Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 28 października 2025 08:32
  • Data zakończenia: 28 października 2025 09:06

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakiego typu kabel wykorzystuje się do przesyłania cyfrowych sygnałów audio zgodnie ze standardem TOSLINK?

A. Kabel symetryczny
B. Kabel koncentryczny
C. Kabel światłowodowy
D. Kabel skrętkowy
Odpowiedź 'światłowodowy' jest poprawna, ponieważ TOSLINK (Toshiba Link) to standard technologii audio, który pozwala na przesyłanie cyfrowych sygnałów audio za pomocą światłowodów. Kabel światłowodowy jest w stanie przesyłać dane szybko i z minimalnymi stratami sygnału, co czyni go idealnym rozwiązaniem w przypadku przesyłania audio wysokiej jakości, takiego jak dźwięk przestrzenny czy sygnał bezstratny. Przykłady zastosowania kabla TOSLINK obejmują połączenia między odtwarzaczami Blu-ray, telewizorami i systemami audio, co zapewnia czysty dźwięk. Dobre praktyki branżowe zalecają korzystanie z kabli światłowodowych w zastosowaniach, gdzie istotna jest jakość dźwięku oraz minimalizacja zakłóceń elektromagnetycznych. Dodatkowo, kable światłowodowe są odporne na wpływ zakłóceń zewnętrznych, co jest istotne w środowiskach z dużą ilością urządzeń elektronicznych.

Pytanie 5

Parametry techniczne podane w tabeli określają czujkę PIR

Parametry techniczne:
• Metoda detekcji: PIR
• Zasięg detekcji: 24 m (po 12 m na każdą stronę)
• Ilość wiązek: 4 (po 2 na każdą stronę)
• Zasilanie: 10 ÷ 28 V
• Pobór prądu: 38 mA (maks.)
• Temperatura pracy [st. C]: -20 do +50
• Stopień ochrony obudowy: IP55
• Wysokość montażu: 0,8 ÷1,2 m
• Masa: 400 g
A. tylko wewnętrzna o wysokości montażu 0,8-1,2 m
B. zewnętrzna o poborze prądu 50 mA
C. tylko wewnętrzna o napięciu zasilania 12 V
D. zewnętrzna o wysokości montażu 0,8-1,2 m
Odpowiedź "zewnętrzna o wysokości montażu 0,8-1,2 m" jest prawidłowa, ponieważ parametry techniczne czujki PIR wskazują, że jej wysokość montażu mieści się w tym zakresie. Wysokość montażu czujek PIR jest kluczowa dla ich efektywności, ponieważ niewłaściwe umiejscowienie może prowadzić do ograniczonego zasięgu detekcji. Właściwy montaż czujki w zakresie od 0,8 do 1,2 m zapewnia optymalne pole widzenia oraz umożliwia efektywne wykrywanie ruchu w obszarze, który chcemy monitorować. Dodatkowo, parametry takie jak stopień ochrony IP55 oraz zakres temperatury pracy od -20 do +50°C wskazują, że czujka jest przystosowana do warunków zewnętrznych, co czyni ją odpowiednim wyborem do zastosowań na zewnątrz budynków. W praktyce, czujki PIR znajdują zastosowanie w systemach alarmowych, monitoringu obiektów oraz automatyzacji budynków, gdzie ich właściwe umiejscowienie jest kluczowe dla skuteczności działania systemu bezpieczeństwa.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Przestawione na rysunku elementy to

Ilustracja do pytania
A. kondensatory.
B. potencjometry.
C. fotorezystory.
D. dławiki.
Dławiki, które rozpoznajesz na zdjęciu, to pasywne komponenty elektroniczne, których głównym zadaniem jest tłumienie zakłóceń w obwodach elektrycznych oraz stabilizacja prądów. Działają one na zasadzie indukcji elektromagnetycznej, co sprawia, że skutecznie ograniczają zmiany prądu w czasie, co jest niezwykle przydatne w aplikacjach, gdzie stabilność energii jest kluczowa, na przykład w zasilaczach czy filtrach. Dławiki są wykorzystywane w różnych układach elektronicznych, od prostych urządzeń domowych po skomplikowane systemy przemysłowe. Kluczowym elementem dławika jest uzwojenie na rdzeniu, który może być wykonany z różnych materiałów ferromagnetycznych, co wpływa na jego charakterystyki. Dlatego w inżynierii elektrycznej stosuje się standardy dotyczące projektowania dławików, aby zapewnić ich efektywność w redukcji zakłóceń i optymalizacji działania układów elektronicznych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Ilość stabilnych stanów przerzutnika astabilnego wynosi

A. 1
B. 0
C. ∞
D. 2
Odpowiedzi 1, 2 i 4 opierają się na nieprawidłowym zrozumieniu działania przerzutnika astabilnego. Przyjmowanie, że przerzutnik astabilny ma dwa stany stabilne, jest mylne, ponieważ jego natura polega na ciągłej oscylacji między dwoma stanami bez osiągania stabilności. Odpowiedź sugerująca istnienie jednego stanu stabilnego również nie znajduje uzasadnienia, ponieważ w przerzutniku astabilnym nie ma zadeklarowanego stanu, do którego układ mógłby się ustawić i pozostać w nim. Z kolei odpowiedź sugerująca nieskończoną liczbę stanów stabilnych wydaje się być wynikiem nieporozumienia dotyczącego pojęcia stabilności w kontekście przerzutników; w rzeczywistości przerzutnik astabilny zmienia stan nieustannie w regularnych odstępach czasu, co nie ma nic wspólnego z pojęciem stabilności. Typowym błędem myślowym jest mylenie przerzutnika astabilnego z przerzutnikiem bistabilnym, który rzeczywiście może mieć dwa stabilne stany. W praktyce należy uważnie rozróżniać te dwa typy przerzutników w kontekście projektowania i analizy układów elektronicznych, aby unikać nieporozumień i błędów w implementacji. Niezrozumienie tych podstawowych różnic może prowadzić do nieefektywnego projektowania systemów oraz błędnych założeń w automatyzacji procesów.

Pytanie 11

Najczęściej wykorzystywany do tworzenia sieci komputerowej LAN przewód UTP skrętka jest zbudowany z

A. trzech par żył w przewodzie
B. czterech par żył w przewodzie
C. dwóch par żył w przewodzie
D. jednej pary żył w przewodzie
Przewód UTP (Unshielded Twisted Pair) używany w budowie sieci LAN składa się z czterech par przewodów, co jest zgodne z najnowszymi standardami sieciowymi, takimi jak 10BASE-T, 100BASE-TX oraz 1000BASE-T. W każdej parze żył, przewody są skręcone ze sobą, co redukuje zakłócenia elektromagnetyczne oraz poprawia jakość sygnału. Dzięki czterem parom możliwe jest jednoczesne przesyłanie danych w obu kierunkach, co zwiększa przepustowość i efektywność komunikacji w sieci. Standardy takie jak TIA/EIA-568 określają zasady dotyczące użycia przewodów UTP oraz ich okablowania, co jest kluczowe przy projektowaniu nowoczesnych sieci komputerowych. W praktyce, stosowanie skrętki UTP z czterema parami żył pozwala na osiągnięcie dużej szybkości transmisji, co jest szczególnie istotne w środowiskach biurowych czy w centrach danych, gdzie wymagana jest wysoka wydajność sieci. Dodatkowo, zrozumienie struktury przewodu UTP ma kluczowe znaczenie dla instalacji oraz diagnostyki problemów w sieci.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Określ maksymalny czas realizacji prac związanych z montażem uchwytu ściennego anteny, jeśli wiercenie
4 otworów w ścianie trwa 20 min ±15%, a zamocowanie uchwytu przy użyciu 4 kołków rozporowych
12 min ±10%.

A. 33,2 min
B. 36,2 min
C. 32,0 min
D. 35,0 min
Odpowiedź 36,2 min to wynik poprawnego obliczenia maksymalnego czasu trwania robót posadowienia uchwytu ściennego antenowego. W pierwszym kroku obliczamy czas wiercenia czterech otworów. Czas ten wynosi 20 minut z tolerancją ±15%, co oznacza, że maksymalny czas wiercenia wynosi 20 minut + 3 minut (15% z 20 minut), co daje 23 minuty. W drugim kroku obliczamy czas zamocowania uchwytu z użyciem czterech kołków rozporowych. Czas ten wynosi 12 minut z tolerancją ±10%, co oznacza, że maksymalny czas zamocowania to 12 minut + 1,2 minut (10% z 12 minut), co daje 13,2 minuty. Suma maksymalnego czasu wiercenia i maksymalnego czasu zamocowania wynosi 23 minuty + 13,2 minuty = 36,2 minuty. Praktyczne zastosowanie tej wiedzy jest kluczowe w planowaniu czasu pracy oraz budżetów projektowych, a także pozwala na efektywne zarządzanie zasobami w projekcie budowlanym, co jest zgodne z dobrymi praktykami w zarządzaniu projektami budowlanymi oraz normami branżowymi.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Zachowanie odpowiedniej polaryzacji w trakcie montażu elementów na płytce drukowanej wymaga element elektroniczny pokazany na rysunku

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Poprawna odpowiedź to D, ponieważ dioda jest elementem elektronicznym, który wymaga zachowania odpowiedniej polaryzacji podczas montażu. Dioda ma dwa terminale: anodę i katodę. Anoda to terminal, przez który prąd wpływa do diody, a katoda to terminal, przez który prąd wypływa. Właściwe podłączenie tych terminali jest kluczowe dla prawidłowego działania układu, ponieważ odwrotne podłączenie spowoduje, że dioda nie przewodzi prądu, co może prowadzić do awarii całego układu. W praktyce, w przypadku układów LED, niewłaściwe podłączenie diody może skutkować jej uszkodzeniem. Zgodnie z najlepszymi praktykami montażu, zawsze należy oznaczać terminale diod, aby uniknąć pomyłek. Zachowanie odpowiedniej polaryzacji jest również istotne w kontekście zgodności z normami przemysłowymi, które definiują zasady projektowania i montażu elektroniki, co przekłada się na niezawodność produktów. Na przykład, w elektronice użytkowej, takich jak telewizory czy komputery, błędne podłączenie diod może prowadzić do znacznych kosztów naprawy i obniżenia jakości produktu.

Pytanie 17

Z uwagi na efektywność połączenia wzmacniacza z głośnikiem, konieczne jest, aby impedancja wyjściowa wzmacniacza była

A. wyższa od impedancji głośnika
B. jak najniższa
C. niższa od impedancji głośnika
D. zgodna z impedancją głośnika
Odpowiedź, którą wskazałeś, jest całkowicie na miejscu. W audio ważne jest, żeby impedancja wyjściowa wzmacniacza była taka sama jak impedancja głośnika. Dzięki temu energia jest przesyłana efektywnie, a dźwięk jest lepszej jakości. Gdy impedancje są zgodne, wzmacniacz i głośnik dobrze ze sobą współpracują, co minimalizuje straty energii. W praktyce, tak zwane dopasowanie impedancyjne ma ogromne znaczenie, zwłaszcza w systemach nagłośnieniowych, jak na koncertach czy w różnych instalacjach audio. Dobrze dobrany sprzęt pozwala uniknąć problemów z przesterowaniem, co może prowadzić do uszkodzeń. Dlatego warto zwracać uwagę na impedancję przy doborze wzmacniaczy i głośników – to podstawowa wiedza dla każdego, kto zajmuje się dźwiękiem.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. modemu.
B. przełącznika.
C. mostu.
D. routera.
Zgadza się, na rysunku przedstawiono symbol graficzny routera. Router jest kluczowym urządzeniem w sieciach komputerowych, pełniącym funkcję łączenia różnych sieci, a także zarządzania ruchem danych pomiędzy nimi. Symbol routera, często przedstawiany jako okrąg z czterema strzałkami skierowanymi w różne kierunki, odzwierciedla jego zdolność do kierowania pakietów danych w wielu kierunkach. Przykładami zastosowania routerów są domowe sieci Wi-Fi, które umożliwiają wielu urządzeniom łączenie się z internetem, oraz sieci korporacyjne, gdzie routery łączą różne lokalizacje geograficzne. W kontekście standardów branżowych, routery często współpracują z protokołami takimi jak OSPF, BGP czy RIP, co pozwala na efektywne zarządzanie trasowaniem pakietów. Zrozumienie roli routera w sieci jest kluczowe dla każdej osoby zajmującej się administracją sieci oraz projektowaniem architektury sieciowej.

Pytanie 28

Jaką rolę pełni fotorezystor w wyłączniku zmierzchowym?

A. czujnika wilgoci
B. regulatora temperatury
C. detektora drgań
D. detektora światła widzialnego
Fotorezystor, pełniący funkcję detektora światła widzialnego w wyłączniku zmierzchowym, działa na zasadzie zmiany swojej rezystancji w odpowiedzi na natężenie światła. Gdy poziom oświetlenia spada, rezystancja fotorezystora rośnie, co powoduje, że układ elektroniczny wykonuje odpowiednią akcję, na przykład włącza światło. Takie rozwiązanie jest szczególnie efektywne w automatyzacji systemów oświetleniowych w przestrzeniach zewnętrznych, takich jak ogrody, parkingi czy tereny rekreacyjne. Wysoka czułość oraz niskie koszty produkcji sprawiają, że fotorezystory są powszechnie stosowane w nowoczesnych układach automatyki budynkowej. Zgodnie z normami branżowymi, zaleca się ich wykorzystanie w systemach, które muszą reagować na zmiany oświetlenia w czasie rzeczywistym, co podnosi komfort użytkowania i efektywność energetyczną. Warto także zwrócić uwagę, że fotorezystory mogą być używane w połączeniu z innymi czujnikami, co zwiększa ich funkcjonalność i zastosowanie w różnych scenariuszach, takich jak inteligentne domy.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Urządzenie, które pozwala na przesył sygnału telewizyjnego z kilku anten poprzez jeden kabel, to

A. rozgałęźnik
B. symetryzator
C. konwerter
D. zwrotnica
Zwolnica to urządzenie, które odgrywa kluczową rolę w systemach telewizyjnych, umożliwiając przesyłanie sygnału z wielu anten przez jedno łącze. Dzięki swojej konstrukcji, zwrotnica separuje sygnały z różnych źródeł, takich jak różne anteny, i kieruje je do jednego przewodu, co jest szczególnie przydatne w instalacjach, gdzie dostęp do wielu źródeł sygnału jest ograniczony. To rozwiązanie jest powszechne w budynkach wielorodzinnych oraz w rejonach z różnorodnym pokryciem sygnałem telewizyjnym. Przykładami zastosowania zwrotnic są instalacje w domach, gdzie użytkownicy chcą odbierać sygnał z kilku anten, np. naziemnych oraz satelitarnych, bez konieczności układania wielu przewodów. Standardy branżowe, takie jak DVB-T, nakładają wymagania dotyczące efektywności sygnału, a wykorzystanie zwrotnic pozwala na ich spełnienie, eliminując straty sygnału i zakłócenia. Ponadto, zwrotnice są projektowane z myślą o minimalizacji strat sygnałowych i zapewnieniu wysokiej jakości obrazu oraz dźwięku.

Pytanie 31

Rysunek przedstawia zasilanie

Ilustracja do pytania
A. jednofazowe.
B. nie symetryczne.
C. symetryczne.
D. trójfazowe.
Rysunek przedstawia zasilanie symetryczne, co oznacza, że mamy do czynienia z układem, w którym napięcia w poszczególnych fazach są równe i mają taki sam kąt przesunięcia. Zasilanie symetryczne jest kluczowe w systemach trójfazowych, gdzie zapewnia równomierne obciążenie wszystkich faz, co przekłada się na efektywność i stabilność systemu zasilania. Taki układ minimalizuje straty energii i eliminuje wibracje oraz zakłócenia w pracy silników elektrycznych. Przykładem zastosowania zasilania symetrycznego mogą być zasilacze w przemyśle, które wytwarzają moc potrzebną do zasilania urządzeń produkcyjnych. Standardy takie jak IEC 60038 definiują wartości nominalne napięć dla różnych systemów zasilania, co jest istotne dla zapewnienia spójności i bezpieczeństwa w instalacjach elektrycznych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Kiedy impedancja falowa linii Zf oraz impedancja obciążenia Zobc są równe, to linia długa

A. nie jest dostosowana falowo
B. stanowi dla sygnału wejściowego przerwę
C. stanowi dla sygnału wejściowego zwarcie
D. jest dostosowana falowo
Odpowiedź "jest dopasowana falowo" jest prawidłowa, ponieważ oznacza, że impedancja falowa linii Zf jest równa impedancji obciążenia Zobc, co skutkuje minimalizacją odbić fali elektromagnetycznej na końcu linii. W praktyce oznacza to, że energia sygnału jest w pełni absorbowana przez obciążenie, a nie odbijana z powrotem w stronę źródła. Takie dopasowanie falowe jest kluczowe w systemach telekomunikacyjnych, gdzie ma wpływ na jakość sygnału i efektywność przesyłu danych. W zastosowaniach, takich jak linie transmisyjne w systemach RF czy optycznych, przestrzeganie zasad dopasowania impedancji pozwala na zminimalizowanie strat sygnału oraz zredukowanie zakłóceń, co jest zgodne z najlepszymi praktykami w inżynierii komunikacyjnej. W standardach takich jak IEEE 802.3 czy w systemach telekomunikacyjnych, dopasowanie impedancji stanowi fundament efektywnej wymiany danych i zapewnienia integralności sygnału.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W dokumentacji urządzenia podano, że zakres napięcia zasilania wynosi od 10,8 V do 14,4 V. Wskaż odpowiednie ustawienie zasilacza w momencie uruchamiania tego układu.

A. 10,1 V
B. 13,8 V
C. 15,4 V
D. 18,7 V
Wybór napięcia zasilania 13,8 V jest właściwy, ponieważ mieści się w określonym zakresie napięcia zasilania urządzenia, wynoszącym od 10,8 V do 14,4 V. Ustalając napięcie na poziomie 13,8 V, zapewniamy stabilne zasilanie, które jest optymalne dla wielu urządzeń elektronicznych, w tym systemów telekomunikacyjnych i innych aplikacji wymagających precyzyjnego zasilania. Utrzymanie napięcia w tym zakresie nie tylko zapewnia prawidłową pracę układu, ale także minimalizuje ryzyko uszkodzenia komponentów. W praktyce, wiele zasilaczy ma możliwość precyzyjnego ustawienia napięcia, co pozwala na dostosowanie do specyficznych wymagań urządzenia. Zgodnie ze standardami branżowymi, takich jak IEC 60950, ważne jest, aby unikać zasilania urządzeń napięciem powyżej ich maksymalnych specyfikacji, co może prowadzić do uszkodzeń termicznych lub innych awarii. Dlatego też, wybór 13,8 V jako napięcia zasilania jest nie tylko poprawny, ale również praktycznie zalecany dla zapewnienia długotrwałej i niezawodnej pracy układu.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W dokumentacji technicznej multimetru stwierdzono, że potrafi on wyświetlać wyniki pomiarów w formacie trzy i pół cyfry. Jaką najwyższą liczbę jednostek jest w stanie pokazać ten multimetr?

A. 3999
B. 1999
C. 39999
D. 19999
Wybór innej liczby niż 1999 może wskazywać na niezrozumienie, czym są 'trzy i pół cyfry'. Często ludzie mylą, co to oznacza, bo wydaje im się, że wszystkie cyfry mogą być od 0 do 3. To nie tak! Pierwsza cyfra w 'trzy i pół cyfry' to tylko 0 lub 1, stąd maksymalna wartość to 1999. A jeżeli ktoś wybiera 3999, to wydaje mu się, że to urządzenie ma więcej niż 3 cyfry, co jest błędne. Dlatego ważne jest, by zwracać uwagę na to, jak się wykorzystuje te parametry w praktyce. Zrozumienie tych podstawowych rzeczy może znacząco poprawić efektywność pomiarów, co jest istotne, świetne w pracy z różnymi urządzeniami elektrycznymi.

Pytanie 38

Mostek wykorzystywany jest do pomiaru parametrów cewek indukcyjnych?

A. Thomsona
B. Wiena
C. Wheatstone'a
D. Maxwella
Wybór mostka Thomsona, Wiena czy Wheatstone'a do pomiarów cewek to niezbyt dobry pomysł. Mostek Thomsona jest bardziej do pomiaru pojemności, więc tu nie bardzo się sprawdzi. Mostek Wiena jest do pomiaru częstotliwości i impedancji w obwodach AC, ale może być mało precyzyjny, gdy mówimy o cewkach, gdzie indukcyjność i rezystancja mają znaczenie. Mostek Wheatstone'a z kolei to klasyczne narzędzie do mierzenia rezystancji, ale w przypadku cewek nie spełnia swojej roli, bo tam zależności między parametrami są bardziej skomplikowane. Typowo błędem jest mylenie właściwości tych mostków i ich zastosowań. Każdy z nich ma swoje miejsce, ale w kontekście cewek nie będą one najlepszym wyborem. Znajomość zastosowań mostków jest kluczowa, żeby dobrze przeprowadzać pomiary w elektronice, a wybór odpowiedniego narzędzia może zdecydować o jakości wyników.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Ilustracja przedstawia przerzutnik JK. Wejście C jest wyzwalane

Ilustracja do pytania
A. stanem niskim.
B. stanem wysokim.
C. zboczem narastającym.
D. zboczem opadającym.
Odpowiedź "zboczem opadającym" jest poprawna, ponieważ przerzutnik JK z wyzwoleniem zboczem opadającym reaguje na sygnały zegarowe w momencie, gdy ich wartość zmienia się z wysokiej na niską. W przerzutnikach synchronicznych, oznaczenie to jest kluczowe, ponieważ definiuje moment, w którym przerzutnik zmienia swój stan na podstawie wartości sygnałów wejściowych J i K. W praktyce, takie przerzutniki są szeroko stosowane w systemach cyfrowych, takich jak rejestry, liczniki oraz w układach synchronizacji, gdzie wymagana jest precyzyjna kontrola zmian stanów. Przykładem może być zastosowanie przerzutnika JK w licznikach binarnych, które muszą reagować na konkretne zdarzenia w ściśle określonym momencie cyklu zegara. Warto również zwrócić uwagę na normy i standardy dotyczące projektowania układów cyfrowych, które zalecają użycie przerzutników wyzwalanych zboczem opadającym w aplikacjach wymagających stabilności i niezawodności działania.