Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:56
  • Data zakończenia: 7 grudnia 2025 12:25

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie oznaczenia powinien mieć wyłącznik różnicowoprądowy zaprojektowany do ochrony przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtyczkowych uniwersalnych w instalacji jednofazowej 230 V/50 Hz?

A. P 344 C-20-30-AC
B. P 304 25-30-AC
C. P 302 25-30-AC
D. P 312 B-16-30-AC
Wyłącznik różnicowoprądowy P 312 B-16-30-AC jest odpowiednim wyborem do zabezpieczania obwodów gniazd wtyczkowych w instalacji jednofazowej 230 V/50 Hz. Oznaczenie to wskazuje na jego zdolność do detekcji prądów upływowych i jednoczesne zabezpieczenie przed przeciążeniami oraz zwarciami. W szczególności litera 'B' oznacza, że urządzenie jest przystosowane do obciążeń indukcyjnych, co czyni je idealnym w wielu zastosowaniach domowych oraz biurowych, gdzie używane są urządzenia elektryczne z silnikami. Warto również zwrócić uwagę na wartość prądu różnicowego, która wynosi 30 mA, co jest zgodne z normami bezpieczeństwa, zgodnie z dyrektywą 2014/35/UE. Użycie tego wyłącznika przyczynia się do zwiększenia bezpieczeństwa użytkowników, minimalizując ryzyko porażenia prądem, co powinno być priorytetem w każdym projekcie elektrycznym. Zastosowanie wyłączników różnicowoprądowych w takim obwodzie jest nie tylko najlepszą praktyką, ale także wymogiem wielu norm budowlanych i elektrycznych, co czyni je kluczowymi elementami nowoczesnych instalacji.

Pytanie 2

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. zamontować końcówki oczkowe na przewodach
B. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
C. zagiąć oczka na końcach przewodów
D. zmienić przewody na nowe o większym przekroju
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 3

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L3
B. Przewód L2
C. Przewód L1
D. Przewód N
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 4

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. liczba zamontowanych ochronników przeciwprzepięciowych
B. wytrzymałość napięciowa izolacji przewodów
C. rodzaj zamontowanych ochronników przeciwprzepięciowych
D. pole przekroju poprzecznego żył przewodów
Wybór niewłaściwej odpowiedzi, związany z ilością lub typem ochronników przeciwprzepięciowych, wskazuje na niepełne zrozumienie wpływu, jaki mają te elementy na impedancję pętli zwarcia. Ochronniki przeciwprzepięciowe są istotne dla zabezpieczenia przed przepięciami, ale nie mają wpływu na wartość impedancji pętli zwarcia, ponieważ ich zadaniem jest ochrona przed nagłymi wzrostami napięcia, a nie zarządzanie przepływem prądu w normalnych warunkach. W kontekście wytrzymałości napięciowej izolacji przewodów, warto zauważyć, że ta cecha odnosi się do zdolności materiału do wytrzymywania określonych wartości napięcia bez uszkodzeń, co nie ma bezpośredniego związku z impedancją pętli zwarcia. Ponadto, niewłaściwe zrozumienie roli przekroju żył w aspekcie bezpieczeństwa elektrycznego może prowadzić do błędnych decyzji projektowych, co skutkuje nieodpowiednim doborze komponentów w instalacji. Należy pamiętać, że zarówno analiza impedancji pętli zwarcia, jak i dobór chroniących elementów powinny być zrealizowane zgodnie z obowiązującymi normami, co zapewnia nie tylko funkcjonalność, ale i bezpieczeństwo całego systemu elektrycznego.

Pytanie 5

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. przerwaniem ciągłości przewodu PEN
B. przerwą w jednej z faz
C. zwarciem pomiędzy fazami
D. zwarciem między fazą a przewodem PEN
Przerwanie ciągłości przewodu PEN w instalacji 3-fazowej pracującej w układzie TN-C prowadzi do sytuacji, w której napięcie fazowe może wzrosnąć powyżej 300 V. W takiej konfiguracji przewód PEN pełni zarówno funkcje przewodu neutralnego, jak i ochronnego. W przypadku przerwania jego ciągłości, nie tylko zanikają połączenia ochronne, ale również występuje ryzyko, że napięcie na odbiornikach z fazy, do której dochodzi, wzrośnie do wartości zagrażających bezpieczeństwu, co jest szczególnie niebezpieczne dla urządzeń i ludzi. W praktyce, w przypadku przerwania przewodu PEN, pozostałe przewody fazowe zaczynają 'przeciążać' system, co może doprowadzić do niebezpiecznych sytuacji, takich jak uszkodzenie sprzętu, wyzwolenie zabezpieczeń, a w skrajnych przypadkach do porażenia prądem. Stosowanie odpowiednich zabezpieczeń oraz regularne kontrole instalacji są kluczowe dla zapobiegania takim awariom. W kontekście norm, warto odwołać się do PN-IEC 60364, który definiuje zasady ochrony przed porażeniem prądem elektrycznym.

Pytanie 6

Jakie kroki należy podjąć, gdy całkowita wartość spadków napięć w systemie TN-S pomiędzy złączem ZKP a najodleglejszym gniazdem odbiorczym wynosi 9 V, w sieci elektrycznej o napięciu 230 V?

A. Pozostawić instalację zasilającą bez zmian
B. Zwiększyć średnicę przewodów kabla WLZ
C. Zmniejszyć średnicę przewodów kabla WLZ
D. Zwiększyć średnicę przewodów w instalacji wewnętrznej
Jak spojrzysz na te wartości, to suma spadków napięć w układzie TN-S, która wynosi 9 V przy napięciu znamionowym 230 V, jest w porządku. To mniej niż 5% dla obwodów oświetleniowych i jakieś 3% dla siłowych, więc nie ma potrzeby, by wprowadzać zmiany w instalacji. Chociaż warto czasem rzucić okiem na te spadki, bo bezpieczeństwo urządzeń to ważna sprawa. Jeśli spadki zaczynają być większe, to warto pomyśleć o zwiększeniu przekroju przewodów, ale w tej sytuacji nie ma takiej potrzeby. Wiesz, jak się montuje silniki elektryczne, to tam kluczowe jest, by kable były dobrze dobrane, żeby nie tracić energii. Normy PN-IEC 60364 to dobry punkt wyjścia do sprawdzenia, czy wszystko jest zrobione jak należy.

Pytanie 7

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Włączanie i wyłączanie
B. Zarządzanie czasem pracy
C. Oględziny wymagające demontażu
D. Przeglądy wymagające demontażu
Uruchamianie i zatrzymywanie urządzeń elektrycznych to kluczowe zadanie pracowników obsługi, które wymaga znajomości procedur operacyjnych oraz bezpieczeństwa. Te czynności są istotne dla zapewnienia prawidłowego funkcjonowania urządzeń, co ma bezpośredni wpływ na efektywność produkcji. Przykładowo, w przemyśle wytwórczym, gdzie linie produkcyjne są często zautomatyzowane, pracownicy muszą umieć bezpiecznie uruchamiać i zatrzymywać maszyny, aby uniknąć przestojów lub uszkodzeń sprzętu. Ponadto, zgodnie z normami ISO 9001 dotyczącymi zarządzania jakością, skuteczne zarządzanie procesami, w tym właściwe uruchamianie i zatrzymywanie urządzeń, jest kluczowe dla zachowania wysokiej jakości produktów. Dobrą praktyką jest regularne szkolenie pracowników w zakresie procedur operacyjnych oraz stosowanie checklist, co zwiększa bezpieczeństwo i minimalizuje ryzyko wystąpienia awarii.

Pytanie 8

W łazience mieszkania konieczna jest wymiana uszkodzonej oprawy oświetleniowej, która znajduje się w odległości 30 cm od strefy prysznica. Jaki minimalny stopień ochrony powinna posiadać nowa oprawa?

A. IPX1
B. IPX2
C. IPX7
D. IPX4
Wybór stopnia ochrony niższego niż IPX4, takiego jak IPX1, IPX2 czy IPX7, nie jest odpowiedni w kontekście wymagań dotyczących oświetlenia w pobliżu kabiny prysznicowej. Oznaczenie IPX1 wskazuje na odporność na krople wody padające w kierunku pionowym, co jest niewystarczające w warunkach łazienki, gdzie może występować intensywniejsze zachlapanie. IPX2 również nie zabezpiecza przed wodą, ponieważ chroni jedynie przed kroplami padającymi pod kątem do 15 stopni od pionu. Wybór IPX7, który przewiduje krótkotrwałe zanurzenie w wodzie, również nie jest w pełni uzasadniony, ponieważ nie ma potrzeby tak wysokiego stopnia ochrony w przypadku odległości 30 cm od kabiny prysznicowej. W praktyce, zastosowanie oprawy z niższym stopniem ochrony może prowadzić do uszkodzeń elektrycznych, a tym samym stwarzać zagrożenie dla użytkowników. Dlatego kluczowe jest zrozumienie, że odpowiedni stopień ochrony powinien być dostosowany do specyficznych warunków panujących w danym pomieszczeniu, co jest zgodne z normami bezpieczeństwa elektrycznego oraz wytycznymi producentów.

Pytanie 9

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Podwójna lub wzmocniona izolacja elektryczna
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Ochronne miejscowe połączenia wyrównawcze
D. Separacja elektryczna odbiornika
Odpowiedzi takie jak podwójna lub wzmocniona izolacja elektryczna, separacja elektryczna odbiornika oraz umieszczenie części czynnych poza zasięgiem ręki, są istotnymi elementami ochrony przeciwporażeniowej, lecz nie spełniają roli uzupełniającej w kontekście uszkodzeń w instalacjach niskonapięciowych. Podwójna lub wzmocniona izolacja może rzeczywiście skutecznie chronić przed porażeniem, jednak w przypadku jej uszkodzenia nie zapewnia dodatkowej ochrony, ponieważ nie ma możliwości odprowadzenia prądu do ziemi. Separacja elektryczna, polegająca na oddzieleniu odbiornika od źródła zasilania, może zredukować ryzyko, ale nie eliminuje go całkowicie i nie zapewnia dodatkowego zabezpieczenia w przypadku awarii izolacji. Umieszczenie części czynnych poza zasięgiem ręki to praktyka prewencyjna, która ma na celu zminimalizowanie ryzyka dostępu do niebezpiecznych elementów, jednak nie odpowiada na sytuacje, gdy dojdzie do awarii systemu. Kluczowym błędem w myśleniu jest skupienie się na pojedynczych metodach ochrony, zamiast na kompleksowym podejściu do bezpieczeństwa elektrycznego. Właściwe wdrożenie połączeń wyrównawczych, zgodnie z normami EN 61140, ma fundamentalne znaczenie w kontekście całościowego bezpieczeństwa instalacji elektrycznych.

Pytanie 10

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C10
B. B16
C. B10
D. C6
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 11

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. zmiany wytrzymałości mechanicznej przewodu
B. podniesienia obciążalności prądowej
C. wzrostu wytrzymałości mechanicznej przewodu
D. obniżenia obciążalności prądowej
Wybór odpowiedzi dotyczącej zmniejszenia obciążalności prądowej przewodu jest błędny, gdyż obciążalność prądowa nie jest bezpośrednio związana z typem przewodu, ale raczej z jego konstrukcją oraz materiałem, z którego został wykonany. W przypadku przewodów YKY, ze względu na zastosowane materiały i budowę, mają one często wyższą obciążalność prądową w porównaniu do OWY, co może prowadzić do fałszywych wniosków o ich wydajności. Ponadto, stwierdzenie, że zmiana przewodu powoduje zmniejszenie mechanicznej wytrzymałości, ignoruje kluczowe różnice w projektowaniu tych przewodów. Przewody YKY, mimo że są sztywniejsze, są również projektowane z myślą o lepszej ochronie przed działaniem czynników zewnętrznych, takich jak wilgoć czy chemikalia, co może podnieść ich długoterminową niezawodność w trudnych warunkach. Kolejną pomyłką jest twierdzenie o zmniejszeniu wytrzymałości mechanicznej. Przewody YKY, mimo dość sztywnej konstrukcji, często stosuje się w przemyśle, gdzie są narażone na intensywne warunki pracy, co wymaga ich wytrzymałości. Logicznym błędem w myśleniu jest założenie, że sztywność oznacza słabość; w rzeczywistości, odpowiedni dobór przewodów do danego zastosowania jest kluczowy. W praktyce, decyzje dotyczące wyboru przewodów powinny opierać się na szczegółowej analizie ich właściwości, zgodności z normami oraz realnym zastosowaniu w danym środowisku.

Pytanie 12

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YDYżo 5x2,5 mm2
B. YStY 5xl mm2
C. YADY 3x4 mm2
D. YSLY 3x2,5 mm2
Odpowiedź YDYżo 5x2,5 mm2 jest poprawna, ponieważ przewód ten spełnia wymagania dotyczące instalacji siłowych w układzie sieciowym TN-S, który jest jednym z systemów zasilania o uziemieniu neutralnym. Przewody YDYżo charakteryzują się dobrą odpornością na działanie wysokich temperatur oraz chemikaliów, co czyni je odpowiednimi do użytku w tynku. W przypadku instalacji siłowych, przewody te muszą być odpowiednio dobrane do obciążenia, co w tym przypadku jest realizowane przez przekrój 2,5 mm2, wystarczający do zasilania urządzeń elektrycznych o średnich wymaganiach mocy. Dobrą praktyką jest stosowanie przewodów wielożyłowych w instalacjach, co pozwala na lepsze zarządzanie przewodami i ułatwia ich montaż. Przewody YDYżo są również zgodne z normą PN-EN 60228, która określa wymagania dla przewodów miedzianych, co dodatkowo podkreśla ich odpowiedniość do zastosowań w instalacjach elektrycznych.

Pytanie 13

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. znamionowe zużycie prądu
B. spadek rezystancji izolacji uzwojeń do 5 MΩ
C. spadek napięcia zasilania poniżej 3 %
D. nadmierne wibracje
Odpowiedź 3, dotycząca nadmiernych drgań, jest poprawna, ponieważ drgania w urządzeniach napędowych mogą prowadzić do poważnych problemów operacyjnych oraz uszkodzeń. Zgodnie z normami branżowymi, takim jak ISO 10816, nadmierne drgania mogą wskazywać na niewłaściwe osadzenie, zużycie łożysk czy też problemy z wirnikami. Przykładem może być sytuacja, gdy maszyna wibracyjna, taka jak silnik elektryczny, przekroczy dopuszczalne poziomy drgań, co może skutkować nie tylko uszkodzeniem samego urządzenia, ale również stanowić zagrożenie dla operatorów. W praktyce, w przypadku stwierdzenia nadmiernych drgań, należy natychmiast wstrzymać działanie urządzenia, aby przeprowadzić odpowiednią diagnostykę i naprawy, co jest zgodne z zasadą prewencji w zarządzaniu bezpieczeństwem pracy. Takie działania mają na celu minimalizację ryzyka obrażeń oraz zapewnienie ciągłości operacji, co jest kluczowe w przemyśle produkcyjnym.

Pytanie 14

Jak, w przybliżeniu, zmieni się moc wydobywana przez grzejnik elektryczny, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilania pozostanie niezmienione?

A. Zwiększy się czterokrotnie
B. Zmniejszy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się dwukrotnie
Odpowiedź jest prawidłowa, ponieważ moc wydzielana przez grzejnik elektryczny jest proporcjonalna do kwadratu napięcia zasilania i odwrotnie proporcjonalna do długości spirali grzejnej. Kiedy skracamy spiralę grzejną o połowę, jej rezystancja maleje, co powoduje, że prąd płynący przez nią wzrasta, przy niezmienionym napięciu. Zgodnie z prawem Ohma, moc P można wyrazić jako P = U²/R, gdzie U to napięcie, a R to rezystancja. Skrócenie spirali grzejnika o połowę wpływa na zmniejszenie rezystancji o połowę, co z kolei powoduje, że moc wydzielana przez grzejnik wzrasta dwukrotnie. Przykładowo, w zastosowaniach przemysłowych, gdy grzejniki są wykorzystywane do podgrzewania cieczy, zwiększenie mocy o 100% może znacząco wpłynąć na efektywność procesu grzewczego, co jest zgodne z zasadami optymalizacji energetycznej.

Pytanie 15

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 75kΩ
B. 50kΩ
C. 10kΩ
D. 25kΩ
Odpowiedzi, które sugerują wartości rezystancji niższe niż 50 kΩ, mogą wprowadzać w błąd, prowadząc do niewłaściwych wniosków na temat bezpieczeństwa elektrycznego. Na przykład, wartość 25 kΩ może wydawać się wystarczająca, ale w rzeczywistości jest znacznie poniżej zalecanych standardów, co oznacza, że w przypadku wystąpienia problemów z izolacją, prąd może swobodnie przepływać przez ciało osoby pracującej w tym środowisku. Podobnie, wartości takie jak 10 kΩ czy 75 kΩ również nie spełniają kryteriów bezpieczeństwa. W przypadku 10 kΩ, ryzyko porażenia prądem jest znacząco wyższe, a przy 75 kΩ, chociaż jest to lepsza wartość, nadal nie zapewnia wystarczającej ochrony, zwłaszcza przy wyższych napięciach. Podstawowym błędem jest niewłaściwe rozumienie znaczenia rezystancji ochronnej w kontekście dotyku pośredniego oraz nieświadomość konsekwencji związanych z niewłaściwym doborze wartości rezystancji. Każdy instalator lub inżynier powinien dążyć do rozumienia i stosowania norm oraz zaleceń dotyczących bezpieczeństwa, aby zminimalizować ryzyko związane z pracą w potencjalnie niebezpiecznych warunkach.

Pytanie 16

Trójfazowy silnik indukcyjny, obciążony połową swojej mocy znamionowej, działa z prędkością n = 1450 obr/min. W pewnym momencie doszło do spadku prędkości obrotowej, co spowodowało charakterystyczne "buczenie" silnika. Jakie mogły być przyczyny tego zakłócenia w pracy silnika?

A. Odłączenie przewodu ochronnego od zacisku PE
B. Kilku procentowy wzrost napięcia zasilania
C. Podwojony moment obciążenia
D. Brak napięcia w jednej z faz
Wzrost napięcia zasilającego, choć może wpływać na działanie silnika, nie jest przyczyną, która wywołuje charakterystyczne "buczenie". Przy kilkuprocentowym wzroście napięcia, silnik mógłby pracować bardziej efektywnie, ale nie spowodowałoby to nagłego zmniejszenia prędkości. Dwukrotny wzrost momentu obciążenia również nie jest właściwym wyjaśnieniem. Silnik indukcyjny ma swoje limity mocy i momentu, a przy takim obciążeniu mógłby po prostu zwolnić, a nie wydawać dźwięki, które są wynikiem innego rodzaju zakłóceń. Dodatkowo, odłączenie przewodu ochronnego od zacisku PE nie prowadzi do buczenia, ale raczej do zwiększonego ryzyka porażenia prądem oraz potencjalnych uszkodzeń. Ta sytuacja może skutkować poważnymi konsekwencjami dla bezpieczeństwa użytkowników oraz sprzętu, jednak nie jest bezpośrednio związana z problemem pracy silnika. Zrozumienie właściwego działania silników trójfazowych wymaga analizy ich budowy oraz działania, a także zrozumienia, że stabilność napięcia i równomierne obciążenie fazowe są kluczowe dla ich efektywnej pracy.

Pytanie 17

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B16
B. B32
C. B20
D. B25
Zastosowanie wyłącznika B20, B16 czy B32 w tej instalacji będzie niewłaściwe z kilku powodów. Wyłącznik B20, z prądem znamionowym 20 A, nie zaspokoi wymogów obciążenia wynoszącego 25 A. W sytuacjach, gdy prąd obciążenia przekracza wartość znamionową wyłącznika, może dojść do niezamierzonych zadziałań, co prowadzi do częstych i niepotrzebnych wyłączeń systemu. Taki wybór mógłby narazić przewody na przeciążenie, co z kolei zwiększa ryzyko uszkodzeń, a nawet pożaru. Wyłącznik B16, o prądzie znamionowym 16 A, jest jeszcze bardziej niewłaściwy, ponieważ jego wartość jest znacznie niższa niż prąd obciążenia, co prowadzi do permanentnego wyłączenia w normalnych warunkach pracy. Z drugiej strony, wyłącznik B32 mógłby wydawać się odpowiedni, jednak jego zastosowanie w tej konkretnej instalacji nie jest zalecane, gdyż przewyższa on wartość prądu obciążenia, co może prowadzić do sytuacji, w której przewody nie będą odpowiednio chronione przed przeciążeniem, co narusza zasady ochrony instalacji. Właściwy dobór wyłącznika nadprądowego powinien być oparty na analizie rzeczywistego obciążenia oraz normach dotyczących instalacji elektrycznych. Aby zapewnić optymalną ochronę, warto zawsze wybierać wyłącznik, którego wartość znamionowa jest bliska prądowi obciążenia, co pozwala na uniknięcie fałszywych alarmów oraz skutecznie zabezpiecza instalację elektryczną.

Pytanie 18

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Obudowy i osłony
B. Separacja elektryczna
C. Miejscowe połączenia wyrównawcze
D. Wyłączniki różnicowoprądowe
Miejscowe połączenia wyrównawcze, separacja elektryczna oraz wyłączniki różnicowoprądowe to metody ochrony przed porażeniem prądem, które są istotne, jednak nie stanowią podstawowego zabezpieczenia w kontekście warsztatu remontowego. Miejscowe połączenia wyrównawcze są stosowane w celu eliminacji różnic potencjałów między elementami instalacji, co może być istotne w sytuacjach, gdy różne części instalacji mogą mieć inne napięcia. To podejście nie eliminuje jednak bezpośredniego ryzyka kontaktu z elementami pod napięciem. Separacja elektryczna, z kolei, polega na oddzieleniu obwodów elektrycznych od innych obwodów, co również nie wystarcza jako główna forma ochrony, gdyż nie zabezpiecza przed przypadkowym dotknięciem żywych części. Wyłączniki różnicowoprądowe, choć bardzo ważne w systemach zabezpieczeń elektrycznych, działają jako dodatkowa warstwa ochrony, a nie jako podstawowe zabezpieczenie. Ich funkcja polega na szybkim odcięciu zasilania w przypadku wykrycia różnicy między prądem wpływającym a prądem wypływającym, co nie zastąpi fizycznej ochrony urządzeń poprzez obudowy i osłony. Te metody powinny być traktowane jako uzupełnienie, a nie substytut dla podstawowego zabezpieczenia, jakim są obudowy i osłony, które chronią przed bezpośrednim dotykiem.

Pytanie 19

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 5,0 s
B. 0,4 s
C. 0,1 s
D. 0,2 s
Maksymalny czas samoczynnego wyłączenia zasilania w przypadku uszkodzenia w obwodach odbiorczych o prądzie znamionowym I < 32 A w układzie sieciowym TN jednofazowym przy napięciu 230 V wynosi 0,4 s. Zgodnie z normą PN-EN 61140, czas wyłączenia zasilania w przypadku wystąpienia uszkodzenia izolacji jest kluczowy dla zapewnienia ochrony przeciwporażeniowej. W obwodach jednofazowych z prądem znamionowym niższym niż 32 A wymóg ten został określony jako 0,4 s, co ma na celu minimalizację ryzyka porażenia prądem w przypadku awarii. Przykładem zastosowania tej zasady może być instalacja elektryczna w domach mieszkalnych, gdzie zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), muszą działać w określonym czasie, by zapewnić bezpieczeństwo użytkowników. Długotrwałe wystawienie na działanie prądu może prowadzić do poważnych obrażeń, dlatego tak ważne jest przestrzeganie tych norm. W praktyce oznacza to, że w przypadku uszkodzenia urządzenia lub przewodów, odcięcie zasilania musi nastąpić w krótkim czasie, aby zminimalizować ryzyko dla użytkowników.

Pytanie 20

Skuteczność ochrony przeciwporażeniowej w sieci typu TN o napięciu 230/400 V jest zapewniona, gdy w czasie zwarcia L-PE (lub L-PEN) w odpowiednich warunkach środowiskowych dojdzie do

A. reakcji zabezpieczeń przeciwprzepięciowych
B. reakcji zabezpieczeń przednapięciowych
C. odłączenia obwodu przez przekaźnik termiczny
D. automatycznego wyłączenia zasilania
W przypadku sieci typu TN o napięciu 230/400 V, skuteczna ochrona przeciwporażeniowa w sytuacji zwarcia L-PE (lub L-PEN) polega na samoczynnym wyłączeniu zasilania. To działanie jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym, ponieważ szybkie odłączenie zasilania ogranicza czas narażenia ludzi na niebezpieczeństwo. W praktyce oznacza to, że w momencie wykrycia zwarcia, urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe lub wyłączniki automatyczne, powinny natychmiast zareagować i przerwać dopływ prądu do obwodu. Zgodnie z normą PN-EN 60364, czas wyłączenia zasilania powinien być dostosowany do specyfiki instalacji oraz warunków środowiskowych. W wielu przypadkach czas reakcji zabezpieczeń powinien wynosić nie więcej niż 0,4 sekundy dla systemów zasilających o napięciu do 400 V. W praktyce, aby zapewnić bezpieczeństwo użytkowników, niezwykle istotne jest regularne sprawdzanie i konserwacja urządzeń zabezpieczających, co zapobiega ich niesprawności w sytuacjach awaryjnych. Samoczynne wyłączenie zasilania to więc fundamentalny element ochrony przeciwporażeniowej, który powinien być brany pod uwagę na etapie projektowania oraz eksploatacji instalacji elektrycznych.

Pytanie 21

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
B. zwarcie międzyzwojowe w uzwojeniu W1 — W2
C. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
D. przerwę w uzwojeniu U1 — U2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 22

Który z poniżej wymienionych instrumentów umożliwia najbardziej precyzyjny pomiar rezystancji uzwojenia komutacyjnego prądnicy obcowzbudnej prądu stałego o dużej mocy?

A. Omomierz analogowy
B. Omomierz cyfrowy
C. Mostek Thomsona
D. Mostek Wheatstone'a
Użycie omomierzy analogowych i cyfrowych do pomiaru rezystancji uzwojeń komutacyjnych prądnicy obcowzbudnej dużej mocy może prowadzić do istotnych błędów pomiarowych. Omomierze analogowe, choć stosunkowo proste w obsłudze, są podatne na subiektywne odczyty oraz drift wskazówki, co czyni je mało wiarygodnymi w kontekście precyzyjnych pomiarów. Z kolei omomierze cyfrowe, mimo że oferują dokładniejsze odczyty, mogą mieć ograniczenia w pomiarach rezystancji w wysokiej dokładności z uwagi na wewnętrzne oporności i ograniczenia pomiarowe, które mogą wpływać na wyniki. Mostek Wheatstone'a, chociaż użyteczny w wielu zastosowaniach, nie jest wystarczająco precyzyjny do pomiaru bardzo niskich rezystancji, takich jak te występujące w uzwojeniach komutacyjnych. Pomiar rezystancji w tym kontekście wymaga zastosowania zaawansowanych technik pomiarowych, które eliminują wpływ dodatkowych czynników, takich jak temperatura czy indukcyjność, co jest jedną z kluczowych zalet mostka Thomsona. Dlatego, wybierając przyrząd do pomiaru rezystancji w skomplikowanych układach elektrycznych, warto kierować się nie tylko prostotą obsługi, ale przede wszystkim dokładnością i niezawodnością pomiarów.

Pytanie 23

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Dwie osoby
B. Jedna osoba
C. Cztery osoby
D. Trzy osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 24

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Zadziałanie wyłącznika różnicowoprądowego
B. Rozbudowanie instalacji
C. Zadziałanie zabezpieczenia przedlicznikowego
D. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 25

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Izolacja wzmocniona
B. Izolowanie stanowiska
C. Bardzo niskie napięcie SELV
D. Bardzo niskie napięcie PELV
Bardzo niskie napięcie PELV, izolacja wzmocniona oraz bardzo niskie napięcie SELV to metody ochrony, które, choć mają swoje zastosowanie, nie są właściwe w kontekście pracy pod nadzorem osób wykwalifikowanych przy uszkodzeniu instalacji elektrycznej. PELV (Protective Extra Low Voltage) to system, który zapewnia bezpieczeństwo dzięki zastosowaniu niskiego napięcia, jednak jego stosowanie nie wyklucza konieczności nadzoru. Izolacja wzmocniona odnosi się do zastosowania materiałów o podwyższonej odporności dielektrycznej, ale nie eliminuje możliwości wystąpienia niebezpiecznych napięć, zwłaszcza w przypadku uszkodzeń. Z kolei SELV (Separated Extra Low Voltage) to system, który zapewnia separację od wysokich napięć, ale jego efektywność polega na odpowiedniej konstrukcji instalacji i nie zastępuje bezpiecznych praktyk, takich jak stały nadzór wykwalifikowanych osób. W kontekście uszkodzenia instalacji, te metody ochrony mogą być niedostateczne, gdyż mogą nie zapewnić wystarczającego bezpieczeństwa w sytuacjach awaryjnych. Typowym błędem myślowym jest założenie, że niskie napięcia eliminują ryzyko, co jest niezgodne z rzeczywistością, szczególnie gdy instalacja wykazuje oznaki uszkodzenia. W takim przypadku kluczowe jest zapewnienie dodatkowych środków ochrony, takich jak izolowanie stanowiska, które pozwala na bezpieczne i profesjonalne podejście do naprawy oraz konserwacji instalacji elektrycznych.

Pytanie 26

Jaki jest minimalny stopień zabezpieczenia sprzętu oraz osprzętu używanego na placach budowy?

A. IP 55
B. IP 67
C. IP 35
D. IP 44
Odpowiedź IP 44 jest prawidłowa, ponieważ oznacza ona, że sprzęt i osprzęt instalacyjny są chronione przed ciałami stałymi o średnicy większej niż 1 mm oraz przed wodą, która będzie miała wpływ na działanie urządzenia w ograniczonym stopniu. To szczególnie ważne na placach budowy, gdzie sprzęt narażony jest na pył, brud oraz wilgoć. W praktyce oznacza to, że urządzenia z klasą IP 44 mogą być używane w warunkach, gdzie może wystąpić kontakt z wodą, na przykład w przypadku deszczu. Taki stopień ochrony jest zalecany w normach ISO oraz IEC, które regulują bezpieczeństwo i niezawodność urządzeń elektrycznych. W kontekście budowy, zastosowanie takich urządzeń minimalizuje ryzyko awarii, a także zapewnia bezpieczeństwo użytkowników i personelu. Przykładem mogą być skrzynki elektryczne, które są używane do zasilania narzędzi i maszyn na otwartej przestrzeni, gdzie ochrona przed wodą i kurzem jest kluczowa dla ich prawidłowego funkcjonowania.

Pytanie 27

Jaką czynność konserwacyjną silnika prądu stałego można zrealizować podczas jego inspekcji w trakcie działania?

A. Czyszczenie komutatora
B. Weryfikacja stanu szczotkotrzymaczy
C. Weryfikacja stanu osłon elementów wirujących
D. Wymiana uszkodzonego amperomierza w obwodzie zasilającym
Wymiana uszkodzonego amperomierza w obwodzie zasilania, sprawdzenie stanu szczotkotrzymaczy i czyszczenie komutatora to rzeczy, które musimy robić tylko, gdy silnik jest wyłączony. Robiąc to podczas pracy silnika, można się narazić na porażenie prądem albo uszkodzenie innych elementów. Amperomierz monitoruje prąd w obwodzie, a jego zmiana w trakcie działania silnika mogłaby spowodować naprawdę niebezpieczne sytuacje, jak zwarcia czy zniszczenie obwodów. Szczotkotrzymacze i komutator są super ważne, jeśli chodzi o działanie silnika – więc ich sprawdzanie i czyszczenie powinno się odbywać, gdy maszyna jest wyłączona, żeby uniknąć uszkodzeń i dobrze przeprowadzić konserwację. Ignorowanie tych zasad nie jest mądre i może prowadzić do poważnych problemów, jak uszkodzenie sprzętu czy nawet kontuzje pracowników. Właściwie, takie podejście do konserwacji jest niezgodne z przepisami i odbiega od tego, co w branży uznaje się za najlepsze praktyki – czyli, że wszystkie prace konserwacyjne muszą być wykonywane w bezpiecznych warunkach.

Pytanie 28

Jakie powinno być znamionowe natężenie prądu dla instalacyjnego wyłącznika nadprądowego używanego w systemie z napięciem 230 V, 50 Hz, jako zabezpieczenie obwodu wykonanego z przewodu 3x2,5 mm2, który zasila 1-fazowy piec elektryczny o mocy 3 kW?

A. 6 A
B. 25 A
C. 10 A
D. 16 A
Wybór znamionowego prądu instalacyjnego wyłącznika nadprądowego na poziomie 16 A w przypadku obwodu zasilającego piec elektryczny o mocy 3 kW jest zgodny z zasadami zabezpieczeń elektrycznych. Przy napięciu 230 V, prąd pobierany przez piec można obliczyć, korzystając ze wzoru P = U * I, co daje I = P / U, a w naszym przypadku I = 3000 W / 230 V = 13,04 A. Z tego wynika, że wyłącznik nadprądowy o znamionowym prądzie 16 A będzie odpowiedni, zapewniając odpowiedni margines bezpieczeństwa oraz uwzględniając warunki pracy, takie jak prądy rozruchowe. Zgodnie z normą PN-IEC 60364-4-41, zabezpieczenia instalacyjne powinny być dobrane z odpowiednim zapasem, aby zminimalizować ryzyko wyzwolenia wyłącznika w normalnych warunkach eksploatacyjnych. Dodatkowo, zastosowanie przewodu 3x2,5 mm², który ma odpowiednią zdolność prądową, sprzyja bezpieczeństwu i niezawodności instalacji. W praktyce, 16 A jest powszechnie stosowane dla podobnych obwodów, co czyni tę odpowiedź właściwą.

Pytanie 29

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Zarządca obiektu
B. Dostawca energii elektrycznej
C. Właściciel obiektu
D. Producent energii elektrycznej
Właściciel budynku, jako podmiot odpowiedzialny za jego zarządzanie, może być mylnie postrzegany jako ten, kto odpowiada za stan techniczny układów pomiarowo-rozliczeniowych. Jednakże, w kontekście przepisów prawa i praktyk branżowych, jego rola ogranicza się głównie do zapewnienia odpowiednich warunków do instalacji i użytkowania tych urządzeń. Właściciel budynku nie ma kompetencji ani zasobów technicznych, aby samodzielnie sprawować nadzór nad układami pomiarowymi, co może prowadzić do nieporozumień co do odpowiedzialności. Z kolei wytwórca energii elektrycznej odpowiada za produkcję energii, ale nie zajmuje się bezpośrednio pomiarami i rozliczeniami dla odbiorców. Tylko dostawca energii, który finalnie sprzedaje energię, ma obowiązek monitorować stan techniczny urządzeń pomiarowych, aby zapewnić ich prawidłowe działanie. Zarządca budynku, mimo że może mieć pewne obowiązki w zakresie zarządzania infrastrukturą, nie jest w stanie zapewnić technicznej niezawodności układów pomiarowych bez ścisłej współpracy z dostawcą energii. Dobre praktyki branżowe oraz regulacje prawne jasno określają, że to dostawca energii jest odpowiedzialny za prawidłowe funkcjonowanie systemów pomiarowych, co jest kluczowe dla dokładnych rozliczeń i zapobiegania sporom między klientami a dostawcami.

Pytanie 30

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zamontowaniu w oprawach nowych źródeł światła
B. rozbudowaniu instalacji
C. zadziałaniu wyłącznika różnicowoprądowego
D. zadziałaniu bezpiecznika
Odpowiedź dotycząca przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia po każdorazowym rozbudowaniu instalacji jest słuszna. Rozbudowa instalacji wiąże się z wprowadzeniem nowych elementów oraz modyfikacją istniejących, co może wpływać na bezpieczeństwo i funkcjonalność całego systemu. Z tego względu, standardy branżowe, takie jak PN-EN 60364, zalecają przeprowadzanie pomiarów kontrolnych po każdej rozbudowie, aby upewnić się, że instalacja spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz nie stwarza zagrożenia dla użytkowników. Przykładowo, po dodaniu nowych obwodów czy urządzeń, ważne jest, aby sprawdzić ich poprawność pod względem rezystancji izolacji oraz ciągłości przewodów. Tego typu pomiary pozwalają na identyfikację potencjalnych usterek, takich jak niewłaściwe połączenia czy uszkodzenia izolacji, które mogą prowadzić do awarii lub zagrożeń pożarowych.

Pytanie 31

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Rękawice ochronne
B. Uprząż ochronna
C. Kask ochronny
D. Buty robocze
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 32

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H07RR-F 5G2,5
B. H07VV-U 5G2,5
C. H03V2V2-F 3G2,5
D. H03V2V2H2-F 2X2,5
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 33

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
B. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
C. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
D. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
Wszystkie pozostałe działania, takie jak zwiększenie częstotliwości przeglądów maszyn elektrycznych, podnoszenie kwalifikacji pracowników czy uzyskiwanie większego przydziału mocy w Zakładzie Energetycznym, nie prowadzą bezpośrednio do poprawy współczynnika mocy, co może prowadzić do błędnych wniosków w zakresie zarządzania energetycznego. Zwiększenie częstotliwości przeglądów maszyn elektrycznych, chociaż istotne dla utrzymania ich sprawności i wydajności, nie wpływa na współczynnik mocy sam w sobie. Główne korzyści związane z przeglądami dotyczą zapobiegania awariom i przedłużenia żywotności sprzętu, a nie bezpośredniej poprawy PF. Podnoszenie kwalifikacji pracowników jest z pewnością korzystne dla ogólnej efektywności operacyjnej zakładu, jednak nie jest to działanie, które bezpośrednio wpłynie na poprawę współczynnika mocy. Natomiast uzyskanie większego przydziału mocy w Zakładzie Energetycznym może wręcz prowadzić do zwiększenia obciążeń, co często skutkuje pogorszeniem współczynnika mocy. Właściwa strategia zarządzania mocą powinna koncentrować się na optymalizacji istniejącego sprzętu oraz eliminacji nieefektywnych operacji, zamiast na zwiększaniu przydziału mocy, co może prowadzić do niepotrzebnych kosztów.

Pytanie 34

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Obudowa
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Ogrodzenie
D. Samoczynne wyłączenie zasilania
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 35

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. A.
B. B.
C. D.
D. C.
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 36

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 1,1
B. 0,8
C. 2,2
D. 1,4
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 37

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. przekładnik napięciowy
B. pirometr
C. prądnicę tachometryczną
D. induktor
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 38

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. zmierzyć temperaturę uzwojenia stojana
B. zmierzyć rezystancję izolacji kabla zasilającego
C. ocenić stan szczotek
D. sprawdzić rezystancję przewodu ochronnego
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 39

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24
A. B.
B. C.
C. D.
D. A.
Wybór obwodu, który spełnia warunki ochrony przeciwporażeniowej, wymaga zrozumienia kilku kluczowych zasad i norm stosowanych w branży elektrycznej. Często mylone są różne wartości prądów, co prowadzi do nieprawidłowych wniosków o bezpieczeństwie obwodów. W przypadku, gdy obwód A, B lub D zostałby wybrany, można zauważyć, że prąd różnicowy dla tych obwodów mógłby znajdować się w odpowiednich granicach, co oznaczałoby, że zabezpieczenie różnicowe działa zgodnie z wymaganiami. Często popełnianym błędem jest zrozumienie, że wszystkie obwody muszą mieć prąd różnicowy wyższy niż prąd wyzwalający. W rzeczywistości, ważne jest, aby te wartości były odpowiednio dostosowane do specyfiki danego obwodu i jego zastosowania. Dodatkowo, w kontekście ochrony przeciwporażeniowej, kluczowe jest, aby zrozumieć różnicę między prądem różnicowym a prądem wyzwalającym. Wybór obwodu, który nie wykazuje rzetelnych wartości, może prowadzić do nieodpowiednich zabezpieczeń oraz stwarzać ryzyko niebezpiecznych sytuacji. Aby uniknąć takich błędów, istotne jest zasięgnięcie wiedzy na temat standardów, takich jak IEC oraz zapoznanie się z najlepszymi praktykami branżowymi w zakresie projektowania obwodów elektrycznych.

Pytanie 40

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 7 do 14
B. Od 19 do 26
C. Od 47 do 52
D. Od 1 do 6
Wybór odpowiedzi związanej z innymi zakresami (np. od 47 do 52, od 1 do 6 czy od 19 do 26) świadczy o małym nieporozumieniu z identyfikacją komponentów silnika szlifierki. Te numery dotyczą różnych części, które nie są kluczowe dla samego działania silnika, co może sprawić, że serwisowanie stanie się mniej efektywne. Na przykład, numery od 1 do 6 mogą obejmować części, które tak naprawdę nie wpłyną na wydajność silnika. Jak się pomylisz z ich identyfikacją, to naprawa może się wydłużyć. Numery od 47 do 52 to z kolei mogą być jakieś osłony, które też nie są bezpośrednio związane z napędem. Takie błędy najczęściej wynikają z braku znajomości dokumentacji oraz braku zrozumienia, jak różne elementy działają razem. Dobrze jest posiedzieć nad dokumentacją i ogarnąć, jak poszczególne części wpływają na całość maszyny, bo to przekłada się na lepszą obsługę i konserwację. Im lepsza znajomość identyfikacji części, tym szybciej uda się naprawić sprzęt, a dla operatorów będzie to też bezpieczniejsze.