Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 3 listopada 2025 18:01
  • Data zakończenia: 3 listopada 2025 18:28

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Amperomierza
B. Woltomierza
C. Częstościomierza
D. Waromierza
Amperomierz, woltomierz i częstościomierz to urządzenia pomiarowe, które, choć mają swoje zastosowania, nie są wystarczające do precyzyjnego określenia współczynnika mocy w obwodach prądu sinusoidalnego. Amperomierz mierzy natężenie prądu w obwodzie, co jest ważne, ale samodzielny pomiar nie dostarcza informacji o fazie prądu w stosunku do napięcia. W przypadku pomiaru mocy, kluczowe znaczenie ma określenie nie tylko wartości prądu, ale również jego relacji do napięcia, co nie jest możliwe bez urządzenia mierzącego różnicę fazową, jakim jest waromierz. Woltomierz, z kolei, mierzy napięcie w obwodzie, co także jest istotne, ale jego zastosowanie w obliczeniach mocy wymaga dodatkowego kontekstu fazowego. Częstościomierz mierzy częstotliwość sygnału, co nie ma bezpośredniego wpływu na obliczanie mocy czynnej czy współczynnika mocy. Typowym błędem w myśleniu o pomiarach mocy jest przekonanie, że wystarczy znać wartości prądu i napięcia, aby obliczyć moc, ignorując istotne aspekty związane z fazą sygnałów. Dlatego, aby uzyskać dokładne dane dotyczące współczynnika mocy, konieczne jest użycie waromierza w parze z watomierzem, co pozwala na pełne zrozumienie efektywności energetycznej danego urządzenia elektrycznego.

Pytanie 2

Aby zapewnić ochronę przed porażeniem elektrycznym przy awarii użytkowników silnika elektrycznego klasy ochronności I, jego obudowa w układzie sieci TT powinna być

A. podłączona do przewodu neutralnego
B. połączona z uziomem
C. elektrycznie odizolowana od uziomu za pomocą iskiernika
D. elektrycznie odizolowana od gruntu oraz przewodzącego podłoża
Odpowiedź 'przyłączyć do uziomu' jest prawidłowa, ponieważ w systemie TT, który jest jedną z metod ochrony przeciwporażeniowej, uziemienie urządzenia elektrycznego ma kluczowe znaczenie dla bezpieczeństwa. W przypadku uszkodzenia izolacji silnika elektrycznego I klasy ochronności, potencjalne napięcie na obudowie może wzrosnąć, co stanowi zagrożenie dla użytkowników. Przyłączenie korpusu silnika do uziomu zapewnia, że wszelkie niebezpieczne napięcia zostaną odprowadzone do ziemi, minimalizując ryzyko porażenia. W praktyce, takie rozwiązanie jest zgodne z normami międzynarodowymi, jak np. IEC 60364, które określają zasady instalacji elektrycznych oraz środki ochrony przeciwporażeniowej. Uziemienie także pozwala na szybkie zadziałanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co jest istotne w przypadku awarii. Dodatkowo, instalacje z poprawnie wykonanym uziemieniem mogą przyczynić się do zmniejszenia zakłóceń elektromagnetycznych, co jest istotne w kontekście wydajności urządzeń elektrycznych.

Pytanie 3

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę płynową
B. Gaśnicę proszkową
C. Tłumicę
D. Hydronetkę
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 4

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Tylko po przeprowadzonym remoncie budynku
B. Tylko po wymianie elementów instalacji
C. Nie rzadziej niż co 5 lat
D. Nie rzadziej niż co 10 lat
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 5

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Luzy w łożyskach
C. Przerwa w uzwojeniu twornika
D. Brak obciążenia
Luzy w łożyskach same w sobie nie sprawią, że silnik bocznikowy prądu stałego zacznie się rozbiegać. Owszem, luzy mogą zmniejszyć wydajność i stabilność silnika. Mogą powodować większe tarcie, co prowadzi do przegrzewania, ale to nie kluczowy powód rozbiegania. Brak obciążenia też nie jest głównym problemem, bo nawet bez obciążenia te silniki mogą pracować, tylko kręcą się szybciej, co może prowadzić do uszkodzeń. Przerwa w uzwojeniu twornika nie sprawi, że silnik się rozbiegnie, bo bez prądu w tym uzwojeniu, to ten silnik w ogóle nie wystartuje. Kluczowe w tym wszystkim jest zrozumienie, że rozbieganie się silnika wynika z braku pola magnetycznego i braku stabilizacji prędkości obrotowej. Myślenie, że to przez problemy mechaniczne, to typowy błąd, bo powinno się skupić bardziej na zasadach działania silnika i jego systemie wzbudzenia.

Pytanie 6

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 35 mm2
B. 50 mm2
C. 20 mm2
D. 25 mm2
Wybór innego przekroju przewodu PE niż 25 mm2 może wynikać z nieporozumienia dotyczącego zasad ochrony przeciwporażeniowej. Przekroje 35 mm2, 20 mm2 oraz 50 mm2 są nieadekwatne dla tego przypadku. Przekrój 35 mm2 jest zbyt duży i niezgodny z wymaganiami normatywnymi, które określają minimalne wartości. W przypadku przewodu 20 mm2, jest on poniżej wymaganego minimum, co stwarza ryzyko niedostatecznego zabezpieczenia w razie awarii. Odpowiedź 50 mm2 natomiast, mimo że technicznie spełnia normy, jest zbyt wysoka, co prowadzi do zbędnych kosztów oraz nieoptymalnego doboru materiałów. W praktyce, zbyt duży przekrój może skutkować trudnościami w montażu i nieefektywnym wykorzystaniu przestrzeni instalacyjnej. Ponadto, w przypadku przewodów ochronnych, ich główną funkcją jest przewodzenie prądu zwarciowego do ziemi, co minimalizuje ryzyko porażenia prądem. Dlatego normy jasno definiują, że odpowiedni przekrój powinien być proporcjonalny do przekroju przewodów zasilających, a w przypadku aluminium wynosić 25 mm2. Niezrozumienie zasadności tych wartości może prowadzić do zastosowania niewłaściwych przekrojów, co skutkuje obniżeniem poziomu bezpieczeństwa w instalacji elektrycznej.

Pytanie 7

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 100 mA
B. 500 mA
C. 30 mA
D. 1 000 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 8

Jaką wartość prądu znamionowego powinien posiadać wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz Py = 2,4 kW przed zwarciem?

A. 6A
B. 16A
C. 20A
D. 10A
Wybór wyłącznika instalacyjnego nadprądowego o charakterystyce typu B do zabezpieczenia grzejnika jednofazowego o parametrach U<sub>N</sub> = 230 V i P<sub>y</sub> = 2,4 kW jest kluczowy dla prawidłowego działania instalacji elektrycznej. Obliczając wartość prądu znamionowego, korzystamy ze wzoru: I = P / U, gdzie P to moc grzejnika, a U to napięcie zasilania. Zatem I = 2400 W / 230 V = 10,43 A. Wyłącznik nadprądowy powinien mieć wartość prądu znamionowego większą od prądu obliczonego, co w praktyce oznacza, że dla tego zastosowania odpowiedni będzie wyłącznik 16A, który pozwoli na swobodne działanie urządzenia, nie wyzwalając w normalnych warunkach pracy. Wyłączniki instalacyjne charakteryzujące się typem B są przeznaczone do ochrony obwodów zawierających urządzenia o charakterze rezystancyjnym, co jest typowe dla grzejników. Użycie wyłącznika o odpowiedniej charakterystyce minimalizuje ryzyko uszkodzeń instalacji elektrycznej oraz pożarów. W praktyce oznacza to, że dobór 16A jest zgodny z obowiązującymi normami, co wpływa na bezpieczeństwo i wiarygodność całej instalacji.

Pytanie 9

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Izolatory ceramiczne
B. Silnik synchroniczny
C. Uchwyty do podłączenia przewodów
D. Rdzeń magnetyczny
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 10

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. D.
B. C.
C. B.
D. A.
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 11

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. II
B. I
C. 0
D. III
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 12

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Ciągłości przewodów ochronnych
B. Rezystancji izolacji przewodów
C. Napięć w poszczególnych fazach
D. Prądu pobieranego przez odbiornik
Pomiar napięcia w poszczególnych fazach jest jednym z podstawowych zadań każdego pomiaru elektrycznego. Miernik uniwersalny doskonale nadaje się do tego celu, ponieważ potrafi zmierzyć wartości napięcia AC i DC, co jest kluczowe w instalacjach oświetleniowych, gdzie często występują różne fazy zasilania. Podobnie, pomiar ciągłości przewodów ochronnych również można przeprowadzić za pomocą miernika uniwersalnego, który posiada funkcję testowania ciągłości, zwykle sygnalizując dźwiękowo, gdy rezystancja jest na poziomie poniżej określonego progu, co jest istotne dla bezpieczeństwa użytkowania instalacji. Z kolei pomiar prądu pobieranego przez odbiornik jest kolejnym standardowym zastosowaniem miernika uniwersalnego, który, dzięki odpowiednim ustawieniom, może zmierzyć natężenie prądu w obwodzie. Używając funkcji pomiaru prądu, można ocenić, czy odbiorniki działają w granicach parametrów znamionowych, co zapobiega ich przeciążeniu. Wydaje się zatem, że wybór odpowiednich narzędzi do pomiarów technicznych wymaga zrozumienia, jakie pomiary można wykonać z użyciem mierników uniwersalnych, a które wymagają bardziej specjalistycznych narzędzi, takich jak megomierze.

Pytanie 13

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Długość przewodu
B. Przekrój żył
C. Typ materiału izolacji
D. Typ materiału żyły
Rodzaj materiału izolacji nie wpływa na wartość spadku napięcia w instalacji elektrycznej, ponieważ spadek napięcia jest determinowany przez właściwości przewodnika, a nie jego otoczenie. Kluczowymi czynnikami wpływającymi na spadek napięcia są długość przewodu, jego przekrój oraz materiał, z którego wykonana jest żyła. Spadek napięcia można obliczyć przy pomocy wzorów, które uwzględniają opór przewodnika, a ten z kolei zależy od jego długości, przekroju oraz rodzaju materiału (miedź lub aluminium). W praktyce, dla zminimalizowania spadków napięcia w instalacjach elektrycznych, stosuje się przewody o większym przekroju oraz starannie planuje długości odcinków przewodów. Na przykład, w instalacjach o dużym obciążeniu, takich jak sieci zasilające przemysłowe, zastosowanie przewodów miedzianych o dużym przekroju pozwala na skuteczne ograniczenie strat napięcia, co jest zgodne z wymogami norm PN-IEC 60364-5-52.

Pytanie 14

Jakie z wymienionych działań należy do inspekcji urządzenia napędowego z elektrycznym silnikiem podczas jego pracy?

A. Weryfikacja czystości obudowy
B. Kontrola stanu zamocowania osłony wentylatora
C. Zbadanie poziomu nagrzewania obudowy i łożysk
D. Sprawdzenie urządzeń ochronnych
Sprawdzanie stopnia nagrzewania obudowy i łożysk jest kluczową czynnością w oględzinach urządzenia napędowego z silnikiem elektrycznym podczas ruchu. Nagrzewanie tych elementów może wskazywać na potencjalne problemy, takie jak niewłaściwe smarowanie, nadmierne obciążenie lub awarię komponentów. Przykładowo, jeśli łożyska są zbyt gorące, może to oznaczać, że w systemie występuje zbyt duży opór lub że smarowanie jest niewystarczające, co może prowadzić do ich zatarcia. Zgodnie z normami branżowymi, regularne monitorowanie temperatury łożysk i obudowy jest zalecane w celu wykrywania usterek zanim dojdzie do poważniejszej awarii. Użytkownicy powinni korzystać z odpowiednich narzędzi, takich jak kamery termograficzne lub czujniki temperatury, aby dokładnie ocenić stan urządzenia. Wykrycie podwyższonej temperatury może skłonić do przeprowadzenia dalszych analiz i działań prewencyjnych, co jest zgodne z podejściem proaktywnym w zarządzaniu utrzymaniem ruchu.

Pytanie 15

Jakie z wymienionych powodów wpływa na zmniejszenie prędkości obrotowej trójfazowego silnika klatkowego w trakcie jego pracy?

A. Przerwa w zasilaniu jednej z faz.
B. Zwarcie pierścieni ślizgowych.
C. Zmniejszenie obciążenia silnika.
D. Wzrost wartości napięcia zasilającego.
Przerwa w zasilaniu jednej fazy w trójfazowym silniku klatkowym prowadzi do poważnych zaburzeń w jego pracy. Silniki te są zaprojektowane do pracy w układzie trójfazowym, co oznacza, że ​​każda faza zasilania przyczynia się do generowania pola magnetycznego o określonym kącie fazowym. Gdy jedna z faz zostaje odcięta, silnik zaczyna działać na zasadzie silnika jednofazowego, co prowadzi do spadku momentu obrotowego i prędkości obrotowej. W praktyce może to doprowadzić do przegrzania silnika, a w konsekwencji do uszkodzenia uzwojeń. Przykładem zastosowania tej wiedzy jest konieczność monitorowania jakości zasilania w zakładach przemysłowych, gdzie stosuje się urządzenia pomiarowe do identyfikacji przerw w zasilaniu, co pozwala zapobiegać awariom i minimalizować przestoje. W branży elektromaszynowej stosowanie rozwiązań takich jak zabezpieczenia przed przeciążeniem i monitorowanie fazy jest standardem, który wspiera efektywność operacyjną i bezpieczeństwo urządzeń.

Pytanie 16

Jak, w przybliżeniu, zmieni się moc wydobywana przez grzejnik elektryczny, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilania pozostanie niezmienione?

A. Zwiększy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zmniejszy się czterokrotnie
Odpowiedź jest prawidłowa, ponieważ moc wydzielana przez grzejnik elektryczny jest proporcjonalna do kwadratu napięcia zasilania i odwrotnie proporcjonalna do długości spirali grzejnej. Kiedy skracamy spiralę grzejną o połowę, jej rezystancja maleje, co powoduje, że prąd płynący przez nią wzrasta, przy niezmienionym napięciu. Zgodnie z prawem Ohma, moc P można wyrazić jako P = U²/R, gdzie U to napięcie, a R to rezystancja. Skrócenie spirali grzejnika o połowę wpływa na zmniejszenie rezystancji o połowę, co z kolei powoduje, że moc wydzielana przez grzejnik wzrasta dwukrotnie. Przykładowo, w zastosowaniach przemysłowych, gdy grzejniki są wykorzystywane do podgrzewania cieczy, zwiększenie mocy o 100% może znacząco wpłynąć na efektywność procesu grzewczego, co jest zgodne z zasadami optymalizacji energetycznej.

Pytanie 17

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
B. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
C. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
D. Zmierzyć ciągłość przewodów ochronnych PE
Wybór opcji sprawdzenia stanu połączeń przewodów w puszkach i aparatach jest kluczowy przy identyfikacji problemów z impedancją pętli zwarcia w instalacji elektrycznej. Wysoka wartość impedancji pętli zwarcia może wskazywać na luźne lub uszkodzone połączenia, które są krytyczne dla zapewnienia bezpieczeństwa i prawidłowego działania instalacji. W przypadku obwodów gniazd jednofazowych, zidentyfikowanie i naprawa luźnych połączeń jest priorytetem, ponieważ takie usterki mogą prowadzić do niebezpiecznych skutków, jak np. nieprawidłowe działanie zabezpieczeń, a w skrajnych przypadkach do porażenia prądem. Dobre praktyki przewidują regularne sprawdzanie stanu połączeń oraz ich poprawności zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce, zweryfikowanie stanu połączeń powinno obejmować nie tylko wizualną inspekcję, ale także testy pomocnicze, które mogą potwierdzić ich integralność i ciągłość.

Pytanie 18

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 2 lata
B. 4 lata
C. 3 lata
D. 1 rok
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 19

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
C. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
D. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
Wybrałeś odpowiedź o wymianie wkładek bezpiecznikowych i żarówek, co nie jest najlepszym wyborem. Może na pierwszy rzut oka to wydaje się proste i można to robić pod napięciem, ale w rzeczywistości jest to niebezpieczne. Wymiana nawet dobrych elementów elektrycznych może być ryzykowna, zwłaszcza jeśli nie zachowasz ostrożności. Prace przy instalacji elektrycznej powinny zawsze odbywać się bez napięcia. Jakiekolwiek złamanie tej zasady może prowadzić do niebezpiecznych sytuacji. Normy, jak PN-IEC 60364-5-51, mówią jasno, że prace pod napięciem to coś, co powinno być naprawdę ograniczone i przed tym powinno się dokładnie ocenić ryzyko. A jeśli chodzi o pomiary, to też warto pamiętać, że są one czasem dozwolone, ale tylko przy zachowaniu wszystkich zasad i użyciu odpowiednich narzędzi. Także przestrzeganie przepisów BHP to podstawa, żeby w pracy z prądem było bezpiecznie.

Pytanie 20

Jakie urządzenie jest wykorzystywane do ochrony przewodów instalacyjnych przed skutkami przeciążeń?

A. Izolacyjny rozłącznik
B. Przekaźnik cieplny
C. Wyłącznik nadprądowy
D. Ochrona przeciwprzepięciowa
Przekaźnik termiczny, choć również używany w instalacjach elektrycznych, ma zupełnie inne zastosowanie. Jego głównym celem jest ochrona silników przed przegrzaniem, co nie pokrywa się z funkcją zabezpieczania przewodów instalacyjnych przed przeciążeniem. Ochronniki przeciwprzepięciowe mają natomiast na celu ochronę urządzeń przed skutkami przepięć, na przykład spowodowanych piorunami czy włączaniem urządzeń. Ich działanie koncentruje się na tłumieniu nagłych skoków napięcia, a nie na monitorowaniu prądu. Rozłącznik izolacyjny, z kolei, służy do fizycznego odłączenia obwodu elektrycznego od źródła zasilania, co jest istotne przy pracach konserwacyjnych, ale nie zabezpiecza on przed przeciążeniami. Niestety, wiele osób myli te funkcje, co prowadzi do błędnych wyborów przy projektowaniu instalacji. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i zastosowanie, a nieprawidłowe dobranie zabezpieczeń może prowadzić do poważnych konsekwencji, takich jak uszkodzenie urządzeń czy zagrożenie pożarowe. Dlatego tak ważne jest, aby projektując instalacje, kierować się odpowiednimi normami oraz wiedzą o funkcjach poszczególnych urządzeń.

Pytanie 21

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. pięć lat
B. dwa lata
C. jeden rok
D. pół roku
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 22

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 100 V
B. 750 V
C. 230 V
D. 500 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 23

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. C.
B. B.
C. A.
D. D.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań prawnych dotyczących pomiarów w instalacjach elektrycznych. Niektórzy mogą mylnie uważać, że pomiary skuteczności ochrony przeciwporażeniowej powinny być przeprowadzane częściej niż co 5 lat, co nie znajduje potwierdzenia w przepisach Prawa budowlanego. Częstsze wykonywanie tych pomiarów nie tylko generuje niepotrzebne koszty, ale także może prowadzić do zjawiska przestymulowania, gdzie wykonawcy, skupiając się na nadmiarowych interwencjach, zaniedbują istotne aspekty konserwacji i nadzoru. Ponadto, nieprawidłowe przekonanie o rocznych pomiarach rezystancji izolacji często powoduje pominięcie bardziej kompleksowych analiz stanu technicznego instalacji. Kluczowym jest zrozumienie, że pomiary te mają na celu potwierdzenie, iż instalacja spełnia wymogi bezpieczeństwa przez dłuższy czas, a nie tylko w krótkich interwałach. Najlepsze praktyki w obszarze ochrony przeciwporażeniowej zalecają stosowanie okresowych przeglądów zgodnych z ustalonym harmonogramem, co pozwala na efektywne zarządzanie bezpieczeństwem elektrycznym. W związku z tym, ignorowanie wytycznych dotyczących interwałów pomiarowych prowadzi do niepełnego obrazu stanu instalacji i może narażać użytkowników na poważne ryzyko. Zrozumienie tych zasad jest kluczowe dla skutecznego zarządzania bezpieczeństwem w obiektach edukacyjnych.

Pytanie 24

Gdy prace pomiarowe i kontrolne w instalacjach elektrycznych są wymagane do wykonania przez dwie osoby, to osoba przeprowadzająca pomiary powinna mieć odpowiednie kwalifikacje, a druga osoba wspierająca

A. nie musi mieć świadectwa kwalifikacji, jeśli przeszła odpowiednie szkolenie
B. nie jest zobowiązana do posiadania świadectwa kwalifikacji, jeśli ukończyła szkołę zawodową
C. musi dysponować świadectwem kwalifikacyjnym na stanowisku dozoru, lecz bez zakresu pomiarów
D. powinna posiadać świadectwo kwalifikacyjne na stanowisku eksploatacji w zakresie pomiarów
Odpowiedź jest prawidłowa, ponieważ obecne przepisy oraz normy branżowe, takie jak PN-EN 50110-1, wskazują, że dla niektórych prac pomiarowych obecność osoby wspomagającej jest niezbędna, jednak nie wymaga się od niej posiadania świadectwa kwalifikacji, o ile przeszła odpowiednie szkolenie. Taki model pracy ma na celu zwiększenie bezpieczeństwa oraz efektywności przeprowadzanych pomiarów. W praktyce oznacza to, że osoba wspierająca, mimo że nie jest w pełni wykwalifikowana, powinna dobrze rozumieć procedury bezpieczeństwa oraz potrafić reagować w sytuacjach awaryjnych. Przykładami mogą być prace polegające na pomiarach rezystancji uziemienia czy pomiarach napięcia. W takich przypadkach, osoba wspomagająca może zajmować się przygotowaniem sprzętu, monitorowaniem warunków pracy, a także wspieraniem głównego pomiarowca w zakresie organizacyjnym, co jest zgodne z zasadami efektywnej współpracy w zespole. Dzięki temu, można minimalizować ryzyko wystąpienia błędów pomiarowych oraz zwiększać bezpieczeństwo całego procesu.

Pytanie 25

Jakie są zalecane minimalne okresy pomiędzy kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach narażonych na pożar?

A. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
B. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
C. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 5 lat dla badania rezystancji izolacji
D. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej oraz 5 lat dla badania rezystancji izolacji
Nieprawidłowe podejścia do okresów między sprawdzeniami instalacji elektrycznych mogą prowadzić do poważnych zagrożeń dla bezpieczeństwa. Na przykład, sprawdzanie skuteczności ochrony przeciwporażeniowej co 1 rok, jak sugeruje jedna z opcji, jest zbyt częste i może być nieefektywne, biorąc pod uwagę, że te systemy powinny wykazywać stabilność przez dłuższy czas, co potwierdzają wytyczne europejskie przyjęte w normach bezpieczeństwa. Z drugiej strony, zalecenie, aby sprawdzać rezystancję izolacji co 5 lat, ignoruje szybkość, z jaką mogą pojawiać się uszkodzenia izolacji w wyniku eksploatacji, co może prowadzić do ryzykownych sytuacji. Typowe błędy myślowe polegają na myleniu częstotliwości kontroli z ich rzeczywistą skutecznością. Dłuższe okresy mogą prowadzić do zaniedbań i niewykrytych usterek, które z czasem narastają. Dlatego niezbędne jest przestrzeganie określonych norm, które są oparte na rzeczywistych warunkach eksploatacyjnych, a nie jedynie na intuicyjnych osądach dotyczących bezpieczeństwa. Rozsądnie jest stosować się do najlepszych praktyk branżowych, które zalecają częstsze przeglądy instalacji w pomieszczeniach o podwyższonym ryzyku pożaru, aby minimalizować ryzyko incydentów związanych z elektrycznością.

Pytanie 26

Podczas naprawy obwodu zasilania silnika indukcyjnego trójfazowego o mocy 7,5 kW technik ma wymienić uszkodzony przewód OWY 4×4 mm2 450 V/750 V na nowy. Która z poniższych właściwości przewodu H03RR-F 4G4 uniemożliwia jego wykorzystanie w miejsce dotychczasowego?

A. Zbyt mały przekrój znamionowy żył przewodu
B. Niewłaściwy materiał izolacji przewodu
C. Zbyt niskie napięcie znamionowe przewodu
D. Brak żyły izolowanej w kolorze żółtozielonym
Wybór przewodu H03RR-F 4G4 może wydawać się odpowiedni na pierwszy rzut oka, jednak istnieje kilka kluczowych powodów, dla których nie może on zastąpić przewodu OWY 4×4 mm² 450 V/750 V. Rozważając niewystarczający przekrój znamionowy żył przewodu, należy podkreślić, że zarówno przewód OWY, jak i H03RR-F mają podobny przekrój, co nie jest istotnym czynnikiem wykluczającym. W zakresie materiału powłoki, chociaż przewód H03RR-F posiada powłokę z tworzywa sztucznego, które jest elastyczne, w kontekście zastosowań w instalacjach przemysłowych, nie zawsze jest to kluczowy problem, ponieważ właściwości materiału mogą odpowiadać wymaganiom środowiskowym. Kolejny błąd związany z brakiem żyły z izolacją w kolorze żółtozielonym, który jest oznaczeniem dla przewodu ochronnego, również nie jest decydujący, ponieważ w praktyce często można zastosować przewody, w których ta żyła nie jest wyraźnie oznaczona, pod warunkiem spełnienia ogólnych wymagań dla ochrony. Kluczowym aspektem, który musimy wziąć pod uwagę, jest napięcie znamionowe, które w przypadku H03RR-F jest zdecydowanie zbyt niskie. W praktyce, stosowanie przewodów o napięciu znamionowym dostosowanym do wymagań instalacji jest kluczowe dla zapewnienia ich bezpieczeństwa i efektywności pracy. Niedocenianie tego aspektu prowadzi do podejmowania błędnych decyzji, które mogą skutkować poważnymi konsekwencjami, zarówno w kontekście bezpieczeństwa, jak i niezawodności całego systemu. Wszelkie decyzje dotyczące doboru przewodów powinny być zgodne z obowiązującymi normami i standardami, aby uniknąć potencjalnych zagrożeń.

Pytanie 27

Jakim przewodem powinno się przeprowadzić instalację oświetlenia natynkowego na uchwytach w piwnicy budynku wielorodzinnego?

A. YDYt
B. YDY
C. DYd
D. LgY
Odpowiedź YDY jest prawidłowa, ponieważ przewód YDY to przewód jednożyłowy, który jest odpowiedni do instalacji oświetleniowych w obiektach budowlanych, w tym w piwnicach. Charakteryzuje się on trwałą izolacją z PVC, co zapewnia odporność na wilgoć oraz różnorodne chemikalia, które mogą występować w piwnicach. Przewód YDY jest elastyczny, co ułatwia jego montaż na uchwytach, a także jest zgodny z obowiązującymi normami, co czyni go odpowiednim do tego typu zastosowań. W praktyce, podczas montażu instalacji oświetleniowej w piwnicy, ważne jest, aby przewody były dobrze zabezpieczone przed uszkodzeniami mechanicznymi i wilgocią, co przewód YDY spełnia. Ponadto, ze względu na swoje właściwości, przewód YDY jest szeroko stosowany w różnych instalacjach elektrycznych, takich jak zasilanie oświetlenia w pomieszczeniach mieszkalnych oraz użytkowych. Zgodnie z normą PN-EN 60502-1, przewody te mogą być stosowane w instalacjach w pomieszczeniach narażonych na działanie wody, co podkreśla ich przydatność w kontekście instalacji w piwnicach.

Pytanie 28

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Przeciążenie transformatora
B. Przerwa w uzwojeniu
C. Zwarcie międzyzwojowe
D. Uszkodzenie rdzenia
Uszkodzenie rdzenia transformatora może wprawdzie prowadzić do problemów z przenoszeniem mocy, ale nie jest bezpośrednią przyczyną wzrostu temperatury ponad normę. Rdzeń, zbudowany z cienkich, izolowanych blach, jest zaprojektowany tak, aby minimalizować straty mocy i uniknąć przegrzewania. Jeśli jednak rdzeń jest uszkodzony, np. przez mechaniczne zniekształcenia lub korozję, może to wpływać na sprawność transformatora, ale zwykle nie powoduje natychmiastowego wzrostu temperatury. Przerwa w uzwojeniu z kolei skutkuje całkowitym brakiem przepływu prądu przez uszkodzone uzwojenie, co zazwyczaj prowadzi do wyłączenia transformatora. W takim przypadku transformator nie będzie pracował prawidłowo, ale samo uszkodzenie nie podnosi jego temperatury. Zwarcie międzyzwojowe w uzwojeniach transformatora jest poważnym problemem, który może prowadzić do lokalnego wzrostu temperatury. Jednakże, w porównaniu do przeciążenia całego transformatora, zwarcie międzyzwojowe zwykle prowadzi do szybkiego uszkodzenia i wyłączenia się transformatora z eksploatacji. Jest to bardziej katastrofalne uszkodzenie wymagające natychmiastowej naprawy. Warto pamiętać, że wszystkie te problemy wymagają regularnych przeglądów technicznych, aby w porę wykrywać potencjalne usterki i zapobiegać poważnym awariom.

Pytanie 29

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Separacja elektryczna
C. Obwody SELV
D. Obwody PELV
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 30

Czas pomiędzy kolejnymi kontroli oraz próbami instalacji elektrycznych w budynkach użyteczności zbiorowej nie powinien przekraczać

A. 2 lata
B. 3 lata
C. 5 lat
D. 1 rok
Odpowiedź 5 lat jest poprawna, ponieważ zgodnie z przepisami prawa budowlanego oraz normami dotyczącymi instalacji elektrycznych, szczególnie w kontekście budynków zamieszkania zbiorowego, okres między kolejnymi sprawdzeniami nie powinien przekraczać 5 lat. Regularne kontrole są kluczowe dla zapewnienia bezpieczeństwa mieszkańców oraz prawidłowego funkcjonowania instalacji. Przykładowo, w Polskim prawie budowlanym oraz normach PN-IEC 60364-6, podkreśla się konieczność przeprowadzania okresowych przeglądów przez wykwalifikowanych specjalistów, co pozwala na wczesne wykrywanie ewentualnych usterek czy niezgodności z obowiązującymi standardami. W dłuższej perspektywie zaniedbania w tym zakresie mogą prowadzić do poważnych awarii, a także zagrożeń dla życia i zdrowia ludzi oraz mienia. Dobrym przykładem praktycznych zastosowań jest wprowadzenie systemu zarządzania, który przypomina o nadchodzących kontrolach, co zwiększa efektywność i bezpieczeństwo eksploatacji budynków.

Pytanie 31

Który z podanych materiałów przewodzących jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje właściwości?

A. Aluminium
B. Nikiel
C. Miedź
D. Stal
Miedź to materiał przewodzący, który jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje wyjątkowe właściwości. Przede wszystkim charakteryzuje się bardzo dobrą przewodnością elektryczną, co oznacza, że opór stawiany przepływającemu prądowi jest minimalny. Dzięki temu straty energii są zredukowane, co jest kluczowe w efektywnym przesyle energii. Ponadto, miedź jest materiałem relatywnie łatwym do formowania, co ułatwia produkcję przewodów o różnych kształtach i rozmiarach. Jest również odporny na korozję, co przedłuża żywotność instalacji. Zastosowanie miedzi w kablach i przewodach elektrycznych jest standardem w branży, a jej właściwości mechaniczne pozwalają na utrzymanie wysokiej wytrzymałości oraz elastyczności przewodów. Warto również zauważyć, że miedź jest stosowana w różnych gałęziach przemysłu elektrotechnicznego, w tym w transformatorach, silnikach elektrycznych i generatorach, co świadczy o jej wszechstronności i niezawodności. Standardy branżowe i normy międzynarodowe, takie jak IEC i ANSI, często rekomendują użycie miedzi w instalacjach ze względu na jej doskonałe właściwości przewodzące i mechaniczne.

Pytanie 32

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Wyłącznik silnikowy
B. Bezpiecznik
C. Termistor
D. Przekaźnik nadprądowy
Termistor to element półprzewodnikowy, który zmienia swoją rezystancję w zależności od temperatury. W silnikach elektrycznych termistory są powszechnie stosowane do monitorowania temperatury uzwojeń. Gdy temperatura wzrasta, rezystancja termistora zmienia się, co pozwala na wczesne wykrywanie przegrzewania. W praktyce, jeśli temperatura osiągnie ustalony próg, termistor może aktywować sygnał alarmowy lub bezpośrednio wyłączyć silnik, zapobiegając uszkodzeniom. Zastosowanie termistorów w silnikach elektrycznych jest zgodne z normami IEC 60034-1, które zalecają stosowanie odpowiednich zabezpieczeń termicznych w urządzeniach elektrycznych. Dobrą praktyką jest umieszczanie termistorów w pobliżu uzwojeń lub w ich konstrukcji, co pozwala na szybką reakcję na zmiany temperatury i ochronę przed przegrzewaniem, co może prowadzić do awarii. Termistory są stosowane nie tylko w silnikach, ale również w wielu aplikacjach, takich jak urządzenia AGD czy systemy HVAC, gdzie kontrola temperatury jest kluczowa dla prawidłowego funkcjonowania.

Pytanie 33

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SPZ
B. SRN
C. SZR
D. SCO
Wybór skrótów SCO, SRN i SZR może prowadzić do nieporozumień dotyczących funkcji i zastosowania systemów automatyki w energetyce. Skrót SCO (samoczynne odłączenie) odnosi się do mechanizmu, który działa w odwrotny sposób niż SPZ; jego celem jest automatyczne odłączenie zasilania w przypadku wykrycia awarii lub zagrożenia, co nie sprzyja przywracaniu normalnej pracy linii. Takie podejście jest istotne, jednak nie odpowiada na pytanie dotyczące przywracania zasilania. Z kolei skrót SRN (sterowanie ruchem nocnym) dotyczy zarządzania oświetleniem i nie ma bezpośredniego związku z automatycznym przywracaniem zasilania, co może prowadzić do błędnych koncepcji dotyczących działania systemów w energetyce. Ostatecznie, SZR (samoczynne załączenie rezerwy) również nie jest odpowiedni, ponieważ dotyczy procedur aktywacji rezerwowych źródeł zasilania, co różni się od funkcji SPZ. Zrozumienie tych różnic jest kluczowe w kontekście systemów automatyki energetycznej, a błędne interpretacje mogą prowadzić do niewłaściwego zarządzania zasilaniem oraz zwiększonego ryzyka awarii w sieci energetycznej.

Pytanie 34

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
B. Zwarcie doziemne jednej fazy
C. Zawilgocenie izolacji przewodów AFL do odbiorców
D. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 35

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Maksymalną temperaturę pracy uzwojeń
B. Minimalną temperaturę pracy uzwojeń
C. Minimalne napięcie zasilania
D. Maksymalne napięcie zasilania
Klasa izolacji silnika elektrycznego odnosi się do maksymalnej temperatury, jaką może osiągnąć uzwojenie silnika podczas normalnej pracy, bez ryzyka uszkodzenia izolacji. Klasa B oznacza, że maksymalna temperatura pracy uzwojeń nie powinna przekraczać 130°C. Użycie silnika z odpowiednią klasą izolacji jest kluczowe w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki termiczne. Przykładowo, w przypadku silników pracujących w przemyśle metalurgicznym, gdzie temperatura otoczenia może być wysoka, klasa izolacji B zapewnia, że silnik zachowa swoje właściwości elektryczne i mechaniczne. Ważne jest, aby dobierać silniki zgodnie z wymaganiami aplikacji, a także monitorować ich temperaturę pracy, aby uniknąć przegrzania, które mogłoby prowadzić do awarii. Dobre praktyki branżowe przewidują regularne przeglądy i pomiary temperatury, co przyczynia się do wydłużenia żywotności silników oraz zwiększenia efektywności energetycznej urządzeń.

Pytanie 36

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Wyłącznie świadectwo kwalifikacyjne w zakresie D
B. Jedynie świadectwo kwalifikacyjne w zakresie E
C. Świadectwo kwalifikacyjne w zakresie E + pomiary
D. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
Posiadanie wyłącznie świadectwa kwalifikacyjnego w zakresie D lub E jest niewystarczające do samodzielnego wykonywania pomiarów odbiorczych instalacji elektrycznej. Świadectwo kwalifikacyjne w zakresie D odnosi się do eksploatacji urządzeń, instalacji i sieci elektrycznych, ale nie obejmuje bezpośrednio umiejętności przeprowadzania pomiarów, które są kluczowe dla zapewnienia prawidłowego funkcjonowania instalacji elektrycznej. Odpowiedzi sugerujące, że samo świadectwo w zakresie E wystarczy, aby wykonywać pomiary, ignorują fakt, że pomiary wymagają specyficznych umiejętności i wiedzy technicznej. W praktyce, pomiar izolacji, pomiar prądu oraz pomiar napięcia to podstawowe czynności, które muszą być przeprowadzane przez osobę posiadającą odpowiednie przygotowanie. Dodatkowo, odpowiedź sugerująca, że świadectwo w zakresie E i D z pomiarami jest wystarczające, jest myląca, gdyż nie uwzględnia konieczności specjalistycznej wiedzy z zakresu pomiarów, która jest niezbędna w kontekście norm i przepisów dotyczących praktyki instalacyjnej. W praktyce, dobrze jest również znać obowiązujące przepisy prawa, które regulują wymagania dotyczące bezpieczeństwa i jakości wykonania instalacji elektrycznych. Dlatego kluczowe jest, aby technik elektryk posiadał zarówno odpowiednie świadectwa, jak i umiejętności praktyczne związane z pomiarami.

Pytanie 37

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. uszkodzenie w przewodzie fazowym
B. zwarcie między przewodem fazowym a neutralnym
C. uszkodzenie w grzałce
D. zwarcie przewodu ochronnego z obudową
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 38

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Fazomierz
B. Częstościomierz
C. Waromierz
D. Watomierz
Wybór pozostałych mierników, takich jak watomierz, częstościomierz i waromierz, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowań w kontekście pomiaru współczynnika mocy. Watomierz, mimo że mierzy zużycie energii, nie dostarcza informacji na temat relacji między mocą czynną a mocą pozorną. Jego pomiar koncentruje się na ilości energii przekazywanej w jednostce czasu, a więc nie bierze pod uwagę charakterystyki obciążenia indukcyjnego, co jest kluczowe przy ocenie współczynnika mocy. Częstościomierz z kolei mierzy częstotliwość sygnałów, co nie ma bezpośredniego związku z mocą, a więc nie może być użyty do analizy efektywności energetycznej silnika. Waromierz, używany do pomiaru wartości energii, również nie jest narzędziem adekwatnym do oceny współczynnika mocy, ponieważ jego zastosowanie ogranicza się głównie do analizy energii w kontekście statycznym, a nie dynamicznym. Typowym błędem myślowym jest założenie, że pomiar mocy elektrycznej i ocena współczynnika mocy są tożsame, co może prowadzić do wybierania niewłaściwych narzędzi pomiarowych i błędnej analizy wyników. Aby efektywnie zarządzać energią w instalacjach przemysłowych, kluczowe jest posługiwanie się odpowiednimi przyrządami, takimi jak fazomierz, które są zgodne z normami branżowymi i najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 39

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. wprowadzeniu barier chroniących przed przypadkowym kontaktem
B. umieszczeniu elementów aktywnych poza zasięgiem ręki
C. zastosowaniu osłon chroniących przed zamierzonym dotykiem
D. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 40

Jakimi drutami nawojowymi można nawinąć uszkodzony transformator, aby zachował swoje parametry elektryczne, jeśli nie ma się drutu o takim samym polu przekroju poprzecznego jak pierwotny?

A. O średnicy dwa razy mniejszej, połączonymi szeregowo
B. O przekroju dwa razy mniejszym, połączonymi równolegle
C. O przekroju dwa razy mniejszym, połączonymi szeregowo
D. O średnicy dwa razy mniejszej, połączonymi równolegle
Podczas analizy nieprawidłowych odpowiedzi warto zauważyć, że łączenie drutów o mniejszej średnicy szeregowo prowadzi do wzrostu całkowitej oporności, co w przypadku transformatora jest niekorzystne. Zwiększona oporność zmniejsza przepływ prądu, a tym samym powoduje spadek wydajności transformatora. W rezultacie, transformator może nie działać w optymalnych warunkach, co prowadzi do przegrzewania, a w skrajnych przypadkach do uszkodzeń. Z kolei stosowanie drutów o średnicy dwa razy mniejszej, połączonych równolegle, umożliwia zredukowanie oporności, co jest kluczowe dla efektywności działania. Dodatkowo, dobór drutów o polu przekroju poprzecznym, które jest dwa razy mniejsze, w połączeniu szeregowym, a nie równoległym, mógłby doprowadzić do nierównomiernego rozkładu prądów w zwojach, co jest niepożądane w kontekście równowagi elektromagnetycznej transformatora. Kluczowym błędem myślowym, który prowadzi do nieprawidłowych wniosków, jest nie uwzględnienie wpływu oporności na przepływ prądu oraz zniekształceń, jakie mogą wystąpić w wyniku niewłaściwego połączenia. W kontekście norm branżowych, w praktykach rewitalizacji transformatorów stosuje się przede wszystkim złote zasady dotyczące zachowania równowagi parametrów elektrycznych i mechanicznych, co jest absolutnie kluczowe dla długotrwałego działania i bezpieczeństwa urządzeń.