weryfikacja poziomu oleju w olejowskazie konserwatora
D. Czyszczenie izolatorów
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.

Pytanie 25

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Świecznikowy
B. Jednobiegunowy
C. Dwubiegunowy
D. Krzyżowy
Odpowiedź 'Krzyżowy' jest poprawna, ponieważ łącznik krzyżowy jest kluczowym elementem w instalacjach elektrycznych, które wymagają sterowania oświetleniem z wielu miejsc. Umożliwia on połączenie trzech lub więcej punktów sterujących, co znacznie zwiększa elastyczność w zarządzaniu oświetleniem w większych pomieszczeniach lub w korytarzach. Przykładem zastosowania łącznika krzyżowego może być sytuacja, w której światło w długim korytarzu jest kontrolowane zarówno na początku, w środku, jak i na końcu. W połączeniu z łącznikami schodowymi, które umożliwiają sterowanie z dwóch miejsc, łącznik krzyżowy wprowadza dodatkowy poziom kontroli, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. Zgodnie z normami PN-IEC 60669-1, stosowanie łączników krzyżowych jest rekomendowane w celu zapewnienia wygodnego i funkcjonalnego dostępu do systemu oświetlenia, co zwiększa komfort użytkowania oraz efektywność energetyczną.

Pytanie 26

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektrodynamicznym
B. elektromagnetycznym
C. magnetoelektrycznym
D. ferrodynamicznym
Miernik o ustroju magnetoelektrycznym jest szczególnie odpowiedni do pomiaru wielkości elektrycznych o przebiegu stałym, ponieważ jego działanie opiera się na interakcji pola magnetycznego z prądem elektrycznym, co pozwala na dokładne i stabilne odczyty. W urządzeniach tych zastosowane są magnesy trwałe oraz ruchome cewki, co zapewnia wysoką czułość i precyzję pomiaru. Przykładem zastosowania mierników magnetoelektrycznych są laboratoria badawcze oraz instalacje przemysłowe, gdzie wymagane są dokładne pomiary prądu stałego, na przykład podczas testowania elementów elektronicznych. Standardy branżowe, takie jak IEC 61010, podkreślają istotność stosowania odpowiednich technik pomiarowych, co sprawia, że wybór miernika magnetoelektrycznego jest zgodny z dobrymi praktykami w zakresie bezpieczeństwa i dokładności pomiarów. Dodatkowo, mierniki te są często wykorzystywane w sprzęcie pomiarowym, takim jak multimetry, które są niezbędne w codziennej pracy inżynierów i techników w różnych branżach.

Pytanie 27

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 4.
B. Wyłącznik 3.
C. Wyłącznik 1.
D. Wyłącznik 2.
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 28

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony uzupełniającej.
D. Ochrony podstawowej.
Wiesz, te środki ochrony, które były w tabeli, jak urządzenia różnicowoprądowe i połączenia wyrównawcze, to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Ochrona uzupełniająca to coś, co wchodzi w grę, gdy standardowe zabezpieczenia nie są wystarczające. To szczególnie istotne w miejscach, gdzie ryzyko porażenia prądem jest większe, na przykład w łazienkach czy kuchniach. RCD świetnie działa, bo wyłapuje prąd upływu i go eliminuje, co naprawdę ratuje życie. Połączenia wyrównawcze też mają swoje miejsce, szczególnie tam, gdzie jest kilka źródeł zasilania. Dzięki nim zmniejsza się różnica potencjałów, co podnosi bezpieczeństwo użytkowników. Warto też znać normy, takie jak IEC 60364 i PN-EN 61008, bo one mówią, jak budować te instalacje, żeby były bezpieczne. Zrozumienie ochrony uzupełniającej to klucz do tego, żeby każdy, kto projektuje i wykonuje instalacje elektryczne, mógł to robić dobrze.

Pytanie 29

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Obniża rezystancję obwodu twornika
B. Wytwarza pole magnetyczne wzbudzenia
C. Generuje napięcie remanentu
D. Eliminuje niekorzystne zjawiska oddziaływania wirnika
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 30

Który element przedstawionego na rysunku układu zasilania i sterowania silnikiem indukcyjnym steruje przełączeniem układu styczników łączących uzwojenia silnika w gwiazdę i w trójkąt?

Ilustracja do pytania
A. Przycisk sterujący zwrotny NO.
B. Przycisk sterujący zwrotny NC.
C. Przekaźnik czasowy.
D. Wyłącznik silnikowy.
Przekaźnik czasowy pełni kluczową rolę w układzie zasilania i sterowania silnikiem indukcyjnym, umożliwiając płynne przełączanie uzwojeń silnika między połączeniem w gwiazdę a w trójkąt. Dzięki zastosowaniu przekaźnika czasowego, możemy zminimalizować prądy rozruchowe silnika, co jest istotne dla jego długowieczności oraz efektywności energetycznej. W praktyce, przy włączaniu silnika w trybie gwiazdy, uzwojenia są połączone w sposób, który ogranicza prąd rozruchowy, a po ustabilizowaniu się obrotów, przekaźnik czasowy automatycznie przełącza układ na połączenie w trójkąt. Standardy dotyczące automatyki przemysłowej, takie jak normy IEC, zalecają stosowanie przekaźników czasowych w takich aplikacjach, aby zapewnić zgodność z wymogami bezpieczeństwa i efektywności operacyjnej. Właściwe zastosowanie przekaźników czasowych nie tylko zwiększa niezawodność układu, ale także pozwala na lepsze zarządzanie obciążeniem, co jest niezbędne w nowoczesnych systemach zasilania.

Pytanie 31

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aM 20 A
C. aM 16 A
D. gG 20 A
Odpowiedź gG 16 A jest prawidłowa, ponieważ wkładki topikowe oznaczone jako gG są przeznaczone do zabezpieczania obwodów przed przeciążeniami oraz zwarciami, a ich charakterystyka czasowa i prądowa jest dostosowana do zastosowań w instalacjach elektrycznych, takich jak obwody zasilające urządzenia elektryczne, w tym bojlery. W przypadku bojlera o mocy 3 kW oraz napięciu znamionowym 230 V, maksymalny prąd roboczy można obliczyć według wzoru: P = U × I, co daje prąd I równy około 13 A. Wybór wkładki gG 16 A zapewnia odpowiedni margines bezpieczeństwa, umożliwiając prawidłowe działanie urządzenia w warunkach normalnych, jednocześnie chroniąc przed skutkami zwarć. W praktyce wkładki gG są używane w sytuacjach, gdzie mogą wystąpić różne rodzaje przeciążeń, co czyni je bardziej elastycznymi i bezpiecznymi w użyciu. Oprócz tego, przy zastosowaniu wkładki gG 16 A, spełnione są normy dotyczące zabezpieczeń elektrycznych, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami budowlanymi.

Pytanie 32

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
B. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
C. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
D. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.

Pytanie 33

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 10,5 A
B. 11,7 A
C. 12,2 A
D. 11,1 A
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.

Pytanie 34

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Tuleja redukcyjna
B. Podkładka dystansowa
C. Podkładka sprężysta
D. Tuleja kołnierzowa
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 35

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę halogenową.
B. Żarówkę wolframową.
C. Świetlówkę kompaktową.
D. Lampę neonową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 36

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Nóż monterski
B. Szczypce boczne
C. Płaskoszczypce
D. Zagniatarka
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 37

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy B
B. Klasy D
C. Klasy A
D. Klasy C
Odpowiedź wskazująca na klasy C jako odpowiednie do instalacji ograniczników przepięć w rozdzielnicach mieszkaniowych jest prawidłowa z kilku powodów. Klasa C, według normy IEC 61643-11, jest zaprojektowana do ochrony instalacji elektrycznych przed przepięciami o średniej energii, co czyni je idealnym wyborem dla typowych warunków panujących w budynkach mieszkalnych. Ograniczniki klasy C charakteryzują się czasem reakcji na przepięcia, który jest wystarczająco krótki, by zminimalizować ryzyko uszkodzenia sprzętu AGD czy innych urządzeń elektronicznych, a jednocześnie są w stanie radzić sobie z energią przepięć generowanych przez różne źródła, takie jak wyładowania atmosferyczne czy nagłe zmiany w obciążeniu sieci. Dodatkowo, zaleca się, aby ograniczniki klasy C były instalowane równolegle z ogranicznikami klasy B w celu zapewnienia kompleksowej ochrony. Takie podejście nie tylko zwiększa bezpieczeństwo, ale także zgodność z dobrymi praktykami branżowymi i standardami ochrony przeciwprzepięciowej, co jest kluczowe w kontekście wzrastającej liczby urządzeń elektronicznych w gospodarstwach domowych.

Pytanie 38

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 500V
C. 750V
D. 250V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 39

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. przeciążenia obwodu elektrycznego
C. uszkodzenia podłączonego urządzenia elektrycznego
D. zwarcia w obwodzie elektrycznym
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 40

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V DC
B. 200 V DC
C. 500 V AC
D. 200 V AC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.