Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 19 grudnia 2025 13:54
  • Data zakończenia: 19 grudnia 2025 13:58

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. parametrów ekonomicznych.
B. skuteczności ochrony przeciwporażeniowej.
C. dopuszczalnego spadku napięcia.
D. obciążalności prądowej.
Przy doborze przewodów w instalacji elektrycznej, uwzględnienie parametrów ekonomicznych jest rzeczywiście mniej istotne w porównaniu do innych kryteriów. Choć koszty instalacji mogą mieć znaczenie w kontekście budżetowania projektu, są one drugorzędne w stosunku do kwestii bezpieczeństwa i wydajności. Dla elektryka priorytetem jest zapewnienie, że przewody spełniają odpowiednie normy techniczne i bezpieczeństwa. W praktyce oznacza to, że większą wagę przykłada się do obciążalności prądowej, dopuszczalnego spadku napięcia oraz skuteczności ochrony przeciwporażeniowej. Standardy takie jak PN-IEC 60364 wymagają, aby przewody były dobrane zgodnie z ich zdolnością do przenoszenia prądu i zapewniały minimalny spadek napięcia, co ma kluczowe znaczenie dla efektywności energetycznej systemu. Skuteczność ochrony przeciwporażeniowej jest również nie do przecenienia, ponieważ chroni przed porażeniem prądem elektrycznym. Podsumowując, parametry ekonomiczne są ważne, ale w kontekście projektowania instalacji elektrycznych ustępują miejsca bardziej krytycznym czynnikom technicznym, które zapewniają bezpieczeństwo i niezawodność systemu.

Pytanie 2

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 1 000 Ω
B. 500 Ω
C. 100 Ω
D. 0 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 3

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód A
Ilustracja do odpowiedzi A
B. Przewód C
Ilustracja do odpowiedzi B
C. Przewód D
Ilustracja do odpowiedzi C
D. Przewód B
Ilustracja do odpowiedzi D
Dobór odpowiedniego przewodu do połączenia silnika 3-fazowego z przemiennikiem częstotliwości jest kluczowy dla zapewnienia prawidłowej pracy systemu. Przewód A to przewód przeznaczony do zastosowań przemysłowych, charakteryzuje się wysoką odpornością na wibracje, temperaturę oraz zakłócenia elektromagnetyczne. Tego typu przewody są zwykle ekranowane, co minimalizuje wpływ zakłóceń na sygnał sterujący, co w przypadku silników jest niezwykle ważne. Przewody te muszą również spełniać normy bezpieczeństwa, takie jak PN-EN 60204-1, co zapewnia ich niezawodność i zgodność z wymaganiami technicznymi. Moim zdaniem, dobrze jest także zwracać uwagę na elastyczność przewodu, co ułatwia jego montaż w trudnych warunkach. W praktyce, przewody takie są stosowane w środowiskach o wysokim stopniu zanieczyszczenia przemysłowego i mogą pracować w szerokim zakresie temperatur, co jest istotne w kontekście przemysłowym. Z mojego doświadczenia, warto również zwrócić uwagę na odpowiednie oznaczenie przewodów, co ułatwia ich identyfikację i minimalizuje ryzyko pomyłek podczas instalacji.

Pytanie 4

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. O oraz L
B. 5 oraz L
C. 2 oraz L
D. H oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 5

Do demontażu przekaźnika z szyny TH35 należy zastosować

Ilustracja do pytania
A. wkrętak płaski.
B. wkrętak krzyżowy.
C. klucz nasadowy.
D. klucz oczkowy.
Przekaźniki montowane na szynie TH35, znane jako szyny DIN, są standardem w instalacjach elektrycznych. Te szyny umożliwiają szybki montaż i demontaż urządzeń takich jak przekaźniki, styczniki czy automatyka przemysłowa. Użycie wkrętaka płaskiego do demontażu takiego przekaźnika to nie tylko wygodne, ale przede wszystkim bezpieczne rozwiązanie. Wynika to z konstrukcji urządzeń montowanych na tych szynach, które często posiadają specjalne zaczepy lub zatrzaski. Wkrętak płaski idealnie nadaje się do delikatnego podważenia tych zaczepów, umożliwiając szybkie i bezproblemowe zdjęcie przekaźnika bez ryzyka uszkodzenia samego urządzenia lub szyny. Moim zdaniem, znajomość tych drobnych, ale istotnych szczegółów montażowych jest kluczowa w pracy każdego elektryka. Właściwe narzędzia to podstawa efektywności i bezpieczeństwa pracy. W praktyce, często zdarza się, że narzędzia takie jak wkrętak płaski są niezastąpione, zwłaszcza gdy pracujemy w ograniczonej przestrzeni rozdzielnicy elektrycznej. Dobre praktyki mówią o stosowaniu narzędzi zgodnie z ich przeznaczeniem, co znacząco zmniejsza ryzyko uszkodzeń i zwiększa trwałość komponentów.

Pytanie 6

Do przykręcania lub odkręcania nakrętki przedstawionej na rysunku przeznaczony jest klucz

Ilustracja do pytania
A. czołowy.
B. nasadowy.
C. imbusowy.
D. hakowy.
Nakrętka przedstawiona na rysunku to nakrętka rowkowa, do której przykręcania lub odkręcania stosuje się klucz hakowy. Ten typ klucza jest specjalnie zaprojektowany, aby pasować do rowków lub otworów w nakrętce, umożliwiając łatwe manewrowanie nawet w trudno dostępnych miejscach. Klucze hakowe są powszechnie używane w przemyśle maszynowym i motoryzacyjnym, gdzie precyzja i siła są kluczowe. Ich konstrukcja umożliwia równomierne rozłożenie siły, co minimalizuje ryzyko uszkodzenia elementów złącznych. Przy pracy z maszynami, nakrętki rowkowe często są stosowane do mocowania łożysk lub elementów obrotowych, a użycie klucza hakowego zapewnia, że proces ten jest bezpieczny i efektywny. Standardy przemysłowe, takie jak DIN 1810, określają wymiary i specyfikacje dla kluczy hakowych, co jest kluczowe dla utrzymania kompatybilności i bezpieczeństwa w pracy. W praktyce, klucz hakowy to niezastąpione narzędzie w warsztatach i fabrykach, a jego użycie jest często preferowane ze względu na wygodę i niezawodność w trudnych warunkach.

Pytanie 7

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Częstotliwościomierz.
B. Amperomierz.
C. Woltomierz.
D. Omomierz.
Amperomierz to właściwy wybór, ponieważ mierzy prąd płynący przez obwód. W miejscu oznaczonym literą X mamy do czynienia z typową konfiguracją obwodu, gdzie chcemy zmierzyć prąd przepływający przez R2 i R3. Amperomierz włączamy szeregowo z elementami, przez które płynie prąd, co umożliwia dokładny pomiar bez zakłóceń. W praktyce, dobrze zamontowany amperomierz ma mały opór wewnętrzny, aby nie wpływać na obwód. Warto pamiętać, że dla bezpieczeństwa i dokładności pomiaru, amperomierz powinien być przystosowany do zakresu mierzonego prądu. W sytuacjach przemysłowych, gdzie mamy do czynienia z większymi wartościami prądów, używa się czasem przekładników prądowych. Przykładowo, w instalacjach elektrycznych takie pomiary pomagają w diagnozowaniu problemów i optymalizacji zużycia energii. Moim zdaniem, zrozumienie działania amperomierza to kluczowy element dla każdego początkującego elektryka, bo to narzędzie jest podstawą w codziennej pracy z obwodami elektrycznymi.

Pytanie 8

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. temperatury.
C. naprężeń.
D. pola magnetycznego.
Wybrałeś odpowiedź dotyczącą pola magnetycznego, co jest prawidłowe. Przedstawiony czujnik to kontaktron, czyli rodzaj przełącznika sterowanego polem magnetycznym. Działa na zasadzie zamykania lub otwierania obwodu elektrycznego pod wpływem zbliżenia magnesu. Jest to bardzo popularne rozwiązanie w systemach zabezpieczeń, na przykład w alarmach okiennych i drzwiowych, gdzie magnes umieszczony na ruchomej części powoduje zmianę stanu kontaktronu. Kontaktrony są również wykorzystywane w licznikach rowerowych do detekcji obrotu koła. Dzięki swojej prostocie i niezawodności są szeroko stosowane w różnych aplikacjach przemysłowych. Warto pamiętać, że ich działanie opiera się na prostym fizycznym zjawisku reakcji na pole magnetyczne, co czyni je niezawodnymi w wielu zastosowaniach. Standardy branżowe dla takich urządzeń obejmują normy dotyczące ich czułości i trwałości, co zapewnia bezpieczeństwo i długą żywotność. Moim zdaniem, kontaktrony są doskonałym przykładem na to, jak prosta technologia może być niezwykle efektywna w praktyce.

Pytanie 9

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. zaciskania tulejek.
B. ściągania izolacji.
C. zaciskania wtyków RJ-45.
D. zaciskania wtyków RJ-11.
Narzędzia przedstawione na ilustracjach to profesjonalne ściągacze izolacji, które są niezbędne w pracy każdego elektryka. Ściąganie izolacji to proces usuwania powłoki zewnętrznej przewodów, aby móc odsłonić rdzeń miedziany lub aluminiowy, co umożliwia dalsze prace, takie jak lutowanie czy zaciskanie końcówek. Prawidłowe ściągnięcie izolacji jest kluczowe, aby uniknąć uszkodzenia przewodów i zapewnić bezpieczne połączenia elektryczne. Ściągacze izolacji automatyczne, takie jak te pokazane na zdjęciu, umożliwiają szybkie i precyzyjne zdejmowanie izolacji z przewodów o różnych średnicach bez konieczności ręcznego dostosowywania narzędzia. Z mojego doświadczenia, korzystanie z takich narzędzi znacznie skraca czas pracy i minimalizuje ryzyko błędów, które mogą prowadzić do awarii systemu. Zgodnie z dobrymi praktykami branżowymi, zawsze warto używać dedykowanych narzędzi do każdej operacji, aby zapewnić ich trwałość i niezawodność, co w efekcie zwiększa bezpieczeństwo całego systemu.

Pytanie 10

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przepływomierza.
B. separatora.
C. przetwornika pomiarowego.
D. wzmacniacza operacyjnego.
Przetwornik pomiarowy to urządzenie niezbędne w systemach automatyki i pomiarów, które przekształca jedną formę sygnału w inną. Może to być np. zamiana sygnału analogowego na cyfrowy lub przetwarzanie wielkości fizycznej, jak temperatura, na sygnał elektryczny. Moim zdaniem, to kluczowy element, który pozwala na integrację i automatyzację procesów przemysłowych. Przetworniki są powszechnie stosowane w systemach monitoringu i kontroli, gdzie precyzyjne dane są nieodzowne dla optymalizacji procesów. W praktyce, przy wyborze przetwornika, warto zwrócić uwagę na jego dokładność, zakres pomiarowy oraz kompatybilność z innymi elementami systemu. Przykładowo, w przemyśle chemicznym, przetwornik może mierzyć stężenie substancji i przekazywać te dane do systemu zarządzania produkcją. Standardy takie jak IEC i ANSI definiują wytyczne dotyczące konstrukcji i działania przetworników, co zapewnia ich niezawodność i bezpieczeństwo w różnych aplikacjach. Z tego powodu, prawidłowe zrozumienie funkcji i specyfikacji przetworników jest kluczowe dla specjalistów zajmujących się projektowaniem systemów pomiarowych.

Pytanie 11

Na schemacie układu sterowania elementy PT1 i PT2 to

Ilustracja do pytania
A. prostowniki sterowane.
B. prostowniki niesterowane.
C. przemienniki częstotliwości.
D. falowniki.
Na schemacie widoczne są dwa elementy oznaczone jako PT1 i PT2, które pełnią funkcję prostowników sterowanych. Charakterystycznym symbolem jest tu dioda z ukośną linią przy bramce – oznacza to tyrystor (SCR), który pozwala regulować moment przewodzenia prądu w każdej połówce sinusoidy napięcia przemiennego. Dzięki temu można sterować napięciem wyjściowym i w efekcie prędkością lub momentem silnika prądu stałego (oznaczonego jako M na rysunku). W praktyce takie rozwiązania stosuje się w układach napędowych, gdzie wymagana jest płynna regulacja obrotów. Sterowanie kątem załączenia tyrystora pozwala zmieniać średnią wartość napięcia zasilającego silnik. Moim zdaniem to bardzo elegancki i klasyczny przykład regulacji mocy w systemach DC, jeszcze zanim falowniki stały się powszechne. W przemyśle taki układ był (i nadal bywa) używany np. w dźwignicach, suwnicach czy walcarkach, gdzie liczy się precyzja i niezawodność. W odróżnieniu od prostowników niesterowanych, tutaj sterowanie odbywa się poprzez impuls bramkowy, co daje znacznie większą kontrolę nad procesem.

Pytanie 12

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Programowanie układu.
B. Zasilanie układu sterowania.
C. Pomiar wielkości procesowych.
D. Wizualizacja przebiegu procesu.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 13

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4 ÷ 20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne półprzewodnikowe.
B. termoelektryczne.
C. rezystancyjne metalowe.
D. bimetalowe.
Czujniki Pt100 to jedne z najpopularniejszych elementów do pomiaru temperatury w systemach automatyki. Są to czujniki rezystancyjne metalowe, co oznacza, że ich działanie opiera się na zjawisku zmiany rezystancji metalu wraz ze zmianą temperatury. W przypadku Pt100, materiałem czujnika jest platyna, co zapewnia wysoką stabilność i liniowość pomiarów. Stąd nazwa Pt (od platyny) i 100 (rezystancja wynosząca 100 omów w temperaturze 0°C). Przetworniki z sygnałem wyjściowym 4 ÷ 20 mA są standardem przemysłowym, pozwalającym na przesyłanie danych z czujnika do systemu sterującego na duże odległości, przy minimalnych zakłóceniach. Z mojego doświadczenia, takie połączenie daje wysoką dokładność i niezawodność w różnych aplikacjach, od przemysłu spożywczego po energetykę. Przy projektowaniu systemów warto zwrócić uwagę na kalibrację czujników i kompatybilność z używanymi przetwornikami, co może znacznie zwiększyć efektywność i dokładność pomiarów. Warto też pamiętać, że czujniki Pt100 są szeroko stosowane, co ułatwia serwis i dostępność części zamiennych.

Pytanie 14

Na rysunku przedstawiono przytwierdzenie siłownika za pomocą

Ilustracja do pytania
A. ucha ze sworzniem.
B. łap mocujących.
C. uchwytu widełkowego ze sworzniem.
D. kołnierza.
Łapy mocujące to bardzo popularny sposób przytwierdzania siłowników, zwłaszcza w zastosowaniach przemysłowych. Dzięki swojej konstrukcji zapewniają stabilność i łatwość montażu w różnych pozycjach. Są często używane w systemach, gdzie istnieje potrzeba montażu na powierzchniach płaskich. Mocowanie za pomocą łap jest zgodne z wieloma standardami, takimi jak ISO 6020/2 dla siłowników hydraulicznych. W praktyce stosuje się je w maszynach budowlanych, liniach produkcyjnych czy w przemyśle samochodowym. Przewagą łap mocujących jest możliwość łatwego dostosowania i demontażu, co jest kluczowe w środowiskach, gdzie częsta konserwacja jest niezbędna. Co więcej, umożliwiają one absorpcję obciążeń bocznych, co zwiększa trwałość i żywotność całego układu. Dzięki temu ich użycie jest efektywne i ekonomiczne na dłuższą metę. Warto również pamiętać, że odpowiednie rozmieszczenie śrub mocujących łapy do podłoża gwarantuje równomierne rozłożenie obciążeń, co jest podstawą dobrej praktyki inżynierskiej.

Pytanie 15

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. bezpieczeństwa.
B. dławiący.
C. redukcyjny.
D. zwrotny.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 16

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 1
Ilustracja do odpowiedzi A
B. Miernik 4
Ilustracja do odpowiedzi B
C. Miernik 3
Ilustracja do odpowiedzi C
D. Miernik 2
Ilustracja do odpowiedzi D
Poprawna odpowiedź to miernik numer 3, który ma zakres pomiarowy od –5 do +15 V. Jest to klasyczny woltomierz analogowy do pomiaru napięcia stałego (DC), idealny do sprawdzenia sygnału wyjściowego +Q1 z czujnika analogowego. W schemacie układu pomiarowego widać, że napięcie wyjściowe zawiera się w zakresie 0–10 V, więc miernik o takim zakresie zapewni odpowiednią dokładność i bezpieczeństwo pomiaru. Dodatkowo posiada on podziałkę symetryczną z częścią ujemną, co umożliwia kontrolę również błędnych polaryzacji lub sygnałów odwróconych. W praktyce technicznej takie mierniki stosuje się do diagnostyki czujników, regulatorów PID, przetworników sygnałów oraz wyjść analogowych PLC. Z mojego doświadczenia wynika, że warto używać mierników o zakresie nieco szerszym od mierzonego napięcia – w tym wypadku 15 V zamiast 10 V – żeby nie przeciążyć ustroju pomiarowego. W przemyśle automatyki miernik o takim zakresie jest często montowany w szafie sterowniczej, by umożliwić bieżący podgląd sygnału sterującego zaworem, siłownikiem czy czujnikiem położenia.

Pytanie 17

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 4
B. 1
C. 3
D. 2
Dioda prostownicza oznaczona jest na płytce cyfrą 3, co jest kluczowe w kontekście układów elektronicznych. Dioda prostownicza pełni rolę zaworu jednokierunkowego, umożliwiając przepływ prądu tylko w jednym kierunku. W praktyce, wykorzystuje się ją głównie do prostowania prądu zmiennego (AC) na prąd stały (DC). W elektronice jest to niezbędne, na przykład w zasilaczach, które muszą dostarczyć prąd stały do urządzeń. Standardowo, zgodnie z normami branżowymi, oznaczenie na płytce drukowanej (PCB) pozwala na szybkie zidentyfikowanie komponentów, co jest ważne dla serwisu i napraw. Warto zwrócić uwagę, że diody prostownicze mogą różnić się parametrami, takimi jak prąd przewodzenia czy napięcie przebicia, co determinuje ich zastosowanie w różnych układach. Pamiętaj, że dobre praktyki projektowe zalecają stosowanie odpowiednich zabezpieczeń, np. bezpieczników, aby uniknąć uszkodzeń w przypadku awarii diody.

Pytanie 18

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. indukcyjny.
B. magnetyczny.
C. pojemnościowy.
D. ultradźwiękowy.
Zastosowanie czujnika magnetycznego do sygnalizacji położenia tłoka siłownika pneumatycznego to bardzo trafny wybór. W praktyce przemysłowej najczęściej stosuje się siłowniki magnetyczne, gdzie na tłoku zamontowany jest magnes. Czujnik magnetyczny, zamontowany na korpusie siłownika, wykrywa obecność tego magnesu, co pozwala na precyzyjne określenie położenia tłoka. Jest to rozwiązanie powszechnie stosowane w automatyce, ponieważ czujniki magnetyczne są bezkontaktowe i odporne na zużycie mechaniczne, co wydłuża ich żywotność. Warto wspomnieć, że są one także odporne na wpływ zanieczyszczeń i mogą pracować w trudnych warunkach środowiskowych, co czyni je niezwykle wszechstronnymi. Standardy branżowe, takie jak ISO 5599 dotyczące pneumatyki, często wspominają o wykorzystaniu czujników magnetycznych w takich zastosowaniach. Moim zdaniem, takie rozwiązanie jest zarówno ekonomiczne, jak i efektywne, gdyż minimalizuje ryzyko awarii dzięki swojej prostocie i niezawodności. To podejście pozwala również na łatwe zintegrowanie z systemami automatyki, co jest niezwykle istotne w nowoczesnych zakładach produkcyjnych. Dodatkowo, czujniki magnetyczne mogą być wyposażone w różne funkcje, takie jak możliwość programowania punktów przełączania, co zwiększa ich funkcjonalność i elastyczność zastosowań.

Pytanie 19

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. NPN NO
C. NPN NC
D. PNP NO
Czujnik z wyjściem typu NPN NC działa w taki sposób, że w stanie spoczynku (tzn. gdy nie jest aktywowany) jego wyjście jest zwarte do masy. To oznacza, że prąd płynie od wyjścia czujnika do masy, co jest kluczowe w wielu aplikacjach, gdzie trzeba sygnalizować stan nieaktywności urządzenia. Typ NPN jest popularny w branży przemysłowej, szczególnie w Europie, bo dobrze współpracuje z systemami PLC, które często wymagają sygnałów niskiego poziomu jako aktywnych. Konfiguracja NC (normalnie zamknięte) dodatkowo gwarantuje, że w razie awarii czujnika lub przerwania przewodu, system natychmiast otrzyma sygnał o błędzie, co jest zgodne z zasadami fail-safe. Przykładem zastosowania może być monitoring pozycji bram czy drzwi, gdzie brak przerwania obwodu oznacza ich zamknięcie i bezpieczeństwo. Moim zdaniem, warto zwrócić uwagę na ten typ czujników w aplikacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 20

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 21

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Rezystancji izolacji między przewodami L1 i L2 i L3.
C. Sumy rezystancji żył L1, L2, L3 oraz PEN.
D. Rezystancji żył L1, L2, L3.
Mierzenie rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowym krokiem w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, ten test pozwala na wykrycie wszelkich uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych zwarć lub porażeń prądem. Rezystancja izolacji powinna być odpowiednio wysoka, aby zapobiegać przepływowi prądu między przewodami. Z mojego doświadczenia, często spotyka się sytuacje, w których niewłaściwa izolacja prowadzi do awarii i przerw w dostawie energii, co w konsekwencji może wpłynąć na działanie całego systemu elektrycznego. Standardy takie jak PN-IEC 60364 wskazują, że minimalna rezystancja izolacji dla większości instalacji powinna wynosić 1 MΩ. Wartości poniżej tego poziomu mogą sugerować, że istnieje problem, który należy rozwiązać przed oddaniem instalacji do użytku. Takie podejście jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie regularnych przeglądów i testów, aby zapewnić niezawodność i bezpieczeństwo systemów elektrycznych. To również elementarne działanie w kontekście prewencji ryzyka pożarowego oraz ochrony zdrowia i życia ludzkiego.

Pytanie 22

Do odkręcania śrub przedstawionych na zdjęciu służy klucz z nasadką o nacięciu

Ilustracja do pytania
A. krzyżowym.
B. prostym.
C. trójkątnym.
D. torx.
Śruby przedstawione na zdjęciu mają charakterystyczne, sześcioramienne gniazdo w kształcie gwiazdy. Klucze torx oznaczane są symbolem T (np. T20, T30) i zostały zaprojektowane tak, aby przenosić większy moment obrotowy bez ryzyka uszkodzenia łba śruby. W przeciwieństwie do tradycyjnych śrub krzyżowych lub prostych, torx zapewnia znacznie lepszy kontakt narzędzia z gniazdem, co zmniejsza efekt tzw. wyślizgiwania się końcówki (cam-out). W praktyce technicznej śruby torx stosuje się w motoryzacji, elektronice, urządzeniach przemysłowych i meblarstwie – tam, gdzie wymagana jest precyzja i trwałość połączenia. Z mojego doświadczenia wynika, że warto mieć w warsztacie pełen zestaw torxów, bo coraz częściej zastępują one klasyczne krzyżaki. Dodatkowo istnieją wersje zabezpieczone (torx z bolcem w środku), które wymagają specjalnego klucza, co chroni przed nieautoryzowanym rozkręceniem urządzeń.

Pytanie 23

Który rysunek przedstawia symbol graficzny zestyku przekaźnika czasowego o opóźnionym załączeniu?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawnie – to symbol zestyków przekaźnika czasowego o opóźnionym załączeniu. Charakterystycznym elementem jest łukowata linia przy stykach, oznaczająca działanie zależne od czasu. W praktyce oznacza to, że po podaniu napięcia na cewkę przekaźnika zestyk nie załącza się od razu, lecz dopiero po upływie określonego czasu ustawionego na przekaźniku. Takie przekaźniki są stosowane np. w układach automatyki, gdzie konieczne jest sekwencyjne uruchamianie urządzeń – wentylator włącza się dopiero po kilku sekundach od startu silnika, oświetlenie awaryjne reaguje z opóźnieniem lub grzałka załącza się po stabilizacji układu. W dokumentacji technicznej zapis symbolu jest zgodny z normami PN-EN 60617. Moim zdaniem warto zapamiętać, że łuk w symbolu zawsze oznacza funkcję czasową – a jego położenie względem styków określa, czy chodzi o opóźnione załączenie, czy opóźnione wyłączenie.

Pytanie 24

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 4,2 m
B. 8,5 m
C. 6,4 m
D. 2,2 m
Odpowiedź 4,2 m jest prawidłowa, ponieważ wykres charakterystyki pompy PS 200 pokazuje, jak zmienia się wysokość podnoszenia cieczy w zależności od wydajności i prędkości obrotowej pompy. Przy prędkości obrotowej n = 1850 obr/min i wydajności 550 m³/h, wykres wskazuje na wysokość podnoszenia około 4,2 m. W praktyce takie podejście do analizy wykresów charakterystyk pomp jest kluczowe podczas projektowania systemów pompowych. Dzięki temu można dobrać odpowiednią pompę do konkretnego zastosowania, zapewniając jej optymalną wydajność. Dobrze dobrana pompa nie tylko spełnia wymagania wydajnościowe, ale także działa efektywnie, co przekłada się na niższe koszty eksploatacyjne i dłuższą żywotność. W branży wodociągowej czy przemysłowej, dobór pompy na podstawie dokładnych danych z wykresów jest standardem, co zapewnia bezpieczeństwo i niezawodność systemu. Warto pamiętać, że błędny dobór pompy może prowadzić do problemów z przepływem, a nawet awarii całego systemu.

Pytanie 25

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nieprzekraczającym wartości 250 V AC?

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 004
B. 005
C. 002
D. 003
Wybór przekaźnika 002 to doskonała decyzja, ponieważ odpowiada on wymaganiom zadania. Zasilanie na poziomie 24 V DC to główna cecha tego przekaźnika, która idealnie pasuje do układu sterowania podanego w pytaniu. W przypadku automatyki, zgodność parametrów zasilania i obciążenia jest kluczowa. Przekaźnik 002 ma 4 wyjścia przekaźnikowe, które mogą dostarczyć obciążenie do 10 A przy napięciu do 250 V AC. To oznacza, że spełnia on wymagania, gdzie prądy obciążenia nie przekraczają 8 A. W praktyce, przekaźniki te są używane w wielu zastosowaniach automatyki przemysłowej, takich jak sterowanie silnikami czy systemami oświetleniowymi, gdzie wymagana jest wysoka niezawodność i precyzja. Dobór odpowiedniego przekaźnika jest istotny z punktu widzenia bezpieczeństwa i efektywności energetycznej, a przekaźnik 002, dzięki swoim parametrom, zapewnia obie te cechy. Wybierając taki przekaźnik, działamy zgodnie z najlepszymi praktykami w dziedzinie automatyki, gdzie kluczowe jest nie tylko odpowiednie napięcie zasilania, ale także dostosowanie obciążeń wyjściowych do realnych potrzeb systemu.

Pytanie 26

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 1
Ilustracja do odpowiedzi A
B. Ilustracja 3
Ilustracja do odpowiedzi B
C. Ilustracja 2
Ilustracja do odpowiedzi C
D. Ilustracja 4
Ilustracja do odpowiedzi D
Na zdjęciu numer 1 przedstawiono zawór szybkiego spustu. Jest to element stosowany w układach pneumatycznych do szybkiego opróżniania przewodów lub komór siłowników po zakończeniu cyklu pracy. Działa on w ten sposób, że po zaniku sygnału sterującego powietrze robocze zostaje natychmiast odprowadzone do atmosfery przez otwarty kanał zaworu, zamiast cofać się przez cały układ. W praktyce pozwala to skrócić czas powrotu tłoka i zwiększyć dynamikę działania systemu. Zawory te mają kompaktową budowę, najczęściej z gwintowanymi przyłączami i symbolem kierunku przepływu wytłoczonym na obudowie. Moim zdaniem to jeden z kluczowych elementów w automatyce pneumatycznej, bo wpływa bezpośrednio na wydajność układu. Stosuje się je m.in. w siłownikach dwustronnego działania, gdzie szybki spust umożliwia błyskawiczne odpowietrzenie komory powrotnej. Typowa konstrukcja zaworu szybkiego spustu wykorzystuje membranę lub kulkę, która reaguje na spadek ciśnienia po stronie sterującej. W instalacjach przemysłowych montuje się go bezpośrednio przy siłowniku, aby maksymalnie skrócić drogę odprowadzania powietrza.

Pytanie 27

Na podstawie tabeli, określ ile oleju należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400.

Typ pompyIlość oleju w silniku [l]Ilość oleju w komorze olejowej [l]Całkowita ilość oleju w pompie [l]
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18
A. 0,40 l
B. 1,70 l
C. 1,82 l
D. 0,90 l
Odpowiedź 1,82 l jest prawidłowa, ponieważ to dokładnie tyle oleju potrzeba do całkowitej wymiany w pompie IF1 400, jak wskazuje tabela. Warto zauważyć, że ilość oleju jest sumą oleju w silniku oraz w komorze olejowej, co jest standardowym podejściem do mierzenia całkowitej pojemności olejowej w urządzeniach mechanicznych. Dobre praktyki branżowe sugerują, by regularnie sprawdzać i wymieniać olej w pompach, ponieważ zapewnia to ich optymalne działanie i wydłuża żywotność urządzenia. W tym przypadku, wiedza o możliwości wystąpienia luzów w połączeniach i ich wpływie na przepływ oleju może być kluczowa. Często w zakładach przemysłowych stosuje się oleje o określonych parametrach lepkościowych, co również powinno być brane pod uwagę przy wymianie. Takie detale mogą mieć ogromne znaczenie przy wyborze odpowiednich materiałów eksploatacyjnych w przemyśle mechanicznym. Warto dodać, że prawidłowe utrzymanie poziomu oleju to nie tylko wymiana, ale też monitorowanie jego jakości, co można robić poprzez regularne analizy laboratoryjne. Tego rodzaju podejście do konserwacji jest często zalecane w normach ISO dotyczących zarządzania jakością i utrzymania ruchu.

Pytanie 28

Wskaż oznaczenie literowe gwintu metrycznego.

A. W
B. M
C. Tr
D. S
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 29

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. licznika impulsów zliczającego w górę CTU.
B. licznika impulsów zliczającego w dół CTD.
C. timera opóźniającego załączenie TON.
D. timera opóźniającego wyłączenie TOF
Twoja odpowiedź jest trafna! Przedstawiony diagram ilustruje działanie licznika impulsów zliczającego w dół, znanego jako CTD. Na osi czasu widzimy, jak licznik decrementuje wartość przy każdym impulsie. To jest charakterystyczne dla liczników zliczających w dół, które są powszechnie stosowane w automatyce przemysłowej do śledzenia ilości cykli maszynowych lub kontrolowania procesów produkcyjnych. Przykładowo, jeśli chcesz monitorować ilość produktów na linii produkcyjnej, CTD pozwoli Ci śledzić, ile produktów zostało już wykonanych do określonego celu. Warto zauważyć, że wykorzystanie takich liczników zgodnie z normami ISO w przemyśle pozwala na precyzyjne monitorowanie procesów i zwiększa efektywność operacyjną. Właściwe zastosowanie bloków funkcyjnych, takich jak CTD, jest kluczowe dla zapewnienia niezawodności i bezpieczeństwa systemów sterowania. Dzięki temu możesz nie tylko poprawić wydajność, ale także łatwo diagnozować i rozwiązywać problemy, które mogą się pojawić podczas działania systemu.

Pytanie 30

Przed podłączeniem układu pneumatycznego do układu zasilającego ustawia się odpowiednią wartość ciśnienia. Do odczytu nastawianej wartości trzeba użyć

A. rotametru.
B. termometru.
C. manometru.
D. pirometru.
Manometr to jedno z podstawowych narzędzi w pneumatyce, które pozwala na dokładne monitorowanie ciśnienia w systemie. Użycie manometru jest niezbędne, aby zapewnić odpowiednią pracę układu, ponieważ zbyt wysokie lub zbyt niskie ciśnienie może prowadzić do uszkodzeń komponentów lub niewłaściwego działania całego systemu. W praktyce, manometr umożliwia odczyt ciśnienia w jednostkach takich jak bary czy PSI, co jest standardem w branży. Dzięki manometrom operatorzy maszyn mogą kontrolować ciśnienie w czasie rzeczywistym i dostosowywać je według potrzeb, co jest kluczowe w wielu procesach przemysłowych. Dobre praktyki w pneumatyce nakazują regularne kalibrowanie manometrów, aby zapewnić dokładność odczytów. Manometr jest nieodzownym elementem podczas uruchamiania i konserwacji systemów pneumatycznych, a jego zastosowanie jest szerokie - od prostych instalacji warsztatowych po zaawansowane systemy przemysłowe. Dzięki temu urządzeniu jesteśmy w stanie zapewnić nie tylko bezpieczeństwo, ale także efektywność energetyczną układów pneumatycznych.

Pytanie 31

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 9°C
B. 19°C
C. 18°C
D. 8°C
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 32

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. sumy rezystancji żył L1, L2, L3, PEN
B. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN
C. rezystancji żył L1, L2, L3, PEN
D. sumy rezystancji izolacji żył L1 i L2, L3
Pomiar rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN jest kluczowy dla oceny bezpieczeństwa instalacji elektrycznej. W praktyce, taki pomiar pozwala stwierdzić, czy izolacja przewodów jest wystarczająco dobra, aby zapobiec niekontrolowanemu przepływowi prądu, co może prowadzić do zwarć lub porażeń prądem. Izolacja powinna mieć odpowiednią rezystancję, zazwyczaj mierzoną w megaomach, co jest zgodne z normą PN-EN 61557. Sprawdzenie rezystancji izolacji jest standardem przy odbiorze instalacji i jej regularnej konserwacji. Dzięki temu można zapobiec wielu awariom i wypadkom. W praktyce, pomiary te są wykonywane za pomocą specjalnych mierników izolacji, które generują wysokie napięcie testowe. Dlatego, z mojego doświadczenia, zawsze warto inwestować czas w regularne sprawdzanie rezystancji izolacji - to nie tylko dobra praktyka, ale i obowiązek wynikający z przepisów BHP. Warto też pamiętać, że prawidłowo wykonana izolacja to podstawa każdej bezpiecznej instalacji elektrycznej.

Pytanie 33

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 0,1 bara i temperatura 50°C
B. Ciśnienie robocze 16 barów i temperatura 50°C
C. Ciśnienie robocze 10 barów i temperatura 90°C
D. Ciśnienie robocze 16 barów i temperatura 90°C
A więc, odpowiedź z ciśnieniem roboczym 16 barów i temperaturą medium 90°C jest prawidłowa. W dokumentacji technicznej zaworu elektromagnetycznego, ciśnienie robocze podane jest jako zakres od 0,1 do 16 barów. Oznacza to, że zawór jest zaprojektowany, aby pracować bezpiecznie w tym przedziale ciśnienia. Temperatura medium podana jako maksymalna wynosi 90°C, co informuje, że zawór może pracować przy takich temperaturach bez ryzyka uszkodzeń. W praktyce, takie zawory są często używane w systemach przemysłowych, gdzie wymagana jest precyzyjna kontrola przepływu cieczy lub gazów pod dużym ciśnieniem i w wysokich temperaturach. Standardy przemysłowe, takie jak ISO 8573 dotyczące jakości sprężonego powietrza, mogą mieć zastosowanie przy doborze odpowiednich komponentów, w tym zaworów, do systemów pneumatycznych. Ważne jest, aby zrozumieć, że przekroczenie maksymalnych wartości może prowadzić do awarii systemu, dlatego zawsze należy działać w ramach specyfikacji technicznych. Dbanie o odpowiednie parametry pracy zapewnia długowieczność i niezawodność systemu. To również minimalizuje ryzyko przestojów i zwiększa efektywność operacyjną, co jest kluczowe w wielu branżach produkcyjnych.

Pytanie 34

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 3.
B. w pozycji 1.
C. w pozycji 4.
D. w pozycji 2.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 35

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PI
B. PID
C. P
D. PD
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 36

Element zabezpieczający silnik, zaznaczony na schemacie linią przerywaną, jest wyzwalany

Ilustracja do pytania
A. nadnapięciowo.
B. ciśnieniowo.
C. podprądowo.
D. cieplnie.
Element zabezpieczający, który jest wyzwalany cieplnie, to najczęściej wyłącznik termiczny lub przekaźnik termiczny. Tego typu zabezpieczenia stosuje się przede wszystkim w obwodach silników elektrycznych, aby chronić je przed przegrzaniem. Dlaczego to takie ważne? Silniki elektryczne, zwłaszcza te pracujące w trudnych warunkach, mogą się przegrzewać z powodu przeciążenia lub zablokowania. Przekaźnik termiczny działa na zasadzie wydłużania się elementów bimetalicznych pod wpływem ciepła, co po przekroczeniu określonej temperatury przerywa obwód. To proste, ale bardzo skuteczne rozwiązanie. Standardy branżowe, na przykład normy IEC, zalecają stosowanie takich zabezpieczeń, aby zapewnić długowieczność maszyn i bezpieczeństwo pracy. Praktyczne zastosowanie? Wyobraź sobie, że masz silnik w fabryce, który napędza taśmociąg. Jeśli coś utknie na taśmie, silnik zaczyna pracować ciężej, co prowadzi do wzrostu temperatury. Dzięki przekaźnikowi termicznemu obwód zostaje przerwany, zanim dojdzie do uszkodzenia.

Pytanie 37

Na ilustracji przedstawiono

Ilustracja do pytania
A. elektroniczny czujnik ciśnienia.
B. przetwornik PWM.
C. separator sygnałów USB.
D. zadajnik cyfrowo-analogowy.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 38

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RJ-45
B. HDMI
C. RS-232
D. USB
Złącze przedstawione na ilustracji to klasyczne złącze RS-232, czyli interfejs komunikacji szeregowej używany od wielu lat w technice komputerowej i automatyce. Widoczna na rysunku wtyczka ma 9 pinów (DB-9), które odpowiadają za różne sygnały transmisji danych, m.in. RxD (odbiór danych), TxD (nadawanie danych), GND (masa), RTS/CTS (sterowanie przepływem). Standard RS-232 wykorzystuje napięcia w zakresie od -12 V do +12 V, co odróżnia go od nowszych standardów logicznych TTL (0–5 V). Dawniej był to podstawowy sposób łączenia komputerów z modemami, drukarkami czy sterownikami PLC. Dziś nadal spotykany w serwisie przemysłowym i urządzeniach embedded, gdzie niezawodność i prostota są ważniejsze niż prędkość. Z mojego doświadczenia RS-232 to wciąż nieoceniony interfejs diagnostyczny – łatwy do uruchomienia, odporny na zakłócenia i możliwy do obsługi nawet przez prosty terminal. Współczesne laptopy nie mają już tych portów, ale stosuje się przejściówki USB–RS232, by zachować kompatybilność z klasycznym sprzętem.

Pytanie 39

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok timera opóźniającego załączenie TON
B. blok timera opóźniającego wyłączenie TOF
C. blok licznika impulsów zliczającego w dół CTD
D. blok licznika impulsów zliczającego w górę CTU
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 40

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. N4
B. V2
C. V3
D. N2
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.