Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:35
  • Data zakończenia: 17 grudnia 2025 13:51

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Sektorowe
B. Wielodrutowe
C. Jednodrutowe
D. Płaskie
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 2

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Chociaż odpowiedzi, które nie również odzwierciedlają rzeczywistości, mogą wydawać się poprawne na pierwszy rzut oka, to w rzeczywistości popełniają poważne błędy w koncepcji podłączania przewodów. Zazwyczaj mylnie przyjmuje się, że każdy przewód oznaczony w schemacie jest równoważny, co prowadzi do błędnych wniosków. Na przykład, wybierając przewody bez oznaczeń, można przyjąć, że są one neutralne, co jest nieprawidłowe, ponieważ brak oznaczenia nie oznacza automatycznie przewodu neutralnego. Zasadniczo w instalacjach elektrycznych przewody fazowe są kluczowe dla prawidłowego przesyłu energii, a ich niewłaściwe podłączenie może prowadzić do poważnych problemów, takich jak zwarcia czy uszkodzenia urządzeń. Istotne jest, aby stosować się do norm zawartych w dokumentach, takich jak PN-IEC 60364 dotyczące instalacji elektrycznych, które jasno definiują, jak powinny być oznaczane i podłączane przewody, aby zminimalizować ryzyko. Warto pamiętać, że każdy element instalacji elektrycznej powinien być zaprojektowany z uwzględnieniem zasad bezpieczeństwa oraz ergonomii, aby zapewnić nie tylko efektywność, ale także bezpieczeństwo użytkowników.

Pytanie 3

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 4

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór innej odpowiedzi, niż oznaczenie "B", może prowadzić do nieporozumień w zakresie identyfikacji wyzwalaczy elektromagnetycznych. Odpowiedzi, które nie są zgodne z definicją i standardami schematów elektrycznych, mogą wywołać szereg problemów związanych z interpretacją projektów elektronicznych. Na przykład, nieprawidłowe symbole mogą prowadzić do błędów w instalacji i eksploatacji urządzeń. W schematach elektrycznych każdy symbol ma swoje unikalne znaczenie, a ich niewłaściwe zrozumienie może skutkować nieefektywnymi rozwiązaniami oraz stwarzaniem zagrożeń dla bezpieczeństwa. Przy projektowaniu obwodów zabezpieczeń, istotne jest, aby każdy komponent był jednoznacznie zidentyfikowany, ponieważ nawet małe błędy mogą prowadzić do poważnych konsekwencji. Ponadto, korzystanie z nieautoryzowanych lub mylnych symboli może być sprzeczne z obowiązującymi normami branżowymi, co może skutkować problemami prawnymi w przypadku awarii. Dlatego kluczowe jest, aby na każdym etapie projektowania oraz realizacji prac korzystać z poprawnych symboli i wytycznych, które odpowiadają rzeczywistym funkcjom urządzeń w obwodzie elektrycznym.

Pytanie 5

W jaki sposób i przewodem o jakim przekroju ma być wykonana trójfazowa wewnętrzna linia zasilająca (WLZ), której obciążalność prądowa wynosi 220 A?

Obciążalność prądowa długotrwała w A przewodów
o żyłach Cu w izolacji PVC ułożonych w różny sposób
Przekrój
znamionowy żył
w mm²
Instalacja wykonana
sposobami
CE
70211216
95225238
gdzie:
C – przewody układane po wierzchu, na ścianie lub suficie drewnianym
E – przewody wielożyłowe ułożone swobodnie w powietrzu lub korytku kablowym
A. Sposób E i 70 mm2
B. Sposób C i 95 mm2
C. Sposób E i 95 mm2
D. Sposób C i 70 mm2
Wybór odpowiedzi "Sposób E i 95 mm2" jest poprawny, ponieważ przewody o przekroju 95 mm², ułożone zgodnie z metodą E, mają obciążalność prądową wynoszącą 238 A. To oznacza, że są w stanie z powodzeniem obsłużyć wymagane obciążenie prądowe wynoszące 220 A, co jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego systemu zasilania. Sposób E wskazuje na ułożenie przewodów w sposób, który umożliwia swobodny przepływ powietrza wokół nich, co skutkuje lepszym odprowadzaniem ciepła i minimalizacją ryzyka przegrzania. Przykładowo, w instalacjach przemysłowych stosuje się tę metodę w przypadku zasilania dużych maszyn oraz urządzeń, gdzie obciążenia są znaczne i wymagana jest wysoka niezawodność. Zastosowanie odpowiedniego przekroju przewodu oraz metody ułożenia jest zgodne z normą PN-IEC 60364 oraz przepisami bezpieczeństwa, co podkreśla znaczenie stosowania właściwych standardów w praktyce.

Pytanie 6

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik priorytetowy.
B. Wyłącznik ciśnieniowy.
C. Ogranicznik przepięć.
D. Ogranicznik mocy.
Odpowiedzi, które wybrałeś, są nietrafne, bo opierają się na mylnych przekonaniach na temat funkcji różnych elementów w instalacjach elektrycznych. Na przykład, wyłącznik priorytetowy zajmuje się zarządzaniem priorytetami w zasilaniu, gdy mamy kilka źródeł prądu. Ale on nie ma nic wspólnego z monitorowaniem mocy elektrycznej. Działa tak, że przydziela zasilanie najważniejszym urządzeniom, gdy główne źródło przestaje działać.Dlatego akurat w kontekście rysunku, brak oznaczeń związanych z zasilaniem priorytetowym eliminuje tę odpowiedź. Ogranicznik przepięć ma na celu chronić instalacje przed nagłymi wzrostami napięcia, na przykład podczas burzy. To też ważne urządzenie, ale nie reguluje mocy. Wyłącznik ciśnieniowy kontroluje ciśnienie w systemach hydraulicznych albo pneumatycznych, i nie ma nic wspólnego z elektrycznością. Często popełniamy błąd, myląc różne urządzenia elektryczne, co prowadzi do złych wniosków. Żeby dobrze projektować i eksploatować instalacje elektryczne, warto znać specyfikacje i funkcje tych elementów.

Pytanie 7

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla urządzeń gospodarstwa domowego
B. zasilającego gniazdka jedynie w kuchni
C. zasilającego gniazdka w łazience oraz kuchni
D. oddzielnego dla zmywarki
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 8

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 2,3 Ω
B. 4,0 Ω
C. 6,6 Ω
D. 3,8 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 9

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
D. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.

Pytanie 10

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
B. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
C. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
D. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
Analizując błędne odpowiedzi, można zauważyć kilka kluczowych nieporozumień dotyczących zasad projektowania i instalacji rozdzielnic. W przypadku odpowiedzi wskazujących na większą liczbę wyłączników różnicowoprądowych, warto zauważyć, że każdy wyłącznik różnicowoprądowy chroni określony obszar instalacji, a ich nadmiar prowadziłby do nieefektywności oraz złożoności w użytkowaniu i konserwacji. Zastosowanie pięciu wyłączników różnicowoprądowych, jak sugeruje jedna z nieprawidłowych odpowiedzi, mogłoby prowadzić do zbędnych kosztów, a także do większego ryzyka błędnych wyzwalań, co jest niepożądane w praktyce. Kolejnym istotnym błędem jest zrozumienie roli wyłączników nadprądowych. Wyłączniki te są projektowane do ochrony obwodów przed przeciążeniem i zwarciem, a ich liczba musi odpowiadać liczbie podłączonych obwodów. W przypadku rozdzielnicy, która ma pięć obwodów jednofazowych, konieczne jest zastosowanie pięciu jednofazowych wyłączników nadprądowych, co jest zgodne z dobrymi praktykami w zakresie instalacji elektrycznych. Ponadto, stosowanie wyłączników trójfazowych w rozdzielnicy, gdzie nie ma odpowiedniej liczby obwodów trójfazowych, również byłoby błędne, ponieważ nie zapewniłoby to odpowiedniej ochrony i mogłoby prowadzić do nieefektywności pracy całego systemu. W związku z tym, ważne jest nie tylko posiadanie wiedzy teoretycznej, ale także umiejętność jej zastosowania w praktyce, aby uniknąć takich błędów w projektowaniu i instalacji systemów elektrycznych.

Pytanie 11

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A?

Ilustracja do pytania
A. Wstawkę 3.
B. Wstawkę 4.
C. Wstawkę 2.
D. Wstawkę 1.
Wstawka kalibrowa, którą należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A, to wstawkę 3. Wstawkę tę oznacza się jako 25/500, co wskazuje, że jest ona przeznaczona dla prądu znamionowego 25 A oraz wytrzymuje napięcie do 500 V. W praktyce, jako element zabezpieczający, wstawka kalibrowa zapobiega włożeniu wkładek o wyższych prądach znamionowych, co mogłoby prowadzić do przegrzania lub pożaru. W przypadku stosowania wkładek gG, które są odpowiednie do zabezpieczania obwodów z impulsowymi prądami zwarciowymi, ważne jest, aby zawsze dobrać właściwą wstawkę kalibrową, zgodnie z normą IEC 60269. Tylko wtedy można osiągnąć optymalną ochronę i wydajność systemu elektrycznego. Wstawkę 3 stosuje się powszechnie w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność i ochrona przed zwarciem.

Pytanie 12

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór niewłaściwego wyłącznika różnicowoprądowego, który nie posiada wskaźnika prądu upływu, może prowadzić do poważnych konsekwencji w eksploatacji instalacji elektrycznej. Osoby decydujące się na użycie wyłączników bez takich wskaźników mogą być narażone na niebezpieczeństwo, ponieważ nie są w stanie monitorować potencjalnych zagrożeń związanych z prądem upływu. Brak wskaźnika oznacza, że użytkownik nie otrzymuje informacji o niewłaściwym działaniu instalacji, co może skutkować poważnymi uszkodzeniami sprzętu elektrycznego lub, w najgorszym wypadku, porażeniem prądem elektrycznym. Często spotykanym błędem jest założenie, że wszystkie wyłączniki różnicowoprądowe działają w ten sam sposób i oferują te same funkcjonalności. To mylne przekonanie prowadzi do niewłaściwego doboru urządzeń, co może skutkować nieodpowiednim zabezpieczeniem całego systemu elektrycznego. Warto zauważyć, że zgodnie z obowiązującymi normami, takim jak PN-EN 61008, wyłączniki różnicowoprądowe powinny być wyposażone w dodatkowe funkcje monitorujące, aby zapewnić maksymalne bezpieczeństwo użytkowania. Dokonując wyboru, należy zwracać uwagę na specyfikacje techniczne oraz dostępne funkcje, aby uniknąć potencjalnych zagrożeń i w pełni wykorzystać możliwości, jakie oferują nowoczesne rozwiązania w zakresie zabezpieczeń elektrycznych.

Pytanie 13

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęci owo-żarowa.
B. rtęciowa.
C. halogenowa.
D. sodowa.
Lampy rtęciowe, sodowe i rtęciowo-żarowe różnią się istotnie od lamp halogenowych, co może prowadzić do mylnych wniosków. Lampy rtęciowe, na przykład, wykorzystują pary rtęci do emisji światła i charakteryzują się specyficznym, niebieskawym odcieniem, co sprawia, że ich zastosowanie jest bardziej ograniczone do oświetlenia ulicznego oraz przemysłowego. Kształt lampy rtęciowej jest przeważnie bardziej masywny niż lamp halogenowych, co także wpływa na ich aplikację. Z kolei lampy sodowe, które emitują ciepłe, żółte światło, są powszechnie używane w oświetleniu zewnętrznym, ale ich wydajność w zakresie odwzorowania barw jest znacznie gorsza niż w przypadku lamp halogenowych. Lampy sodowe mają również dłuższy czas nagrzewania się, co czyni je mniej praktycznymi w zastosowaniach wymagających natychmiastowego oświetlenia. Natomiast lampy rtęciowo-żarowe łączące elementy obu tych technologii, także nie są porównywalne z lampami halogenowymi, gdyż opierają się na klasycznym, żarowym źródle światła i nie oferują równie wysokiej efektywności energetycznej. Mylne uchwycenie konstrukcji i funkcji lamp prowadzi do wyboru niewłaściwego rozwiązania, co może skutkować nieefektywnym oświetleniem oraz wyższymi kosztami eksploatacji.

Pytanie 14

Schemat przedstawia układ podłączenia żarówki

Ilustracja do pytania
A. sodowej.
B. fluorescencyjnej.
C. łukowej.
D. rtęciowej.
Odpowiedź o lampach fluorescencyjnych jest na pewno trafna. Schemat pokazuje, jak działa zapłonnik, który jest kluczowy dla tych lamp. One świecą dzięki wyładowaniom elektrycznym w gazie w środku lampy. W praktyce, lampy fluorescencyjne są bardzo popularne, szczególnie w biurach, bo są energooszczędne i mogą świecić nawet do 15 000 godzin. Fajnie, że emitują mniej ciepła niż zwykłe żarówki, więc są też bardziej eco. No i warto wiedzieć, że zgodnie z normami EN 60598-1, trzeba uwzględniać zapłonniki, żeby mieć pewność, że wszystko działa bezpiecznie i efektywnie.

Pytanie 15

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
B. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
C. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
D. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
Odpowiedź dotycząca nastawienia urządzeń zabezpieczających i sygnalizacyjnych oraz sprawdzenia dostępności urządzeń jest prawidłowa, ponieważ wchodzą one w zakres oględzin instalacji elektrycznej w budynku mieszkalnym. W procesie oględzin kluczowe jest zapewnienie, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe (RCD) i zabezpieczenia przeciążeniowe, działają zgodnie z wymaganiami norm, takich jak PN-EN 61010-1. Oprócz tego istotne jest, aby sprawdzić dostępność urządzeń, co pozwala na szybką reakcję w razie awarii. Użytkownik musi mieć możliwość łatwego dostępu do tych urządzeń w celu przeprowadzenia ewentualnych napraw lub konserwacji. Dobre praktyki branżowe sugerują regularne przeglądy tych urządzeń, aby potwierdzić ich funkcjonalność i kompletność, co z kolei zwiększa bezpieczeństwo całej instalacji. Warto również zaznaczyć, że zgodność z odpowiednimi normami i regulacjami prawnymi jest kluczowa dla zapewnienia bezpieczeństwa użytkowników budynków mieszkalnych.

Pytanie 16

Na podstawie przedstawionego schematu, przy odłączonych łącznikach, można wykonać pomiar

Ilustracja do pytania
A. stanu izolacji przewodów.
B. skuteczności samoczynnego wyłączenia napięcia.
C. stanu izolacji uzwojeń silnika.
D. asymetrii napięcia zasilającego.
Wybranie złej odpowiedzi, jak pomiar stanu izolacji uzwojeń silnika czy skuteczności samoczynnego wyłączenia napięcia, może wynikać z nieporozumień w temacie instalacji elektrycznych. Tak naprawdę, nie da się zmierzyć izolacji uzwojeń silnika, gdy łączniki są odłączone, bo silnik jest wtedy martwy, więc wyniki takich pomiarów nie miałyby sensu. Poza tym, żeby ocenić, jak działa samoczynne wyłączanie, trzeba mieć podłączone zasilanie, bo wtedy można to wszystko sprawdzić. Jeżeli chodzi o asymetrię napięcia, to też potrzebujemy, żeby system działał, a przy odłączonych łącznikach to nie jest możliwe. Te błędy często wynikają z braku zrozumienia podstawowych zasad elektryki. Ważne, żeby odróżniać różne pomiary i stosować odpowiednie metody, bo to jest kluczowe, nie tylko do robienia dobrych testów, ale też dla bezpieczeństwa i konserwacji instalacji elektrycznych.

Pytanie 17

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Zwarcie rezystancyjne do obudowy odbiornika
B. Przeciążenie obwodu
C. Awaria wyłącznika nadprądowego w rozdzielnicy
D. Uszkodzenie lub przepalenie przewodu neutralnego
Zwarcie rezystancyjne do obudowy odbiornika jest jedną z najczęstszych przyczyn zadziałania wyłącznika różnicowoprądowego, ponieważ polega na niepożądanym połączeniu między przewodami roboczymi a obudową urządzenia. W takiej sytuacji część prądu 'ucieka' do ziemi poprzez obudowę, co skutkuje wywołaniem różnicy potencjałów. Wyłącznik różnicowoprądowy działa na zasadzie porównania prądów wpływających i wypływających z obwodu. Kiedy wystąpi niewielka, ale zauważalna różnica, wyłącznik uruchamia się, aby chronić ludzi przed ryzykiem porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu awarii, należy regularnie kontrolować stan techniczny urządzeń oraz ich instalacji, a także stosować odpowiednie materiały oraz zapewnić właściwą wentylację. Normy takie jak PN-EN 61008-1 wskazują na konieczność stosowania wyłączników różnicowoprądowych w instalacjach niskiego napięcia, co pomaga w ochronie życia i zdrowia użytkowników oraz minimalizuje ryzyko uszkodzeń sprzętu.

Pytanie 18

Którym z urządzeń przedstawionych na rysunkach należy zastąpić uszkodzony w instalacji elektrycznej stycznik o oznaczeniu SM 425 230 4Z?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź B jest prawidłowa, ponieważ stycznik Relpol RIK40-40, który ma być użyty jako zamiennik, ma napięcie cewki w zakresie 230-240V, co jest zgodne z wymaganiami technicznymi dla uszkodzonego stycznika SM 425 230 4Z. Dodatkowo, RIK40-40 dysponuje czterema stykami pomocniczymi, co sprawia, że jego parametry są zgodne z wymaganiami systemu. Użycie właściwego stycznika jest kluczowe w instalacjach elektrycznych, aby zapewnić ich niezawodność i bezpieczeństwo. Styczniki są szeroko stosowane w automatyce przemysłowej oraz w systemach sterowania, gdzie precyzyjne dopasowanie parametrów styków i napięcia cewki jest niezbędne dla prawidłowego działania. W przypadku stosowania niewłaściwego stycznika, może dojść do uszkodzenia urządzenia, co prowadzi do przestojów produkcyjnych czy zagrożeń bezpieczeństwa. Dlatego ważne jest, aby przy wymianie styczników zawsze kierować się ich specyfikacjami technicznymi, które powinny być zgodne z wymaganiami dokumentacji projektowej oraz normami branżowymi, takimi jak IEC 60947.

Pytanie 19

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Przerwa w uzwojeniu fazy V
B. Zwarcie międzyzwojowe w fazie W
C. Zwarcie międzyzwojowe w fazie V
D. Przerwa w uzwojeniu fazy W
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 20

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-PE(RCD)
B. Z L-N
C. Z L-PE
D. Z L-L
W kontekście pomiarów impedancji pętli zwarcia, wybór odpowiedniej funkcji pomiarowej ma kluczowe znaczenie. Odpowiedzi takie jak "Z L-PE", "Z L-N" oraz "Z L-L" nie są prawidłowe, ponieważ nie uwzględniają obecności wyłącznika różnicowoprądowego (RCD) w układzie. Pomiar "Z L-PE" zazwyczaj odnosi się do uziemienia bez uwzględnienia specyfiki RCD, co może prowadzić do niepełnych lub nieprawidłowych danych. W przypadku "Z L-N" pomiar koncentruje się na napięciu między linią a neutralnym przewodem, co również nie odzwierciedla rzeczywistego stanu impedancji pętli zwarcia, szczególnie w kontekście ochrony przed porażeniem. Z kolei pomiar "Z L-L" dotyczy wyłącznie połączenia między przewodami fazowymi i nie dostarcza informacji o uziemieniu, co jest istotne w analizie bezpieczeństwa. Często błędem myślowym jest zakładanie, że bezpośrednie połączenia między przewodami wystarczą do oceny bezpieczeństwa instalacji. Należy pamiętać, że prawidłowa ocena wymaga uwzględnienia wszystkich komponentów, w tym urządzeń ochronnych, jakimi są RCD. Zaniedbanie tego aspektu może prowadzić do poważnych konsekwencji, dlatego tak istotne jest stosowanie odpowiednich metod pomiarowych, zgodnych z normami, aby zapewnić pełne bezpieczeństwo instalacji elektrycznych.

Pytanie 21

Zdjęcie przedstawia

Ilustracja do pytania
A. rozłącznik.
B. odłącznik.
C. przełącznik.
D. wyłącznik.
Rozważając inne urządzenia, które zostały wymienione jako możliwości odpowiedzi, można zauważyć, że rozłącznik, wyłącznik i przełącznik mają różne funkcje i zastosowania, które nie odpowiadają charakterystykom odłącznika. Rozłącznik jest urządzeniem, które również służy do odłączania obwodu, ale jego działanie jest często bardziej złożone i może być stosowane w sytuacjach awaryjnych. Wyłącznik, z kolei, jest przystosowany do pracy pod obciążeniem, co oznacza, że może być używany do regularnego włączania i wyłączania obwodów elektrycznych, co nie jest celem odłącznika. Przełącznik natomiast, jego podstawowa funkcja polega na zmianie kierunku przepływu prądu lub włączaniu i wyłączaniu obwodów bez funkcji zapewnienia widocznego odłączenia. Często mylące jest myślenie, że te urządzenia mogą być używane zamiennie, co prowadzi do nieprawidłowych wniosków. Kluczowym błędem jest nieodróżnianie urządzeń przeznaczonych do pracy pod obciążeniem od tych, które mają na celu jedynie bezpieczne odłączenie obwodu. W praktyce, stosowanie niewłaściwego urządzenia w danej aplikacji może prowadzić do zagrożeń dla bezpieczeństwa, dlatego ważne jest, aby znać specyfikę każdego z tych urządzeń oraz ich prawidłowe zastosowanie zgodnie z obowiązującymi normami branżowymi.

Pytanie 22

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 10 mm2
B. 4 mm2
C. 2,5 mm2
D. 6 mm2
Wybór przekroju żył przewodu czterożyłowego o przekroju 6 mm² dla obciążenia 36 A jest zgodny z zasadami doboru przewodów elektrycznych. W tabelach obciążalności długotrwałej, przewody ułożone na ścianie, na uchwytach, są klasyfikowane w kolumnach, które uwzględniają różne warunki ułożenia i obciążenia. W przypadku prądu znamionowego 36 A, najbliższą większą wartością w tabeli jest 43 A, co odpowiada przekrojowi 6 mm². Przekrój ten zapewnia odpowiednie zabezpieczenie przed przegrzaniem przewodów, co jest kluczowe dla bezpieczeństwa instalacji. Należy również pamiętać, że w praktyce, wybór odpowiedniego przekroju żył powinien uwzględniać nie tylko prąd znamionowy, ale także długość przewodu, rodzaj materiału (miedź czy aluminium) oraz warunki zewnętrzne, takie jak temperatura otoczenia. W przypadku zastosowań domowych, gdzie wymagane jest zasilanie urządzeń o dużym poborze mocy, takich jak piece trójfazowe, właściwy dobór przekroju przewodów ma istotne znaczenie dla zapewnienia ich niezawodności i bezpieczeństwa. Ogólnie rzecz biorąc, przestrzeganie norm i standardów, takich jak PN-EN 60204-1, jest niezbędne dla każdego elektryka.

Pytanie 23

Który z podanych materiałów charakteryzuje się najniższą rezystywnością?

A. Stal
B. Aluminium
C. Nichrom
D. Miedź
Miedź to materiał o wyjątkowo niskiej rezystywności, wynoszącej około 1.68 µΩ·m w temperaturze 20°C. Dzięki temu jest szeroko stosowana w aplikacjach elektrycznych, takich jak przewody, złączki i komponenty elektroniczne. Wysoka przewodność miedzi sprawia, że jest idealnym wyborem w sytuacjach, gdzie minimalizacja strat energii jest kluczowa. Przykładem może być wykorzystanie miedzi w instalacjach elektrycznych w budynkach mieszkalnych oraz w przemyśle motoryzacyjnym, gdzie przewody miedziane są standardem. Inne materiały, takie jak aluminium, mają wyższą rezystywność, co wpływa na zwiększenie strat energii w systemach elektrycznych. W praktyce, miedź jest również preferowana w zastosowaniach wymagających dużej odporności na korozję oraz wysokiej trwałości, co czyni ją materiałem pierwszego wyboru w wielu normach branżowych dotyczących elektryczności i elektroniki.

Pytanie 24

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 500 V
B. 1000 V
C. 2500 V
D. 250 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 25

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 10 lat
B. co najmniej raz na 5 lat
C. raz na rok
D. raz na pół roku
Wybierając częstotliwość badania instalacji elektrycznej i piorunochronnej, można napotkać wiele nieporozumień związanych z niewłaściwymi podejściami do tego tematu. Odpowiedzi sugerujące, że kontrole powinny odbywać się raz na pół roku, raz na rok, czy co najmniej raz na 10 lat, mogą wynikać z mylnego wrażenia, że częstotliwość badań powinna być uzależniona od intensywności użytkowania instalacji lub warunków zewnętrznych. Niemniej jednak, jest to podejście z gruntu błędne, ponieważ przepisy prawa budowlanego i normy dotyczące bezpieczeństwa elektrycznego jasno określają, iż standardowy okres pomiędzy badaniami powinien wynosić co najmniej 5 lat. Częstsze kontrole, takie jak raz na pół roku lub raz na rok, mogą nie tylko generować niepotrzebne koszty, ale również prowadzić do zbytniego obciążenia specjalistów, co może skutkować wypaleniem zawodowym i negatywnym wpływem na jakość przeprowadzanych badań. Z kolei nawiązanie do 10-letniego okresu między przeglądami jest zupełnie niezgodne z aktualnymi zaleceniami i normami, co może prowadzić do poważnych zagrożeń, gdyż długi okres bez kontroli stwarza ryzyko, że niebezpieczne usterki lub degradacja instalacji mogą pozostać niezauważone. W praktyce, niewłaściwe podejście do okresowości badań może nie tylko zagrażać bezpieczeństwu użytkowników, ale również wpływać na odpowiedzialność prawną właścicieli budynków, którzy są zobowiązani do zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 26

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Sterownik rolet.
C. Przekaźnik bistabilny.
D. Regulator oświetlenia.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.

Pytanie 27

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. C10
B. C16
C. B10
D. B16
Wybór wyłączników nadprądowych powinien być oparty na dokładnych obliczeniach prądu roboczego danego obwodu oraz na charakterystyce urządzeń, które są zasilane. Wyłącznik C10, mimo iż ma mniejszy prąd znamionowy niż B16 i C16, nie jest odpowiedni dla obszarów, gdzie występują urządzenia o dużych prądach rozruchowych, jak silniki elektryczne czy grzejniki oporowe, ponieważ może zareagować zbyt szybko na chwilowe skoki prądu. Z kolei wyłącznik B16 jest przeznaczony dla obwodów, które mogą mieć większe obciążenia i prądy do 16 A, co sprowadza się do przekroczenia maksymalnych wartości obciążenia na obwodzie z grzejnikiem 1600 W. Chociaż wyłącznik B16 mógłby teoretycznie zadziałać, w praktyce nie zapewniałby odpowiedniego poziomu zabezpieczenia, co może prowadzić do niebezpiecznych sytuacji. Podobnie, wyłącznik C16 ma zbyt wysoką wartość prądową dla tego konkretnego zastosowania, co czyni go niewłaściwym wyborem, gdyż nie zadziałałby w przypadku przeciążenia, a tym samym nie chroniłby instalacji. Właściwy wybór wyłącznika nadprądowego powinien opierać się na danych technicznych urządzeń oraz na normach bezpieczeństwa, aby zapewnić optymalną ochronę przed skutkami awarii elektrycznych.

Pytanie 28

Jak należy interpretować przedstawiony na zdjęciu wynik pomiaru rezystancji izolacji przewodu o napięciu znamionowym 300 V/300 V wykonany miernikiem MIC-2 ustawionym na zakres 500 V?

Ilustracja do pytania
A. Zbyt mała rezystancja izolacji przewodu.
B. Miernik ma rozładowaną baterię.
C. Miernik jest uszkodzony.
D. Rezystancja izolacji przewodu jest wystarczająca.
Wybór innej odpowiedzi może wynikać z kilku błędnych założeń dotyczących działania miernika oraz interpretacji wyników pomiaru. Przykładowo, uznanie, że rezystancja izolacji przewodu jest zbyt mała, jest nieuzasadnione. Wartość '>999MΩ' wyraźnie wskazuje na właściwy stan izolacji, znacznie przewyższający minimalne wymagania. W przypadku przewodów o napięciu znamionowym 300 V/300 V, jak wspomniano wcześniej, minimalna wartość izolacji powinna wynosić przynajmniej 1 MΩ, a wynik pomiaru wskazuje na znacznie wyższy poziom. Ponadto, jeśli użytkownik zauważyłby problemy z działaniem miernika, takie jak rozładowana bateria czy uszkodzenie urządzenia, nie powinno to wpływać na wyniki pomiarów, które są już interpretowane jako bardzo wysokie. Często spotykanym błędem jest także zakładanie, że jakiekolwiek odchylenia od oczekiwanej wartości są oznaką uszkodzenia, jednak w przypadku tego pomiaru nie ma dowodów na to, by miernik działał nieprawidłowo. Warto zaznaczyć, że umiejętność właściwej interpretacji wyników pomiarów oraz zrozumienie ich znaczenia w kontekście bezpieczeństwa instalacji elektrycznych jest kluczowa dla każdej osoby pracującej w branży elektrotechnicznej. Wiedza ta jest nie tylko podstawą odpowiedzialnego zachowania w pracy, ale także fundamentem budowania zaufania do systemów elektrycznych w ogóle.

Pytanie 29

Który rodzaj wirującej maszyny elektrycznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Synchroniczną.
B. Asynchroniczną pierścieniową.
C. Bocznikową prądu stałego.
D. Komutatorową prądu przemiennego.
Wybór innej odpowiedzi może wynikać z nieporozumień dotyczących budowy i zasad działania różnych typów maszyn elektrycznych. Odpowiedź wskazująca na maszynę bocznikową prądu stałego jest niewłaściwa, ponieważ maszyny te charakteryzują się komutacją prądu stałego, co nie jest zgodne z przedstawionym trójfazowym uzwojeniem. Ponadto, maszyny bocznikowe nie mają stałych biegunów magnetycznych, co jest kluczowym elementem widocznym na ilustracji. Wybór odpowiedzi dotyczącej maszyny asynchronicznej pierścieniowej jest również błędny, ponieważ maszyny te działają na zasadzie różnicy prędkości między wirnikiem a polem magnetycznym, co nie znajduje odzwierciedlenia w podanej strukturze. W przypadku odpowiedzi dotyczącej komutatorowej prądu przemiennego, należy zauważyć, że takie maszyny wykorzystują komutatory, co nie jest zgodne z synchronicznym działaniem przedstawionej maszyny. Często błędy w ocenie wynikają z braku zrozumienia podstawowych zasad działania maszyn elektrycznych oraz ich klasyfikacji. Ważne jest, aby przed podjęciem decyzji dokładnie zapoznać się z charakterystykami i zastosowaniami różnych typów maszyn elektrycznych, co można osiągnąć poprzez studiowanie aktualnych norm i standardów w branży, takich jak IEC 60034.

Pytanie 30

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 1 i 4
B. 7 i 8
C. 1 i 7
D. 4 i 8
Wybrane odpowiedzi sugerują błędne podejście do analizy schematu połączeń czujnika kontroli i zaniku faz z cewką stycznika. W przypadku odpowiedzi 1 i 4, wyprowadzenia 1 oraz 4 nie są przeznaczone do szeregowego połączenia z cewką, co oznacza, że nie będą monitorować obecności faz w sposób wymagany do zabezpieczenia silnika. Podobnie, połączenie 1 i 7 oraz 4 i 8 również nie spełnia kryteriów, które pozwoliłyby na efektywne działanie czujnika. Typowym błędem myślowym jest zakładanie, że wystarczą dowolne wyprowadzenia czujnika do zabezpieczenia urządzenia. Ważne jest, aby zrozumieć, że czujnik zaniku faz ma specyficzne wyprowadzenia, które muszą być stosowane zgodnie z zaleceniami producenta, aby uniknąć niepożądanych sytuacji, takich jak zbyt wczesne wyłączenie silnika lub jego uszkodzenie w wyniku pracy w warunkach braku zasilania. Niezrozumienie zasad działania systemów zabezpieczeń może prowadzić do poważnych awarii, a w konsekwencji do wysokich kosztów napraw i przestojów produkcji. W związku z tym kluczowe jest, aby każdy inżynier miał pełne zrozumienie schematów oraz zasad działania urządzeń, z którymi pracuje.

Pytanie 31

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 2,3 Ω
B. 0,4 Ω
C. 7,7 Ω
D. 4,6 Ω
Jeśli chodzi o odpowiedzi, które mówią, że maksymalna wartość impedancji pętli zwarcia to 0,4 Ω, 7,7 Ω czy 4,6 Ω, to niestety, to nie jest dobre podejście. Ta pierwsza wartość, 0,4 Ω, jest zdecydowanie za mała. W praktyce, tak niski poziom nie jest potrzebny dla systemów z wyłącznikami nadprądowymi. Taki wynik by znaczył, że nawet niewielkie napięcie mogłoby wyzwolić zabezpieczenia, a to nie jest ani realne, ani praktyczne. Potem mamy 7,7 Ω i 4,6 Ω, które są już poza dopuszczalnym poziomem. To przekłada się na to, że wyłącznik będzie działał za wolno, a przy poważnych zwarciach może być naprawdę niebezpiecznie. Ważne jest, żeby zrozumieć, że wyłączniki nadprądowe trzeba zaprojektować tak, by reagowały w określonym czasie, a to jest ściśle związane z impedancją pętli zwarcia. Jak ta wartość jest za wysoka, to ochrona przed porażeniem elektrycznym jest słaba, a to niezgodne z zasadami bezpieczeństwa. Taka sytuacja może sprawić, że system nie zadziała jak trzeba w razie zagrożenia elektrycznego, a to zdecydowanie nie jest dobra praktyka.

Pytanie 32

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 750 V
B. 500 V
C. 1000 V
D. 250 V
Odpowiedź 250 V jest prawidłowa, ponieważ w obwodach SELV (Safety Extra Low Voltage) i PELV (Protected Extra Low Voltage) stosuje się ograniczone napięcia, które nie mogą przekraczać wartości 250 V przy pomiarze rezystancji izolacji. Te standardy są zgodne z międzynarodowymi zasadami bezpieczeństwa, takimi jak normy IEC 60364. W praktyce, pomiar rezystancji izolacji w obwodach SELV i PELV przy napięciu 250 V pozwala na zapewnienie bezpieczeństwa użytkowników i minimalizowanie ryzyka porażenia prądem. Przykładem zastosowania tego typu pomiarów jest inspekcja instalacji elektrycznych w obiektach użyteczności publicznej, gdzie kluczowe jest utrzymanie wysokiego poziomu ochrony. Dodatkowo, w obwodach SELV i PELV, które są zazwyczaj używane w aplikacjach niskonapięciowych, zaleca się regularne kontrole rezystancji izolacji, aby wykryć ewentualne uszkodzenia oraz degradację izolacji, co jest niezbędne dla zapewnienia długoterminowej niezawodności i bezpieczeństwa systemów elektrycznych.

Pytanie 33

Którego silnika elektrycznego dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Szeregowego prądu stałego.
B. Synchronizowanego.
C. Bocznikowego prądu stałego.
D. Synchronicznego.
Odpowiedzi, które wybrałeś, wskazują na pewne nieporozumienia dotyczące klasyfikacji silników elektrycznych. Silnik synchroniczny oraz synchronizowany to typy silników prądu przemiennego, które działają na zasadzie synchronizacji prędkości obrotowej wirnika z częstotliwością prądu zasilającego. Te silniki są często używane w aplikacjach, gdzie wymagana jest stała prędkość obrotowa, jednak nie mają one zastosowania w kontekście schematu, który pokazuje silnik prądu stałego. Silnik bocznikowy prądu stałego, z kolei, charakteryzuje się połączeniem równoległym uzwojenia wzbudzenia, co wpływa na zachowanie momentu obrotowego przy różnych prędkościach. Wybór jednego z tych typów silników do analizy schematu może prowadzić do błędnych wniosków, ponieważ ich zasady działania oraz zastosowania są odmienne od silnika szeregowego. Należy zwrócić uwagę na to, że nieprawidłowe identyfikowanie silników może prowadzić do wyboru niewłaściwych rozwiązań technologicznych w praktyce, co w konsekwencji może skutkować awariami lub zmniejszoną efektywnością systemów, w których są one wykorzystywane. Zrozumienie różnic pomiędzy tymi typami silników oraz ich właściwościami jest kluczowe dla skutecznego projektowania i eksploatacji urządzeń elektrycznych.

Pytanie 34

W którym wierszu tabeli prawidłowo określono funkcje i liczby przewodów jednożyłowych, które należy umieścić w rurach instalacyjnych, aby wykonać poszczególne obwody w układzie sieciowym TN-S, zakończone punktami odbioru o przedstawionych symbolach graficznych?

Ilustracja do pytania
A. W wierszu 3.
B. W wierszu 1.
C. W wierszu 4.
D. W wierszu 2.
Wybór innego wiersza niż czwarty może wynikać z niepełnego zrozumienia zasadności liczby przewodów w układzie TN-S. Na przykład, gdyby ktoś wybrał wiersz pierwszy, mógłby sądzić, że dla obwodu oświetleniowego wystarczą dwa przewody, co jest niezgodne z wymaganiami. W rzeczywistości, obwód oświetleniowy wymaga nie tylko przewodu fazowego, ale również neutralnego i ochronnego, aby zapewnić bezpieczne warunki pracy oraz minimalizować ryzyko porażenia prądem. Podobna sytuacja dotyczy gniazd siłowych - konieczność posiadania trzech fazowych przewodów w połączeniu z jednym neutralnym oraz przewodem ochronnym jest absolutnie kluczowa. Wybierając wiersz 2 czy 1, można nie docenić znaczenia przewodu ochronnego, który pełni rolę zabezpieczającą w przypadku zwarcia. Często występującym błędem jest pomijanie regulacji dotyczących liczby przewodów w instalacjach siłowych, co może prowadzić do naruszenia bezpieczeństwa. Właściwe zrozumienie i przestrzeganie norm instalacyjnych, takich jak PN-IEC 60364, jest kluczowe dla prawidłowego projektowania i wykonania instalacji elektrycznych. Dlatego istotne jest, aby zawsze odnosić się do standardów branżowych oraz dobrych praktyk, które są fundamentem bezpiecznego użytkowania instalacji elektrycznych.

Pytanie 35

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
B. Zamiana przewodu neutralnego z ochronnym
C. Zamiana przewodu neutralnego z fazowym
D. Poluzowany przewód neutralny w głównym złączu budynku
No, to zamiana przewodu neutralnego z fazowym czy ochronnym to już duża sprawa, ale w tym przypadku nie wyjaśnia to, czemu żarówki tak często się przepalają. Jeśli przewody się zamienia, to może być niebezpiecznie, bo napięcie z fazy w miejsce neutralnego potrafi naprawdę zaskoczyć użytkowników. Z kolei zamiana z przewodem ochronnym to już w ogóle łamanie zasad bezpieczeństwa i może przynieść duże problemy. Poluzowany przewód neutralny w złączu głównym też może być przyczyną, ale bardziej prawdopodobne jest, że coś jest nie tak w samej rozdzielnicy. Często instalatorzy zapominają o sprawdzeniu połączeń w rozdzielnicach, a to prowadzi do różnych kłopotów. Ludzie myślą, że instalacja ogólnie robi problemy, zamiast zbadać, co się dzieje lokalnie w rozdzielnicy. Pamiętaj, że każdy element w instalacji ma swoje zadanie i jeśli coś źle zrobisz, to możesz narazić sprzęt i zdrowie ludzi.

Pytanie 36

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór niewłaściwego przyrządu do pomiarów rezystancji izolacji w instalacji elektrycznej może prowadzić do poważnych konsekwencji, zarówno technicznych, jak i bezpieczeństwa. Inne urządzenia, takie jak multimetru czy omomierze, nie są przystosowane do pomiaru wysokich wartości rezystancji, jakie występują w systemach izolacji. Multimetry, które często mają zakres pomiarowy do 20 MΩ, mogą nie być w stanie dokładnie zmierzyć rezystancji izolacji, zwłaszcza w przypadku uszkodzeń lub degradacji materiałów izolacyjnych. Użycie takich przyrządów w miejsce megomierza może prowadzić do fałszywych wniosków, które w efekcie mogą zagrażać bezpieczeństwu użytkowników. W praktyce, pomiar rezystancji izolacji powinien opierać się na standardowych procedurach, które wymagają użycia specjalistycznego wyposażenia. Dodatkowo, niekiedy występuje mylne przekonanie, że pomiar o niskich wartościach rezystancji jest wystarczający do oceny stanu izolacji. W rzeczywistości, normy branżowe jasno określają, że izolacja powinna mieć bardzo wysoką rezystancję, sięgającą nawet gigaomów, aby była uznawana za bezpieczną. Prawidłowe podejście do pomiarów nie tylko wpływa na efektywność działania instalacji, ale także na bezpieczeństwo ludzi oraz mienia, co jest kluczowym aspektem pracy w każdej branży związanej z elektrycznością.

Pytanie 37

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. aR 16 A
C. gB 20 A
D. gG 16 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 38

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
C. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
D. Wykonując kontrolne doziemienie
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 39

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/500 V
B. 450/750 V
C. 600/1000 V
D. 300/300 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 40

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Napowietrznych
B. Wtynkowych
C. Podtynkowych
D. Nadtynkowych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.