Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:23
  • Data zakończenia: 7 grudnia 2025 11:45

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W instalacji elektrycznej z napięciem nominalnym 230 V, skonstruowanej w systemie TN-S, działa urządzenie, które należy do pierwszej klasy ochronności. Jakie środki powinny być wdrożone, aby zapewnić dodatkową ochronę przed porażeniem w tym urządzeniu?

A. Połączyć obudowę z przewodem ochronnym
B. Wykonać lokalne połączenia wyrównawcze
C. Ułożyć dodatkową warstwę izolacyjną na podłożu
D. Zainstalować transformator redukcyjny
Połączenie obudowy urządzenia z przewodem ochronnym jest kluczowym środkiem zabezpieczającym przed porażeniem elektrycznym w instalacjach elektrycznych. W przypadku urządzeń klasy I, które polegają na ochronie poprzez uziemienie, takie połączenie ma na celu zapewnienie, że w przypadku awarii izolacji, prąd upływowy zostanie skierowany do ziemi, co zminimalizuje ryzyko porażenia prądem. W instalacjach TN-S, gdzie przewód ochronny (PE) jest oddzielony od przewodu neutralnego (N), jest to szczególnie istotne. Przykładem praktycznym może być sprzęt AGD, jak lodówka czy pralka, które muszą mieć pewne połączenia ochronne, aby zapewnić bezpieczeństwo użytkowników. Standardy takie jak PN-IEC 60364 stanowią podstawę dla projektowania i wykonania instalacji elektrycznych, a także definiują wymagania dotyczące ochrony przed porażeniem elektrycznym, co podkreśla znaczenie właściwego połączenia obudowy z przewodem ochronnym.

Pytanie 2

Aby zidentyfikować miejsce o zwiększonej temperaturze obudów silników w wersji przeciwwybuchowej, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu pomiar temperatury nie powinien być wykonywany?

A. W centrum obudowy w rejonie skrzynki zaciskowej
B. W okolicy pokrywy wentylatora
C. Na końcu obudowy od strony napędowej
D. Na tarczy łożyskowej, od strony napędowej blisko pokrywy łożyskowej
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia bezpieczeństwa ich użytkowania. Zlokalizowanie odpowiedniego miejsca do pomiaru ma ogromne znaczenie, a obszar w pobliżu pokrywy wentylatora jest jednym z tych miejsc, które należy unikać. Wentylatory mają tendencję do generowania dodatkowego ciepła w wyniku tarcia oraz niewłaściwego przepływu powietrza, co może prowadzić do błędnych odczytów temperatury. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura obudowy silnika jest bardziej stabilna i reprezentatywna dla jego ogólnej pracy. Przykładem dobrych praktyk jest pomiar w pobliżu skrzynki zaciskowej, gdzie zazwyczaj nie występują dodatkowe czynniki wpływające na wyniki. Stosowanie się do tych zasad jest zgodne z normami takimi jak IEC 60079, które regulują kwestie bezpieczeństwa w obszarach zagrożonych wybuchem. Wspierają one zrozumienie, jak ważne jest prawidłowe lokalizowanie miejsc do pomiarów, aby uniknąć fałszywych alarmów i zapewnić bezpieczeństwo operacji.

Pytanie 3

Podczas przeglądu silnika elektrycznego stwierdzono nieprawidłowe działanie łożysk. Jakie mogą być tego skutki?

A. Zwiększenie poziomu hałasu
B. Zmniejszenie częstotliwości prądu
C. Zmniejszenie napięcia zasilania
D. Zmniejszenie momentu obrotowego
Nieprawidłowe działanie łożysk w silniku elektrycznym często prowadzi do zwiększenia poziomu hałasu. W praktyce, kiedy łożyska są uszkodzone lub zużyte, mogą generować dźwięki takie jak szumy, stukoty czy metaliczne odgłosy. Hałas ten jest wynikiem zwiększonego tarcia oraz nieprawidłowego ruchu elementów łożyska, co jest bezpośrednim skutkiem mechanicznych nieprawidłowości. W branży technicznej powszechnie uznaje się, że regularne monitorowanie poziomu hałasu jest istotnym elementem diagnostyki stanu technicznego łożysk. Moim zdaniem, to zwiększenie hałasu jest jednym z najbardziej oczywistych sygnałów, że coś niedobrego dzieje się z łożyskami. Dlatego też, standardy utrzymania maszyn, takie jak TPM (Total Productive Maintenance), kładą duży nacisk na regularne przeglądy i konserwację łożysk, by zapobiec poważniejszym awariom. Uwzględniając te praktyki, można znacznie wydłużyć żywotność maszyn i uniknąć kosztownych napraw czy przestojów produkcyjnych.

Pytanie 4

Jakie kroki należy podjąć, gdy całkowita wartość spadków napięć w systemie TN-S pomiędzy złączem ZKP a najodleglejszym gniazdem odbiorczym wynosi 9 V, w sieci elektrycznej o napięciu 230 V?

A. Zmniejszyć średnicę przewodów kabla WLZ
B. Pozostawić instalację zasilającą bez zmian
C. Zwiększyć średnicę przewodów kabla WLZ
D. Zwiększyć średnicę przewodów w instalacji wewnętrznej
Jak spojrzysz na te wartości, to suma spadków napięć w układzie TN-S, która wynosi 9 V przy napięciu znamionowym 230 V, jest w porządku. To mniej niż 5% dla obwodów oświetleniowych i jakieś 3% dla siłowych, więc nie ma potrzeby, by wprowadzać zmiany w instalacji. Chociaż warto czasem rzucić okiem na te spadki, bo bezpieczeństwo urządzeń to ważna sprawa. Jeśli spadki zaczynają być większe, to warto pomyśleć o zwiększeniu przekroju przewodów, ale w tej sytuacji nie ma takiej potrzeby. Wiesz, jak się montuje silniki elektryczne, to tam kluczowe jest, by kable były dobrze dobrane, żeby nie tracić energii. Normy PN-IEC 60364 to dobry punkt wyjścia do sprawdzenia, czy wszystko jest zrobione jak należy.

Pytanie 5

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=1,15 A
B. It=1,05 A
C. It=0,88 A
D. It=1,33 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 6

Aby ocenić kondycję techniczną przewodów wyrównawczych, należy zmierzyć między każdą dostępną częścią przewodzącą a najbliższym punktem głównego przewodu wyrównawczego

A. rezystancję przewodów
B. pojemność doziemną
C. spadek napięcia
D. natężenie prądu
Pomiar rezystancji przewodów wyrównawczych jest kluczowym elementem w ocenie ich stanu technicznego. Wyrównanie potencjałów w instalacjach elektrycznych ma na celu zwiększenie bezpieczeństwa oraz ochronę przed porażeniem prądem. W przypadku przewodów wyrównawczych, ich ciągłość oraz niski opór elektryczny są niezbędne, aby zapewnić skuteczne odprowadzanie prądów zwarciowych. Zgodnie z normami, takimi jak PN-HD 60364, powinny być one badane, aby weryfikować, że rezystancja nie przekracza określonych wartości, co może zapobiegać niebezpiecznym sytuacjom. Praktycznym przykładem jest pomiar rezystancji przewodu między punktami, gdzie przewody są połączone z ziemią lub innymi elementami instalacji. Wartości te powinny być rejestrowane i analizowane, aby zapewnić, że instalacja spełnia wymogi bezpieczeństwa oraz normy techniczne. W przypadku wykrycia wysokiej rezystancji, konieczne mogą być działania naprawcze, takie jak wymiana lub naprawa przewodów, co jest niezbędne dla prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 7

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Wyłącznie przed przeciążeniem
B. Przed przepięciem i przeciążeniem
C. Przed zwarciem i przeciążeniem
D. Wyłącznie przed zwarciem
Wkładki topikowe typu aM są zaprojektowane z myślą o ochronie przed zwarciem, co oznacza, że ich głównym zadaniem jest przerwanie obwodu w momencie, gdy prąd przekracza ustalone wartości, co może prowadzić do niebezpiecznych sytuacji. W przypadku zwarcia, prąd może gwałtownie wzrosnąć, co skutkuje dużym ryzykiem uszkodzenia instalacji oraz odbiorników. Zastosowanie wkładek topikowych aM jest zgodne z normami PN-EN 60269, które określają wymagania dla zabezpieczeń w obwodach elektrycznych. Warto pamiętać, że wkładki te nie chronią bezpośrednio przed przeciążeniem, które jest spowodowane długotrwałym przepływem prądu przekraczającym nominalne wartości, lecz jest regulowane przez inne mechanizmy zabezpieczające. Przykładem zastosowania wkładek aM jest ich użycie w obwodach zasilających silniki elektryczne, gdzie ochrona przed zwarciami jest kluczowa dla uniknięcia poważnych uszkodzeń.

Pytanie 8

Jakie jest minimalne natężenie prądu wymagane do pomiaru ciągłości przewodu ochronnego?

A. 500 mA
B. 400 mA
C. 200 mA
D. 100 mA
Wiesz, że minimalna wartość prądu do pomiaru ciągłości przewodów ochronnych wynosi 200 mA? To jak najbardziej zgodne z normami, m.in. IEC 60364 i wytycznymi Polskiego Komitetu Normalizacyjnego. Dzięki takiemu prądowi możesz skutecznie sprawdzić, czy nie ma żadnych przerw albo uszkodzeń w przewodach ochronnych. To mega ważne, bo takie usterki mogą prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych. Jak masz odpowiednie mierniki, jak multitesty, to łatwo możesz to wszystko sprawdzić. Na przykład w zakładach przemysłowych, gdzie przewody mogą być narażone na różne uszkodzenia, to 200 mA jest wręcz niezbędne, żeby zapewnić bezpieczeństwo. Pomiary te są kluczowe dla niezawodności instalacji i zapobiegają zagrożeniom związanym z prądem.

Pytanie 9

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Uszkodzone połączenia wyrównawcze miejscowe.
B. Zwarcie między przewodem neutralnym i fazowym.
C. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
D. Przebicie izolacji przewodu fazowego do metalowych rur.
Wybór niepoprawnej odpowiedzi często wynika z błędnego zrozumienia zasad działania instalacji elektrycznych oraz pomiarów napięcia. Przebicie izolacji przewodu fazowego do metalowych rur może sugerować, że izolacja jest w złym stanie, jednak w przypadku obecności napięcia na metalowych elementach, ważniejsze jest zrozumienie, że to nieprawidłowości w połączeniach wyrównawczych mogą być przyczyną takich zjawisk. Zwarcie między przewodem neutralnym a fazowym, choć groźne, nie tłumaczy obecności napięcia na metalowych elementach, które powinny być uziemione. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny to inny problem, który z kolei jest bardziej związany z bezpieczeństwem użytkowników, ale nie wyjaśnia zjawiska napięcia na metalowych rurach. Każda z tych opcji nie odnosi się w wystarczający sposób do problemu, który pojawia się w wyniku niewłaściwego działania połączeń wyrównawczych. W szczególności, nieprawidłowe myślenie prowadzi do pominięcia fundamentalnych zasad związanych z uziemieniem i ochroną przeciwporażeniową. Kluczowe jest, aby instalacje były projektowane i wykonane zgodnie z aktualnymi normami, a ich regularna kontrola zapewnia bezpieczeństwo i eliminację potencjalnych zagrożeń.

Pytanie 10

Jak można podnieść moc bierną indukcyjną oddawaną do sieci przez działającą w elektrowni prądnicę synchroniczną przy niezmiennej mocy czynnej?

A. Zmniejszając moment napędowy
B. Zwiększając moment napędowy
C. Zmniejszając prąd wzbudzenia
D. Zwiększając prąd wzbudzenia
Zwiększając prąd wzbudzenia prądnicy synchronicznej, można zwiększyć moc bierną indukcyjną wydawaną do sieci, zachowując stałą moc czynną. Prąd wzbudzenia kontroluje strumień magnetyczny w wirniku maszyny, a większy prąd wzbudzenia prowadzi do wzrostu tego strumienia. W rezultacie maszyna może wytwarzać więcej mocy biernej, co jest istotne w kontekście stabilności systemu elektroenergetycznego, szczególnie w przypadku dużych odbiorników mocy biernej. W praktyce, zwiększenie prądu wzbudzenia jest standardową metodą wykorzystywaną w elektrowniach, aby dostosować poziom mocy biernej do wymagań sieci. To podejście jest zgodne z zasadami zarządzania mocą bierną, które są kluczowe dla utrzymania równowagi energetycznej oraz jakości dostarczanej energii elektrycznej. Warto również zauważyć, że nadmierne zwiększenie prądu wzbudzenia może prowadzić do zjawiska nasycenia, dlatego operatorzy muszą starannie monitorować i regulować wartość wzbudzenia.

Pytanie 11

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 60 V
B. 12 V
C. 30 V
D. 25 V
Maksymalna dopuszczalna wartość skuteczna napięcia przemiennego do zasilania lamp oświetleniowych zainstalowanych w strefie 0 łazienki wynosi 12 V. Strefa 0 to obszar, w którym istnieje bezpośrednie ryzyko kontaktu z wodą, co stwarza większe zagrożenie porażeniem prądem. Z tego powodu normy elektryczne, takie jak PN-IEC 60364, nakładają restrykcje na używanie napięcia w tych strefach. Użycie niskiego napięcia, takiego jak 12 V, minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, które mogłyby prowadzić do porażenia prądem. W praktyce, lampy LED, które są zaprojektowane do pracy w takich warunkach, zwykle wykorzystują zasilacze transformujące napięcie sieciowe na 12 V, a ich instalacja jest zgodna z zasadami ochrony przeciwporażeniowej. Ponadto, stosowanie niskonapięciowych źródeł światła w strefie 0 jest nie tylko zgodne z przepisami, ale również sprzyja efektywności energetycznej oraz wydłuża żywotność urządzeń oświetleniowych.

Pytanie 12

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP4X
B. IP3X
C. IP2X
D. IP5X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 13

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
B. Zwarcie doziemne jednej fazy
C. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
D. Zawilgocenie izolacji przewodów AFL do odbiorców
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 14

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 7,7 Ω
B. 4,6 Ω
C. 8,0 Ω
D. 2,3 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V wynosząca 2,3 Ω jest zgodna z wymaganiami bezpieczeństwa, które zapewniają skuteczną ochronę przeciwporażeniową. W przypadku uszkodzenia izolacji, odpowiednia impedancja pętli zwarcia pozwala na szybkie wyłączenie zasilania przez wyłącznik nadprądowy, w tym przypadku typu C10. Zgodnie z normą PN-IEC 60364, szybkość wyłączenia zasilania jest kluczowa dla ochrony osób przed porażeniem prądem. Wyłącznik C10 ma charakterystykę, która zapewnia zadziałanie przy prądzie zwarciowym wynoszącym 10 A. W praktyce, im niższa impedancja pętli zwarcia, tym wyższy prąd zwarciowy, co przyspiesza zadziałanie wyłącznika. Przykładowo, przy impedancji 2,3 Ω, prąd zwarciowy wynosi około 174 A, co pozwala na zadziałanie wyłącznika w czasie nieprzekraczającym 0,4 sekundy. Takie wartości są zgodne z zasadami projektowania instalacji elektrycznych, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym.

Pytanie 15

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. koło pasowe
B. czujnik temperatury
C. klatka wirnika
D. wlot powietrza
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 16

Co oznacza symbol IP44 w kontekście ochrony urządzeń elektrycznych?

A. Ochronę przed pyłem oraz działaniem pary wodnej
B. Ochronę przed pełnym zanurzeniem w wodzie
C. Ochronę przed bezpośrednim działaniem promieni słonecznych
D. Ochronę przed ciałami stałymi większymi niż 1 mm oraz przed bryzgami wody z dowolnego kierunku
Symbol IP44 w kontekście ochrony urządzeń elektrycznych oznacza, że urządzenie jest zabezpieczone przed ciałami stałymi o średnicy większej niż 1 mm oraz przed bryzgami wody z dowolnego kierunku. Jest to standardowy sposób klasyfikacji stopnia ochrony zapewnianej przez obudowy urządzeń elektrycznych, określany przez normę IEC 60529. Pierwsza cyfra '4' oznacza, że urządzenie jest chronione przed cząstkami stałymi większymi niż 1 mm, co jest istotne w kontekście ochrony przed kurzem, pyłem czy nawet niewielkimi owadami. Druga cyfra '4' wskazuje na ochronę przed wodą bryzgającą z dowolnego kierunku, co jest istotne w środowiskach, gdzie urządzenie może być narażone na deszcz lub inne źródła wilgoci, ale nie jest przewidziane do zanurzenia. Tego rodzaju ochrona jest szczególnie ważna w przypadku instalacji zewnętrznych lub w miejscach o podwyższonej wilgotności, gdzie niezawodność sprzętu elektrycznego jest kluczowa dla bezpieczeństwa i ciągłości pracy. W praktyce, wybór odpowiedniej klasy IP pozwala na dostosowanie urządzenia do specyficznych warunków pracy, zapewniając jego długowieczność i niezawodność, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 17

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Uprząż ochronna
B. Buty robocze
C. Kask ochronny
D. Rękawice ochronne
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 18

Jakim skrótem określa się w obowiązujących normach odnoszących się do instalacji elektrycznych systemy ochrony od piorunów?

A. LPS
B. LPL
C. SPD
D. SPZ
Odpowiedź 'LPS' oznacza 'Lightning Protection System', co w języku polskim można przetłumaczyć jako 'system ochrony odgromowej'. Jest to termin określający zestaw rozwiązań technicznych mających na celu zabezpieczenie obiektów przed skutkami wyładowań atmosferycznych. W kontekście aktualnych norm, takich jak norma PN-EN 62305, systemy LPS są projektowane i instalowane w celu minimalizacji ryzyka uszkodzeń strukturalnych oraz zapewnienia bezpieczeństwa ludzi i mienia. Przykładem zastosowania LPS może być budynek użyteczności publicznej, gdzie zainstalowane są przewody odgromowe, złącza uziemiające oraz elementy ochrony wewnętrznej, które współpracują w celu skutecznego odprowadzania energii odgromowej w sposób kontrolowany. Dodatkowo, zgodność z normami międzynarodowymi, takimi jak IEC 62305, zapewnia, że systemy te wykonane są zgodnie z najlepszymi praktykami inżynieryjnymi, co zwiększa ich efektywność oraz bezpieczeństwo eksploatacji.

Pytanie 19

W jakim trybie pracy silnik asynchroniczny osiąga najmniejszy współczynnik mocy?

A. Obciążenia znamionowego
B. Zwarcia awaryjnego
C. Zwarcia pomiarowego
D. Biegu jałowego
W stanie biegu jałowego silnik asynchroniczny pracuje bez obciążenia, co prowadzi do niskiego współczynnika mocy. W tym trybie, silnik zużywa moc bierną, co skutkuje niską efektywnością energetyczną. W rzeczywistości, współczynnik mocy może wynosić zaledwie 0,1 do 0,2, co oznacza, że tylko niewielka część energii elektrycznej jest przekształcana w moc użyteczną. Zastosowanie tego trybu jest ograniczone, ale w niektórych sytuacjach, jak w przypadku urządzeń uruchamianych w warunkach niskiego obciążenia, mogą występować momenty pracy w biegu jałowym. W praktyce, dla poprawy efektywności energetycznej, często stosuje się kondensatory, które kompensują moc bierną, co pozwala zwiększyć współczynnik mocy do bardziej akceptowalnych wartości. Ponadto, znajomość tego zjawiska jest kluczowa przy projektowaniu układów zasilania oraz przy wyborze odpowiednich urządzeń i komponentów w systemach elektronicznych i elektrycznych, co jest zgodne z normami takimi jak IEC 60034 dotyczące maszyn elektrycznych.

Pytanie 20

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Zabrudzony komutator
B. Przerwa w obwodzie twornika
C. Wystająca izolacja między działkami komutatora
D. Nieodpowiednio dobrane szczotki
Przerwa w obwodzie twornika jest najpoważniejszym problemem, który może prowadzić do braku reakcji silnika na załączenie napięcia zasilania. W silniku szeregowym prądu stałego, twornik jest kluczowym elementem, który przekształca energię elektryczną w energię mechaniczną. Przerwa w obwodzie twornika oznacza, że prąd nie ma możliwości przepływu przez uzwojenie, co skutkuje brakiem momentu obrotowego i zatrzymaniem silnika. Taki stan może być spowodowany różnymi czynnikami, takimi jak uszkodzenie izolacji, korozja styków, czy mechaniczne uszkodzenia przewodów. W praktyce, aby zapobiegać takim problemom, zaleca się regularne przeglądy silników, zwłaszcza w zastosowaniach dorywczych, gdzie silnik może być narażony na dłuższe okresy bezczynności. W przypadku wykrycia przerwy, należy przeprowadzić diagnostykę, aby zidentyfikować miejsce usterki i podjąć odpowiednie kroki naprawcze, zgodne z branżowymi standardami serwisowymi, aby zapewnić długoterminowe i niezawodne działanie urządzenia. Dodatkowo, znajomość zasad działania silników prądu stałego oraz ich budowy, pozwala na szybsze rozwiązywanie problemów i podejmowanie skutecznych działań prewencyjnych.

Pytanie 21

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Tylko po przeprowadzonym remoncie budynku
B. Nie rzadziej niż co 10 lat
C. Nie rzadziej niż co 5 lat
D. Tylko po wymianie elementów instalacji
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 22

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Prądnicy tachometrycznej.
B. Higrometru termo.
C. Tensometru mostkowego.
D. Pirometru
Prądnica tachometryczna to przyrząd pomiarowy, który jest powszechnie stosowany do pomiaru prędkości obrotowej wałów silników. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału, co pozwala na łatwe i precyzyjne odczyty. Przykładem zastosowania prądnicy tachometrycznej są silniki elektryczne w przemyśle, gdzie monitorowanie prędkości obrotowej jest kluczowe dla zapewnienia optymalnej pracy maszyny oraz ochrony przed przeciążeniem. Standardy branżowe, takie jak IEC 60034, zalecają stosowanie prądnic tachometrycznych w systemach automatyzacji i sterowania, co podkreśla ich znaczenie w zapewnianiu efektywności energetycznej i bezpieczeństwa eksploatacji. Dodatkowo, prądnice tachometryczne mogą być używane w systemach feedbackowych, co pozwala na automatyczne dostosowywanie parametrów pracy silnika w odpowiedzi na zmieniające się warunki operacyjne.

Pytanie 23

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 1 do 6
B. Od 47 do 52
C. Od 7 do 14
D. Od 19 do 26
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 24

W jakim schemacie sieciowym nie można używać wyłączników różnicowoprądowych jako zabezpieczeń przed porażeniem w przypadku uszkodzenia?

A. W systemie TT
B. W systemie IT
C. W systemie TN-C
D. W systemie TN-S
Układ TN-C (z ang. Terre Neutral Combined) charakteryzuje się tym, że neutralny przewód (N) i przewód ochronny (PE) są połączone w jednym przewodzie (PEN) na całej długości instalacji. Z tego powodu, wyłączniki różnicowoprądowe (RCD) nie mogą być stosowane jako elementy ochrony przeciwporażeniowej, ponieważ w przypadku uszkodzenia nie ma możliwości prawidłowego pomiaru prądów różnicowych. W układach TN-C, uszkodzenie przewodu PEN może prowadzić do niebezpiecznej sytuacji, gdzie brak separacji przewodów ochronnych i neutralnych utrudnia detekcję nieprawidłowości. Przykładem stosowania wyłączników różnicowoprądowych są układy TN-S, gdzie przewody N i PE są oddzielone, co umożliwia skuteczne monitorowanie prądów różnicowych. Warto również zaznaczyć, że w kontekście przepisów, zgodnie z normą PN-EN 61008-1, RCD powinny być używane w odpowiednich układach, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym, co w układzie TN-C nie jest możliwe.

Pytanie 25

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Pogorszenie się stanu izolacji
B. Pogorszenie się stanu mechanicznego złącz i połączeń
C. Brak ciągłości połączeń
D. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
Pogorszenie się stanu mechanicznego złącz i połączeń jest kluczowym elementem, który można zlokalizować podczas oględzin instalacji elektrycznej. Wszelkie uszkodzenia mechaniczne złącz mogą prowadzić do zwiększonego oporu, co z kolei może skutkować przegrzewaniem się złącz oraz potencjalnymi awariami systemu. W praktyce, obserwacja stanu mechanicznego złącz pozwala na wczesne wykrywanie problemów, które mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy pożary. Na przykład, złącza, które wykazują oznaki korozji lub zużycia, powinny być wymieniane, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej. W branży elektrycznej istnieją określone standardy, takie jak normy IEC 60364, które zalecają regularne przeglądy oraz konserwację elementów instalacji, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników. Przeprowadzanie systematycznych inspekcji złącz i połączeń jest zatem nie tylko zalecane, ale wręcz konieczne w kontekście utrzymania instalacji elektrycznej w dobrym stanie.

Pytanie 26

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy i drugi działają prawidłowo.
B. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
C. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
D. pierwszy i drugi działają nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 27

Jaką maksymalną wartość prądu ustawioną na przekaźniku termobimetalowym można zastosować w obwodzie zasilania silnika asynchronicznego o parametrach znamionowych UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It = 1,33 A
B. It = 1,15 A
C. It = 0,88 A
D. It = 1,05 A
Odpowiedź It = 1,15 A jest prawidłowa, ponieważ przekaźniki termobimetalowe są stosowane do zabezpieczania silników elektrycznych przed przeciążeniem. W przypadku silnika o mocy 0,37 kW i prądzie znamionowym 1,05 A, kluczowe jest, aby wartość prądu zadziałania przekaźnika była odpowiednio wyższa od prądu znamionowego, jednak nie możemy jej ustawić zbyt wysoko, aby nie narazić silnika na przeciążenie. Ustalenie wartości na 1,15 A zapewnia odpowiedni margines, który pozwala na chwilowe przeciążenia, ale jednocześnie chroni silnik przed długotrwałym działaniem w warunkach przeciążenia. W praktyce, przekaźniki termobimetalowe są często ustawiane na wartości 1,1-1,2-krotności prądu znamionowego, co odpowiada normom bezpieczeństwa i wydajności. Stosując taką wartość, możemy zminimalizować ryzyko uszkodzenia silnika oraz zwiększyć jego trwałość i niezawodność. Przykładem zastosowania mogą być układy zasilania silników w przemysłowych aplikacjach, gdzie kontrola prądu jest kluczowa dla zachowania efektywności operacyjnej.

Pytanie 28

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojenia V1-V2.
B. uzwojenia U1-U2.
C. uzwojeń U1-U2 i V1-V2.
D. uzwojeń U1-U2 i W1-W2.
Odpowiedź dotycząca uzwojenia U1-U2 jest poprawna, ponieważ pomiar rezystancji izolacji wykazuje, że wartość ta wynosi 4000 kΩ, co jest najniższą wartością spośród wszystkich analizowanych uzwojeń. W kontekście norm dotyczących izolacji w silnikach asynchronicznych, taka rezystancja jest nieprzystosowana do bezpiecznego użytkowania. Zgodnie z normami, rezystancja izolacji powinna być jak najwyższa, aby zminimalizować ryzyko przebicia izolacji i zapewnić właściwe działanie silnika. W praktyce, w przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie dodatkowych badań, w tym testów wytrzymałościowych lub wymiany uszkodzonego uzwojenia. Przykładowo, w silnikach przemysłowych często stosuje się procedury rutynowej konserwacji, które obejmują regularne pomiary rezystancji izolacji, aby zapewnić, że silnik działa w optymalnych warunkach. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się eksploatacją i utrzymaniem maszyn, co pozwala unikać kosztownych przestojów oraz awarii.

Pytanie 29

Jaką czynność należy wykonać podczas konserwacji instalacji elektrycznej w biurze?

A. Zamienić przewody w rurach winidurowych
B. Zweryfikować działanie wyłącznika różnicowoprądowego za pomocą przycisku testowego
C. Sprawdzić średnicę wszystkich przewodów w instalacji
D. Wymienić wszystkie gniazda elektryczne
Sprawdzanie wyłącznika różnicowoprądowego przyciskiem testowym jest kluczowym etapem okresowej konserwacji instalacji elektrycznej. Wyłączniki różnicowoprądowe (RCD) mają za zadanie zabezpieczenie przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Użycie przycisku testowego pozwala na symulację sytuacji, w której RCD powinien zareagować, co potwierdza jego sprawność. Regularne testowanie tych urządzeń jest zgodne z normą PN-EN 61008-1, która zaleca, aby RCD były testowane co najmniej raz na 3 miesiące. W praktyce, jeżeli wyłącznik nie wyłącza obwodu po naciśnięciu przycisku testowego, oznacza to, że wymaga on natychmiastowej wymiany lub naprawy, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. W przypadku biura, gdzie pracuje wiele osób, poziom bezpieczeństwa elektrycznego powinien być szczególnie priorytetowy. Dodatkowo, zaleca się prowadzenie dokumentacji wykonanych testów.

Pytanie 30

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 2 lata
B. 5 lat
C. 3 lata
D. 1 rok
Odpowiedź '5 lat' jest jak najbardziej zgodna z przepisami prawa i normami bezpieczeństwa, które dotyczą elektryki w budynkach. Ustalono ten okres, żeby zapewnić bezpieczeństwo dla użytkowników i zmniejszyć ryzyko awarii. Regularne przeglądy co pięć lat pomagają dostrzegać ewentualne usterki, zużycie materiałów albo niezgodności ze standardami. W budynkach wielorodzinnych, gdzie mieszka dużo ludzi, ważne jest, żeby instalacje były nie tylko sprawne, ale też bezpieczne. Jakby przeglądy były robione rzadziej, mogłoby to spowodować poważne zagrożenia, jak pożar czy porażenie prądem. W praktyce dobrze jest nie tylko trzymać się tej pięcioletniej zasady, ale i wprowadzać częstsze przeglądy, jeśli widzisz, że instalacja ma jakieś oznaki zużycia albo w przypadku obiektów, które są w większym ryzyku.

Pytanie 31

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
B. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
D. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
Zmniejszenie napięcia zasilającego silnik indukcyjny prowadzi do obniżenia momentu obrotowego, co skutkuje zmniejszeniem przeciążalności silnika. Tego rodzaju silniki są projektowane w taki sposób, aby pracować w określonym zakresie napięcia. Obniżenie napięcia wpływa negatywnie na wydajność silnika, co może prowadzić do błędnego założenia, że przeciążalność wzrośnie. Odpowiedzi, które sugerują zwiększenie przeciążalności silnika, wynikają z nieporozumienia dotyczącego charakterystyki pracy silników indukcyjnych. Zwiększenie prądu pobieranego z sieci nie jest w rezultacie zjawiskiem korzystnym, gdyż może prowadzić do przegrzewania się uzwojeń i uszkodzenia izolacji. Producenci silników podkreślają, że przy spadku napięcia musimy też brać pod uwagę spadek sprawności samego urządzenia. Zmniejszenie napięcia nie tylko wpływa na prąd, ale również na aspekty termiczne silnika, co jest szczególnie istotne w kontekście standardów bezpieczeństwa. W praktyce, przy obciążeń przekraczających nominalne, silnik nie jest w stanie przenieść momentu obrotowego, co prowadzi do ryzyka jego uszkodzenia. W branżach, gdzie wymagane są precyzyjne parametry pracy, takie jak przemysł spożywczy czy chemiczny, zachowanie odpowiednich wartości napięcia zasilania jest kluczowe dla bezpieczeństwa i efektywności procesów produkcyjnych.

Pytanie 32

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie międzyzwojowe w uzwojeniu W1 – W2
B. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
C. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
D. przerwę w uzwojeniu U1 – U2
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 33

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B25
B. B16
C. B32
D. B20
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 34

Które z wymienionych urządzeń służy do ochrony przewodów w systemach elektrycznych przed skutkami zwarć?

A. Przekaźnik termiczny
B. Bezpiecznik
C. Wyłącznik różnicowoprądowy
D. Odłącznik
Bezpiecznik to kluczowe urządzenie w instalacjach elektrycznych, które chroni obwody przed skutkami zwarć oraz przepięć. Jego główną funkcją jest przerwanie obwodu w momencie, gdy natężenie prądu przekroczy ustaloną wartość, co zapobiega uszkodzeniu urządzeń oraz minimalizuje ryzyko pożaru. W praktyce, bezpieczniki są szeroko stosowane w domowych i przemysłowych instalacjach elektrycznych oraz są zgodne z normami, takimi jak PN-EN 60947-2. Standardowe zastosowanie bezpiecznika polega na jego instalacji w rozdzielniach elektrycznych, gdzie zapewnia on ochronę dla poszczególnych obwodów. Warto również zwrócić uwagę na różne typy bezpieczników, w tym bezpieczniki topikowe i automatyczne, które mają różne zastosowania w zależności od charakterystyki obciążenia. Dobre praktyki obejmują regularne kontrole i wymianę bezpieczników, aby zagwarantować ich skuteczność oraz niezawodność działania w sytuacjach awaryjnych.

Pytanie 35

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zmniejszenia prędkości obrotowej silników
B. Zwiększenia napięcia znamionowego
C. Zmniejszenia strat energii i poprawy współczynnika mocy
D. Zwiększenia częstotliwości prądu
Kompensacja mocy biernej jest kluczowym zagadnieniem w kontekście instalacji przemysłowych, ponieważ wpływa bezpośrednio na efektywność energetyczną systemu. Moc bierna to ta część zużywanej energii elektrycznej, która nie wykonuje użytecznej pracy, ale jest niezbędna do podtrzymania pola elektromagnetycznego w urządzeniach takich jak transformatory i silniki indukcyjne. Zastosowanie kompensacji mocy biernej, zazwyczaj za pomocą baterii kondensatorów, prowadzi do poprawy współczynnika mocy, co oznacza, że więcej dostarczonej energii jest wykorzystywane na pracę użyteczną. Dzięki temu zmniejszają się straty energii w systemie, co przekłada się na niższe rachunki za energię i zmniejszenie obciążenia sieci energetycznej. Co więcej, poprawa współczynnika mocy może również prowadzić do zmniejszenia opłat za moc bierną, które są często naliczane przez dostawców energii jako kara za niską efektywność energetyczną. Dlatego kompensacja mocy biernej jest nie tylko korzystna z punktu widzenia efektywności, ale również może przynieść wymierne korzyści finansowe dla przedsiębiorstw.

Pytanie 36

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. charakterystyki stanu jałowego
B. izolacji łożysk
C. rezystancji uzwojeń
D. drgań
Pomiar rezystancji uzwojeń silnika indukcyjnego jest kluczowym etapem w diagnostyce stanu technicznego tego urządzenia. Wartość rezystancji uzwojeń pozwala ocenić ich stan, a także zidentyfikować ewentualne uszkodzenia. W praktyce, pomiar ten powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 60034-1, które określają metody badania właściwości elektrycznych maszyn elektrycznych. Rezystancja uzwojeń wpływa na straty mocy, a ich zbyt wysoka wartość może wskazywać na problemy z przewodami lub złączeniami. Regularne monitorowanie rezystancji uzwojeń umożliwia wczesne wykrywanie problemów, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności pracy maszyny. W praktyce, wartości rezystancji uzwojeń porównuje się z danymi producenta oraz z wynikami pomiarów z przeszłości, co pozwala na identyfikację trendów i potencjalnych zagrożeń dla pracy silnika.

Pytanie 37

Podczas naprawy obwodu zasilania silnika indukcyjnego trójfazowego o mocy 7,5 kW technik ma wymienić uszkodzony przewód OWY 4×4 mm2 450 V/750 V na nowy. Która z poniższych właściwości przewodu H03RR-F 4G4 uniemożliwia jego wykorzystanie w miejsce dotychczasowego?

A. Zbyt mały przekrój znamionowy żył przewodu
B. Zbyt niskie napięcie znamionowe przewodu
C. Niewłaściwy materiał izolacji przewodu
D. Brak żyły izolowanej w kolorze żółtozielonym
Zastosowanie przewodu H03RR-F 4G4 w miejsce przewodu OWY 4×4 mm² 450 V/750 V jest niewłaściwe, ponieważ jego napięcie znamionowe wynosi zaledwie 300 V/500 V, co jest zbyt niskie w kontekście wymagań dla obwodu zasilania silnika indukcyjnego o mocy 7,5 kW. Przewody muszą być dobierane zgodnie z maksymalnym napięciem, jakie mogą występować w danej instalacji. Standardy, takie jak PN-IEC 60228, określają dopuszczalne wartości dla przewodów, a dla silników często rekomendowane jest używanie przewodów o wyższym napięciu znamionowym, aby zapewnić nie tylko sprawność, ale również bezpieczeństwo użytkowania. W praktyce, stosowanie przewodów o adekwatnym napięciu znamionowym chroni przed ryzykiem przebicia izolacji, co mogłoby prowadzić do awarii urządzeń oraz potencjalnie niebezpiecznych sytuacji. W przypadku, gdyby przewód uległ uszkodzeniu, niskie napięcie znamionowe mogłoby nie zapewnić odpowiedniej ochrony, dlatego kluczowe jest przestrzeganie norm branżowych przy doborze materiałów. Właściwy dobór przewodów nie tylko wpływa na wydajność instalacji, ale również na bezpieczeństwo operacyjne, co jest priorytetem w każdej branży związanej z instalacjami elektrycznymi.

Pytanie 38

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-C
B. TN-S
C. IT
D. TT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 39

Jakie urządzenie służy do pomiaru obrotów wału silnika?

A. Induktor
B. Anemometr
C. Prądnica tachometryczna
D. Przekładnik napięciowy
Prądnica tachometryczna to urządzenie, które służy do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do szybkości obrotu. Działa na zasadzie indukcji elektromagnetycznej, co oznacza, że obracający się wał silnika powoduje zmiany w strumieniu magnetycznym, co z kolei generuje napięcie. Jest to kluczowe w aplikacjach, gdzie precyzyjny pomiar prędkości obrotowej jest niezbędny, na przykład w automatyce przemysłowej, napędach elektrycznych oraz inżynierii mechanicznej. Użycie prądnicy tachometrycznej pozwala na ciągłe monitorowanie prędkości, co jest istotne dla zapewnienia optymalnego przebiegu procesów, jak również dla ochrony urządzeń przed przeciążeniem. W standardach przemysłowych, takich jak ISO 9001, zaleca się stosowanie takich rozwiązań dla zwiększenia niezawodności i efektywności operacyjnej.

Pytanie 40

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Czterokrotnie wzrośnie
B. Dwukrotnie zmniejszy się
C. Dwukrotnie wzrośnie
D. Czterokrotnie zmniejszy się
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.