Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 16:36
  • Data zakończenia: 17 grudnia 2025 16:57

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W rogach słupów narażonych na uderzenia i przewidzianych do pokrycia tynkiem należy

A. zamontować płaskowniki stalowe ocynkowane
B. zainstalować kątowniki z blachy ocynkowanej
C. przygotować mocniejszą zaprawę do narzutu
D. nałożyć dodatkową warstwę tynku
Osadzenie kątowników z blachy ocynkowanej w narożach słupów narażonych na uderzenia jest najlepszą praktyką w budownictwie, szczególnie w obiektach przemysłowych i użyteczności publicznej. Kątowniki pełnią rolę dodatkowego wzmocnienia, które chroni narożniki przed uszkodzeniami mechanicznymi. Stal ocynkowana zapewnia ochronę przed korozją, co jest kluczowe w miejscach narażonych na działanie wilgoci i innych czynników atmosferycznych. W praktyce, zastosowanie kątowników pozwala na zwiększenie trwałości konstrukcji, a także na wydłużenie cyklu życia słupów. Normy budowlane, takie jak Eurokod 3, zalecają stosowanie takich rozwiązań w celu zapewnienia odpowiedniej odporności na obciążenia dynamiczne. W sytuacjach, gdy słupy są narażone na intensywne użytkowanie, jak w magazynach czy halach produkcyjnych, zastosowanie kątowników staje się niezbędne dla zapewnienia bezpieczeństwa oraz zachowania estetyki budynku.

Pytanie 2

W nadprożu Kleina o rozpiętości ponad 150 cm, którego fragment przedstawiono na rysunku, cegły układa się

Ilustracja do pytania
A. wozówkowo na płask.
B. na rąb leżący.
C. główkowo na płask.
D. na rąb stojący.
Wybór opcji innej niż "na rąb stojący" w kontekście układania cegieł w nadprożu Kleina prowadzi do kilku istotnych nieporozumień. Układanie cegieł na rąb leżący lub główkowo na płask stwarza ryzyko osłabienia konstrukcji nadproża, zwłaszcza przy większych rozpiętościach. Cegły ułożone na rąb leżący mają mniejszą powierzchnię kontaktu z pozostałymi cegłami oraz podłożem, co może prowadzić do powstawania niekorzystnych naprężeń i w konsekwencji do pęknięć. Taki błąd w układzie może skutkować nieefektywnym przenoszeniem obciążeń, a także zwiększa ryzyko zjawiska zwanego rysowaniem nadproża, co jest szczególnie niebezpieczne w budynkach, w których nadproża pełnią kluczową rolę w rozkładzie obciążeń. Cegły układane na rąb stojący są bardziej odporne na siły działające w pionie, co jest fundamentalne przy większych otworach. Ponadto, nieprawidłowe układanie cegieł może być sprzeczne z przepisami budowlanymi i normami, takimi jak Eurokod 6, które jasno określają wymagania dotyczące konstrukcji murowanych. Dlatego też, ważne jest, aby projektanci i wykonawcy budowlani stosowali odpowiednie metody układania cegieł, aby zapewnić bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 3

Do pomiaru objętościowego kruszywa oraz wody powinno się użyć

A. taczki
B. wiadra z podziałką
C. łopatę
D. czerpaka szufelkowego
Wybór wiadra z podziałką do objętościowego dozowania kruszywa i wody jest uzasadniony ze względu na precyzję oraz łatwość w użyciu. Wiadro z podziałką pozwala na dokładne odmierzenie objętości materiałów sypkich oraz cieczy, co jest kluczowe w procesach budowlanych i inżynieryjnych, gdzie precyzyjne proporcje są niezbędne do uzyskania pożądanych właściwości mieszanki betonowej. Przykładowo, przy przygotowywaniu betonu, niewłaściwe proporcje wody do kruszywa mogą prowadzić do obniżenia wytrzymałości i trwałości gotowego produktu. Zastosowanie wiadra z podziałką umożliwia również łatwe utrzymanie standardów jakości, co jest wymagane w wielu regulacjach budowlanych. Dobrą praktyką jest korzystanie z narzędzi, które zapewniają powtarzalność dozowania, co sprawia, że wiadro z podziałką spełnia te wymagania, a jego użycie może być dostosowane do różnych projektów budowlanych. Pozwala to na zachowanie spójności w mieszankach, co jest kluczowe dla uzyskania wysokiej jakości konstrukcji.

Pytanie 4

Który z elementów sklepienia oznaczono na rysunku cyfrą 5?

Ilustracja do pytania
A. Czoło.
B. Podniebienie.
C. Grzbiet.
D. Pachę.
Element sklepienia oznaczony cyfrą 5 to podniebienie, które pełni kluczową rolę w anatomii i funkcjonowaniu organizmu. Podniebienie, będące dolną częścią sklepienia jamy ustnej, oddziela jamę ustną od jamy nosowej. Dzięki swojej budowie, podniebienie przyczynia się do prawidłowego funkcjonowania procesów takich jak mówienie, połykanie oraz oddychanie. W praktyce klinicznej, zrozumienie anatomii podniebienia jest istotne w kontekście leczenia zaburzeń ortodontycznych czy też w procedurach chirurgicznych, takich jak plastykę podniebienia. Ponadto, poprawne funkcjonowanie podniebienia ma wpływ na jakość życia pacjentów, co podkreśla znaczenie jego odpowiedniego zrozumienia i diagnozowania wszelkich patologii. W standardach medycznych i stomatologicznych kładzie się duży nacisk na znajomość budowy i funkcji podniebienia, co pozwala na skuteczne podejmowanie działań terapeutycznych.

Pytanie 5

Zgodnie z zasadami przedmiarowania robót tynkarskich z powierzchni tynków nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. Oblicz powierzchnię ściany pokazanej na rysunku, zakładając, że ościeża będą otynkowane.

Ilustracja do pytania
A. 18,8 m2
B. 22,0 m2
C. 20,8 m2
D. 24,0 m2
Odpowiedź 20,8 m2 jest prawidłowa, ponieważ zgodnie z zasadami przedmiarowania robót tynkarskich, nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. W omawianym przypadku mamy do czynienia z dwoma otworami okiennymi, każdy o powierzchni 1 m2, które nie są odliczane od całkowitej powierzchni ściany. Natomiast otwór drzwiowy o powierzchni 3,2 m2 jest większy niż 3 m2, co oznacza, że jego powierzchnia powinna zostać odjęta. Całkowita powierzchnia ściany przed odliczeniem otworów wynosi 24 m2. Po odjęciu 3,2 m2 uzyskujemy wynik 20,8 m2, co jest powierzchnią do tynkowania. Praktyczne zastosowanie tych zasad jest kluczowe w procesie kosztorysowania robót budowlanych, gdzie precyzyjne obliczenia wpływają na efektywność finansową projektu. Wiedza ta jest także istotna w kontekście przepisów budowlanych i standardów branżowych, które zalecają uwzględnianie tylko istotnych powierzchni w kosztorysach.

Pytanie 6

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 2420 zł
B. 2000 zł
C. 1200 zł
D. 1020 zł
Dobra robota z tą odpowiedzią! Jak to obliczyłeś? Koszt materiałów na 1 m3 betonu to 200 zł, więc dla 5 m3 wychodzi 1000 zł. Potem doliczyłeś robociznę, co jest super ważne, bo to 20% od materiałów, czyli dodatkowe 200 zł. Łącznie daje to 1200 zł. W budownictwie takie obliczenia to podstawa, bo bez tego łatwo można wpaść w kłopoty finansowe. Zawsze warto też mieć na uwadze, że ceny materiałów mogą się zmieniać w trakcie pracy, więc dobrze się przygotować na różne sytuacje.

Pytanie 7

Jaką ilość kg suchej mieszanki trzeba zakupić do realizacji tynku gipsowego o grubości 10 mm na powierzchni 15 m2, jeżeli zużycie wynosi 1 kg na m2 przy grubości 1 cm?

A. 15,0 kg
B. 1,5 kg
C. 2,5 kg
D. 25,0 kg
Aby obliczyć ilość suchej mieszanki potrzebnej do wykonania tynku gipsowego o grubości 10 mm na powierzchni 15 m2, należy zacząć od przeliczenia grubości tynku z milimetrów na centymetry. Grubość 10 mm to 1 cm. Znając zużycie mieszanki, które wynosi 1 kg na m2 przy grubości 1 cm, możemy łatwo obliczyć całkowite zużycie na 15 m2. Wzór jest następujący: 1 kg/m2 * 15 m2 = 15 kg. Takie obliczenie jest zgodne z obowiązującymi standardami budowlanymi i praktyką w zakresie tynkowania. Warto pamiętać, że dokładność w obliczeniach jest kluczowa, aby uniknąć niedoboru materiału, co mogłoby prowadzić do opóźnień w pracy. W praktyce często stosuje się również margines zapasu, zwłaszcza w przypadku większych projektów budowlanych, aby zminimalizować ryzyko przestojów związanych z brakiem materiałów. Dlatego, w tym przypadku, 15,0 kg to optymalna ilość do zakupu.

Pytanie 8

Zgodnie z zaleceniami producenta, zużycie gipsowej zaprawy tynkarskiej wynosi 6 kg/m2/10 mm. Oblicz, ile
30-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na ścianach o łącznej powierzchni 200 m2.

A. 20 worków
B. 40 worków
C. 10 worków
D. 80 worków
Żeby policzyć, ile gipsowej zaprawy potrzebujemy do tynku grubości 20 mm na powierzchni 200 m², najpierw musimy przeliczyć zużycie zaprawy przy tej grubości. Z tego, co mówi producent, potrzebne jest 6 kg/m² dla 10 mm grubości, więc dla 20 mm będziemy potrzebować już 12 kg/m². Potem mnożymy to przez powierzchnię ścianek: 12 kg/m² * 200 m² daje nam 2400 kg zaprawy. Następnie musimy podzielić tę wagę przez wagę jednego worka, czyli 30 kg: 2400 kg / 30 kg = 80 worków. Przy takich obliczeniach warto pamiętać o zaleceniach producenta i standardach budowlanych, bo to naprawdę kluczowe, żeby tynk był odpowiedniej jakości i trwałości.

Pytanie 9

Czym są zaczyny cementowe?

A. cementem i wodą
B. cementem, piaskiem oraz wodą
C. cementem i piaskiem
D. cementem, wapnem oraz wodą
Cement to kluczowy składnik w procesie produkcji zaczynów cementowych. Właściwa proporcja cementu i wody jest niezbędna do uzyskania optymalnej konsystencji oraz wytrzymałości. Zaczyny cementowe, będące mieszaniną cementu i wody, tworzą tzw. pastę cementową, która po hydratacji staje się twardym i trwałym materiałem. W praktyce, gdy cement reaguje z wodą, zachodzi reakcja chemiczna, w wyniku której powstają nowe związki chemiczne, odpowiedzialne za utwardzanie mieszanki. Standardy budowlane, takie jak normy PN-EN, zalecają użycie cementu w odpowiednich proporcjach, aby zapewnić nie tylko trwałość, ale także odporność na czynniki atmosferyczne, co jest szczególnie istotne w budownictwie infrastrukturalnym. Przykłady zastosowania zaczynów cementowych obejmują zarówno budowę fundamentów, jak i produkcję prefabrykatów betonowych, gdzie właściwe proporcje cementu i wody mają kluczowe znaczenie dla uzyskania wymaganego standardu wytrzymałości. Przykładowo, w konstrukcji mostów i budynków wysokościowych, nieodpowiednia mieszanka mogłaby prowadzić do poważnych problemów strukturalnych.

Pytanie 10

Jakiego zestawu narzędzi należy użyć do budowy ścian z bloczków Ytong, murowanych na zaprawie cementowo-wapiennej?

A. Młotek gumowy, packa do szlifowania, strug, piła płatnica
B. Młotek gumowy, piła płatnica, prowadnica kątowa, kielnia
C. Młotek murarski, kielnia, strug, packa do szlifowania
D. Młotek murarski, piła płatnica, kielnia, pędzel ławkowiec
Wybór narzędzi do murowania bloczków Ytong na zaprawie cementowo-wapiennej wymaga przemyślenia ich funkcji oraz specyfiki materiału. Narzędzia, które mogą wydawać się odpowiednie, w rzeczywistości mogą być niewłaściwe lub nieefektywne. Na przykład, użycie młotka murarskiego, który jest zazwyczaj cięższy i przeznaczony do murowania z cegły, może prowadzić do uszkodzenia delikatnych bloczków Ytong, co jest szczególnie istotne w kontekście ich wrażliwości na uderzenia. Piła płatnica może być pomocna, ale nie w każdej sytuacji; niektóre odpowiedzi mogą sugerować, że jest to jedyne narzędzie do cięcia, podczas gdy precyzyjne cięcia wymagają bardziej złożonych metod, w tym użycia narzędzi elektrycznych. Kielnia to oczywiście kluczowe narzędzie, ale brak prowadnicy kątowej w niektórych odpowiedziach wprowadza w błąd, ponieważ stabilne i proste ściany wymagają odpowiedniego prowadzenia. Użycie struga lub packi do szlifowania w kontekście murowania nie jest zasadniczo potrzebne, ponieważ te narzędzia służą do obróbki powierzchni, a nie do samego murowania. Podsumowując, wybór niewłaściwych narzędzi może prowadzić do błędów konstrukcyjnych oraz obniżenia trwałości i stabilności budowy, co jest sprzeczne z podstawowymi zasadami budowlanymi, które podkreślają znaczenie odpowiedniego doboru narzędzi oraz technik.

Pytanie 11

Które z poniższych właściwości materiałów budowlanych uznajemy za cechy mechaniczne?

A. Nasiąkliwość
B. Porowatość
C. Twardość
D. Gęstość
Twardość to jedna z kluczowych cech mechanicznych materiałów budowlanych, która odnosi się do zdolności materiału do opierania się odkształceniom pod wpływem sił mechanicznych. W praktyce twardość jest istotna przy wyborze materiałów do konstrukcji, w tym w budownictwie, gdzie wytrzymałość na działanie różnych obciążeń jest kluczowa. Twardość materiału może być mierzona różnymi metodami, takimi jak skala Mohsa, Brinella czy Rockwella, co pozwala na precyzyjne określenie jego właściwości. Na przykład, beton, który jest szeroko stosowany w budownictwie, musi mieć odpowiednią twardość, aby wytrzymać obciążenia konstrukcyjne. W rzeczywistych aplikacjach, materiały o wysokiej twardości, jak np. stal, są wykorzystywane w miejscach narażonych na intensywne zużycie, podczas gdy materiał o niższej twardości może być stosowany w obszarach, gdzie nie występują tak duże obciążenia. Również normy budowlane, takie jak Eurokod, wskazują na znaczenie twardości w kontekście trwałości i bezpieczeństwa konstrukcji, co podkreśla jej fundamentalne znaczenie w inżynierii budowlanej.

Pytanie 12

Na podstawie przedstawionego rzutu poziomego oblicz powierzchnię ścianki przeznaczonej do rozbiórki o grubości 1/4 cegły, jeżeli wysokość pomieszczenia w świetle wynosi 2,5 m.

Ilustracja do pytania
A. 0,625 m2
B. 1,500 m2
C. 1,625 m2
D. 1,750 m2
Obliczenie powierzchni ścianki przeznaczonej do rozbiórki o wysokości 2,5 m i długości 0,7 m prowadzi do wyniku 1,75 m2. Wysokość pomieszczenia pozostaje stała, niezależnie od grubości ścianki, co oznacza, że w obliczeniach uwzględniamy jedynie powierzchnię widoczną z jednej strony. Grubość ścianki (1/4 cegły) jest istotna przy planowaniu demontażu i wyborze narzędzi, ale nie wpływa na obliczenia powierzchni. W praktyce, znajomość tych obliczeń jest kluczowa dla architektów i inżynierów budowlanych, ponieważ pozwala na efektywne planowanie prac rozbiórkowych oraz szacowanie kosztów materiałów i robocizny. W branży budowlanej standardy obliczeń opierają się na precyzyjnych wymiarach i uwzględnieniu wszystkich parametrów, co przyczynia się do większej efektywności i bezpieczeństwa na placu budowy.

Pytanie 13

Jakim preparatem powinno się pokryć powierzchnię tynku, który się osypuje i pyli, aby go wzmocnić?

A. Gruntującym
B. Barwiącym
C. Antyadhezyjnym
D. Penetrującym
Preparat gruntujący jest kluczowym elementem w procesie wzmocnienia osypującego się i pylącego tynku. Jego podstawową funkcją jest poprawa przyczepności materiałów wykończeniowych, co jest szczególnie istotne w przypadku powierzchni, które wykazują tendencję do kruszenia się lub osypywania. Gruntowanie powierzchni tynku zmniejsza chłonność podłoża, co pozwala na równomierne wchłanianie farby lub innego materiału wykończeniowego, co z kolei prowadzi do uzyskania lepszego efektu estetycznego i trwałości powłoki. Przykładem praktycznego zastosowania gruntów może być ich użycie przed malowaniem ścian z tynku, gdzie gruntowanie pozwala na uniknięcie powstawania smug czy różnic kolorystycznych. Dodatkowo, preparaty gruntujące często zawierają składniki, które wzmacniają strukturę tynku i zabezpieczają go przed działaniem wilgoci, co jest zgodne z dobrą praktyką budowlaną. Zastosowanie gruntów zgodnie z zaleceniami producentów na etykietach może znacznie wydłużyć żywotność powierzchni oraz zredukować potrzebę częstych napraw.

Pytanie 14

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania ściany grubości 24 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Wymiary bloczków
[mm]
Zużycie bloczków
[szt./m²]
240×240×5907
120×240×5907
A. 672 szt.
B. 80 szt.
C. 8064 szt.
D. 336 szt.
Dobrze, że obliczyłeś ilość bloczków gazobetonowych, które potrzebujesz na ścianę. Z tego co widzę, wykorzystałeś dane wymiary ściany i bloczków. Ściana 12 m długości i 4 m wysokości daje nam 48 m² powierzchni. Potem ładnie obliczyłeś powierzchnię bloczka, która wynosi 0,0576 m². Jeżeli podzielisz 1 m² przez tę wartość, otrzymasz coś koło 17,36 bloczków na m². To oznacza, że do pokrycia całej ściany potrzebujesz około 833 bloczków. Ale pamiętaj, że zazwyczaj warto doliczyć trochę więcej na wszelki wypadek, żeby uniknąć problemów na budowie. W końcu w praktyce budowlanej to nie tylko liczby, ale też umiejętność przewidywania strat materiałowych, więc dobrze, że wziąłeś to pod uwagę!

Pytanie 15

Na którym rysunku przedstawiono narzędzie służące do narzucania zaprawy przy tynkowaniu ręcznym?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór narzędzi do tynkowania jest kluczowym aspektem, który wymaga zrozumienia funkcji poszczególnych narzędzi. Odpowiedzi A, B i C nie przedstawiają narzędzi przeznaczonych do narzucania zaprawy. Na przykład, rysunek A może przedstawiać narzędzie przeznaczone do cięcia materiałów, co w kontekście tynkowania nie ma zastosowania, gdyż nie wpływa na aplikację zaprawy. Z kolei rysunek B może ilustrować narzędzie do rozprowadzania materiałów, ale nie odpowiada ono na specyfikę narzędzia, które ma za zadanie aplikować zaprawę na ścianę. Natomiast rysunek C może przedstawiać sprzęt pomocniczy, który nie jest dedykowany do tynkowania ręcznego. Poprzez błędny wybór narzędzi, można narazić się na problemy związane z jakością wykonania tynków, takie jak pęcherze powietrza, nierówności powierzchni, a nawet konieczność dodatkowego szpachlowania, co zwiększa koszty i czas pracy. Zrozumienie, które narzędzia są właściwe do danego zastosowania, jest kluczowe dla skutecznego procesu budowlanego. W związku z tym, warto zwrócić szczególną uwagę na funkcjonalność narzędzi, co jest fundamentem solidnych praktyk budowlanych. Właściwy dobór narzędzi wpływa nie tylko na efektywność pracy, ale również na trwałość i estetykę końcowego efektu wizualnego.

Pytanie 16

Aby przywrócić właściwości ścian murowanych, które zostały zasolone i zawilgocone, potrzebna jest zaprawa

A. izolująca cieplnie
B. lekka
C. renowacyjna
D. ogólnego przeznaczenia
Zaprawa renowacyjna jest specjalnie zaprojektowana do naprawy uszkodzeń, takich jak zasolenie i zawilgocenie ścian murowanych. Zawiera składniki, które pomagają w redukcji krytycznych problemów związanych z wilgocią i solami, co jest kluczowe w zachowaniu integralności konstrukcyjnej budynków. Przykładowo, podczas renowacji zabytkowych murów, ważne jest, aby zastosować materiały, które są kompatybilne z oryginalnymi, aby nie spowodować dalszych uszkodzeń. W praktyce, zaprawy renowacyjne charakteryzują się niską przepuszczalnością dla wody oraz dobrą paroprzepuszczalnością, co pozwala na regulację wilgotności w murze, a także na wyeliminowanie problemów z solami, które mogą prowadzić do degradacji materiału. Dobrym przykładem zastosowania zaprawy renowacyjnej jest konserwacja starych budynków, gdzie zachowanie oryginalnych materiałów i struktury jest kluczowe dla utrzymania wartości historycznej i estetycznej.

Pytanie 17

W przypadku, gdy nierównomierna praca podłoża prowadzi do rozłączenia ścian konstrukcyjnych, jakie działania można podjąć, aby je ponownie połączyć?

A. wypełnienie środkami bitumicznymi
B. wypełnienie pęknięć zaczynem cementowym
C. zastosowanie ściągów metalowych
D. iniekcję środka wiążącego
Wypełnianie pęknięć zaczynem cementowym, iniekcją wiążącym czy bitumem to metody, które czasem mogą się przydać, ale w przypadku połączenia rozłączonych ścian konstrukcyjnych, to nie za bardzo. Jakoś tak, zaczyn cementowy nie za bardzo przywraca integralność strukturalną, bo jego działanie się ogranicza do wypełniania miejsc, a nie daje odpowiedniego wsparcia mechanicznego dla ścian. Iniekcja środków wiążących może być fajna do uszczelnienia, ale nie ma sensu stosować jej, gdy są poważniejsze przemieszczenia. Bitum to głównie ochrona przed wilgocią, a nie wzmocnienie konstrukcji. Często mylimy funkcje materiałów budowlanych i nie zdajemy sobie sprawy z różnic w wymaganiach konstrukcyjnych w różnych sytuacjach. W praktyce lepiej używać metod, które rzeczywiście wzmacniają, jak te metalowe ściągi, bo one dają kompleksowe wsparcie dla połączeń konstrukcyjnych.

Pytanie 18

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Żwir
B. Łupkoporyt
C. Baryt
D. Keramzyt
Żwir jest kruszywem naturalnym, które jest powszechnie stosowane do produkcji betonów zwykłych. Jego zastosowanie wynika z korzystnych właściwości, takich jak odpowiednia granulacja, która zapewnia dobrą przepuszczalność oraz przyczepność z cementem. Żwir charakteryzuje się wysoką trwałością i odpornością na czynniki atmosferyczne, co sprawia, że jest idealnym materiałem do budowy infrastruktury, jak drogi, mosty czy budynki. W procesie produkcji betonu, żwir stanowi kluczowy składnik, który, w połączeniu z cementem, wodą i ewentualnymi dodatkami, tworzy trwałą i wytrzymałą mieszankę. W normach branżowych, takich jak PN-EN 12620, określono wymagania dotyczące jakości kruszyw, co dodatkowo podkreśla znaczenie wyboru odpowiednich materiałów. Przykładem zastosowania żwiru w praktyce może być beton używany do budowy fundamentów, gdzie jego właściwości mechaniczne są kluczowe dla stabilności całej konstrukcji.

Pytanie 19

Aby mechanicznie przygotować zaprawę murarską z objętościowym dozowaniem składników na budowie, jakie narzędzia są konieczne?

A. wiadro, kasta na zaprawę, łopata
B. betoniarka, łopata, sito
C. betoniarka, taczka, sito
D. wiadro, betoniarka, łopata
Odpowiedź 'wiadro, betoniarka, łopata' jest prawidłowa, ponieważ każda z tych trzech pozycji odgrywa kluczową rolę w procesie przygotowania zaprawy murarskiej na placu budowy. Betoniarka służy do mechanicznego mieszania zaprawy, co zapewnia jednorodność i odpowiednią konsystencję mieszanki. Użycie betoniarki jest zgodne z najlepszymi praktykami, ponieważ ręczne mieszanie często prowadzi do nierównomiernego rozkładu składników. Wiadro jest niezbędne do pomiaru objętości składników, co umożliwia precyzyjne dozowanie materiałów, takich jak cement, piasek i woda. Łopata natomiast jest używana do transportu oraz rozkładania zaprawy, co jest istotne w procesie budowy. Przy odpowiednim użyciu tych narzędzi można znacznie zwiększyć efektywność i jakość wykonania prac murarskich, a także zminimalizować ryzyko błędów związanych z proporcjami składników. W praktyce, na budowie, niezwykle istotne jest również przestrzeganie standardów jakości i bezpieczeństwa, co wymaga odpowiedniego wyposażenia w niezbędne narzędzia.

Pytanie 20

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. wodoszczelnej
B. szamotowej
C. polimerowej
D. ciepłochronnej
Wybór niewłaściwej zaprawy do murowania ceramicznych elementów palenisk może prowadzić do poważnych problemów konstrukcyjnych oraz operacyjnych. Ciepłochronne zaprawy, mimo że posiadają dobre właściwości izolacyjne, nie są przystosowane do bezpośredniego kontaktu z wysokimi temperaturami generowanymi w paleniskach. Ich skład chemiczny często nie zawiera elementów odpornych na działanie ognia, co może prowadzić do degradacji i osłabienia struktur w wysokotemperaturowych warunkach. Polimerowe zaprawy, z kolei, charakteryzują się elastycznością i przyczepnością, lecz ich zastosowanie w kontekście ceramiki ogniotrwałej jest niewłaściwe. Wysoka temperatura może zniszczyć ich struktury, co prowadzi do utraty właściwości spoiny i w konsekwencji do awarii konstrukcji. W przypadku wodoszczelnych zapraw, ich funkcja ochrony przed wilgocią nie ma zastosowania w obszarze palenisk, gdzie kluczowe są właściwości odporności na ciepło i ogień. Często popełnianym błędem jest zakładanie, że zaprawy o innych właściwościach chemicznych mogą być stosowane w miejscach, gdzie wymagane są cechy szamotowe. Zrozumienie specyfiki materiałów budowlanych jest kluczowe dla zapewnienia bezpieczeństwa i trwałości konstrukcji grzewczych.

Pytanie 21

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyrównanie powierzchni płyt styropianowych.
B. Wtapianie siatki zbrojącej.
C. Nakładanie tynku cienkowarstwowego.
D. Nakładanie zaprawy klejowej.
Nakładanie tynku cienkowarstwowego to kluczowy etap w procesie ocieplania ścian budynku metodą lekką mokrą. W tej fazie, po uprzednim przygotowaniu powierzchni, na którą nałożono warstwę styropianu i siatkę zbrojącą, aplikowany jest tynk o jednolitej, gładkiej konsystencji. Tynk cienkowarstwowy ma na celu nie tylko estetyczne wykończenie, ale również ochronę przed warunkami atmosferycznymi. Właściwe nałożenie tynku pozwala na uzyskanie odpowiedniej paroprzepuszczalności oraz odporności na czynniki zewnętrzne. W standardach budowlanych, takich jak PN-EN 998-1, tynki powinny spełniać określone wymagania dotyczące wytrzymałości i trwałości. Zastosowanie tynku cienkowarstwowego jest szczególnie zalecane w budownictwie energooszczędnym, gdzie istotne jest ograniczenie strat ciepła oraz poprawa komfortu termicznego. Dobrą praktyką jest stosowanie tynków w harmonii z systemem ociepleniowym, co zapewnia długotrwałe efekty izolacyjne.

Pytanie 22

Przed użyciem tynków akrylowych produkowanych w fabryce w pojemnikach, należy je

A. dodać pigment
B. dodać utwardzacz
C. wymieszać z wodą
D. wymieszać bez dodatków
Tynki akrylowe przygotowane fabrycznie w pojemnikach nie wymagają dodatkowych modyfikacji przed użyciem, co czyni je wygodnym rozwiązaniem w pracach budowlanych i remontowych. Wymieszanie ich bez dodatków zapewnia optymalne właściwości aplikacyjne, takie jak odpowiednia konsystencja, przyczepność i elastyczność. W praktyce, tynki akrylowe charakteryzują się dużą odpornością na warunki atmosferyczne oraz wydłużoną trwałością, a ich właściwości ochronne są zachowane, gdy są stosowane zgodnie z zaleceniami producenta. Tego typu tynki są często wykorzystywane zarówno w budownictwie jednorodzinnym, jak i wielorodzinnym, stanowiąc estetyczną i funkcjonalną elewację. Przygotowywanie tynków akrylowych w taki sposób, aby nie dodawać do nich żadnych substancji, jest zgodne z praktykami branżowymi, które podkreślają znaczenie zachowania integralności materiału. Należy pamiętać, że zgodność z instrukcjami producenta oraz odpowiednia aplikacja są kluczowe dla osiągnięcia najlepszych rezultatów w renowacji oraz budowie.

Pytanie 23

Tynki, które nie są przeznaczone do malowania na całej powierzchni, powinny

A. posiadać jednolitą barwę bez smug i plam.
B. być wolne od smug i plam, dopuszczalne są niewielkie różnice w intensywności koloru.
C. posiadać jednolitą barwę, dopuszczalne są niewielkie plamy.
D. posiadać jednolitą barwę, dopuszczalne są niewielkie smugi.
Odpowiedź 'mieć barwę o jednakowym natężeniu bez smug i plam' jest prawidłowa, ponieważ tynki, które nie są przewidziane do malowania, powinny charakteryzować się równomierną barwą na całej powierzchni. W praktyce oznacza to, że wszelkie niedoskonałości, takie jak smugi czy plamy, mogą wskazywać na niewłaściwe nałożenie tynku, co może prowadzić do estetycznych defektów końcowego wykończenia. W standardach budowlanych oraz w dobrych praktykach związanych z wykończeniem wnętrz, zapewnienie jednolitego wykończenia powierzchni jest kluczowe dla uzyskania wysokiej jakości estetycznej. W przypadku tynków, które mają być później malowane, konieczne jest, aby ich powierzchnia była idealnie gładka i jednolita, co pozwala na równomierne wchłanianie farby i zapobiega powstawaniu plam. Przykładem zastosowania tej zasady może być tynk dekoracyjny, który po nałożeniu powinien być dokładnie wygładzony, aby nie powodować różnic w odcieniach przy późniejszym malowaniu.

Pytanie 24

Na rysunku przedstawiono

Ilustracja do pytania
A. elewację budynku.
B. rzut budynku.
C. przekrój budynku.
D. widok budynku.
Odpowiedź "przekrój budynku" jest prawidłowa, ponieważ przedstawiony rysunek ukazuje wewnętrzną strukturę budynku, co jest charakterystyczne dla przekrojów. Przekrój budynku to rysunek techniczny, który ilustruje, jak wygląda obiekt po przecięciu go w wybranym miejscu, co pozwala na analizę rozmieszczenia elementów konstrukcyjnych, instalacji oraz przestrzeni wewnętrznych. Dzięki poziomym liniom wskazującym na różne poziomy oraz linii przecięcia, można zrozumieć wysokości pomieszczeń, grubość ścian czy rozmieszczenie okien i drzwi. W projektowaniu architektonicznym oraz inżynieryjnym, przekroje odgrywają kluczową rolę w dokumentacji budowlanej, umożliwiając precyzyjne przedstawienie wymagań konstrukcyjnych oraz estetycznych. Przykładem praktycznym zastosowania przekroju budynku może być analiza wymagań dotyczących wentylacji i oświetlenia w pomieszczeniach, co jest niezbędne w procesie projektowania zgodnym z normami budowlanymi i przepisami prawa budowlanego.

Pytanie 25

Aby ustalić powierzchnię tynków klasy IV na ścianie, jakie elementy należy zastosować?

A. wkładki dystansowe
B. kątowniki aluminiowe
C. listwy aluminiowe
D. siatkę z tworzywa sztucznego
Wybór wkładek dystansowych, kątowników aluminiowych czy siatki z tworzywa sztucznego w kontekście wyznaczania lica tynków kategorii IV może prowadzić do wielu nieporozumień oraz problemów praktycznych. Wkładki dystansowe, choć mogą być użyteczne w niektórych zastosowaniach, nie zapewniają odpowiedniej sztywności i stabilności, które są kluczowe dla uzyskania równych linii tynku. Niewłaściwe ich zastosowanie może prowadzić do deformacji tynku oraz utraty estetyki. Kątowniki aluminiowe, mimo że są użyteczne w kontekście zabezpieczania krawędzi, nie spełniają roli wsparcia w procesie tynkowania. Ich główną funkcją jest ochrona narożników, a nie precyzyjne wyznaczanie lica, co czyni je niewłaściwym wyborem w tej sytuacji. Siatka z tworzywa sztucznego, z kolei, ma zastosowanie w systemach ociepleń oraz wzmocnienia, ale nie jest przeznaczona do wyznaczania lica tynków. Zastosowanie tego elementu może prowadzić do błędów w aplikacji tynku, gdyż nie zapewnia ona sztywności wymaganej do stworzenia równych i stabilnych powierzchni. Typowe błędy myślowe w tym przypadku obejmują mylenie funkcji poszczególnych materiałów oraz niewłaściwą interpretację ich zastosowania, co może znacząco wpłynąć na jakość wykończenia oraz trwałość systemu tynkarskiego.

Pytanie 26

Aby przygotować betonową mieszankę o objętościowej proporcji składników 1:2:4, jakie składniki należy zgromadzić?

A. 1 część żwiru, 2 części cementu i 4 części wody
B. 1 część cementu, 2 części wody i 4 części żwiru
C. 1 część cementu, 2 części piasku i 4 części żwiru
D. 1 część piasku, 2 części żwiru i 4 części cementu
Wszystkie podane odpowiedzi nieprawidłowo interpretują proporcje składników niezbędnych do wykonania mieszanki betonowej o stosunku 1:2:4. W szczególności, pierwsza odpowiedź myli kolejność i rodzaj materiałów, sugerując użycie zbyt dużej ilości wody w porównaniu do innych składników. W betonowaniu stosuje się zasadę, że cement jest kluczowym spoiwem, a jego ilość powinna być zawsze odpowiednia do ilości piasku i żwiru. Ponadto, odpowiedzi, które zmieniają proporcje piasku i żwiru lub sugerują użycie cementu jako drugiego składnika, nie uwzględniają podstawowych zasad budowy mieszanki. Typowym błędem w analizie proporcji jest założenie, że każdy materiał może być dowolnie modyfikowany bez wpływu na końcowy efekt. Skutkuje to nie tylko obniżeniem wytrzymałości betonu, ale również jego podatnością na pęknięcia i degradację. Warto zwrócić uwagę na normy, takie jak PN-EN 206, które precyzyjnie określają wymagania dotyczące składu i właściwości betonu, w tym proporcje składników, co jest kluczowe dla uzyskania materiału o odpowiednich parametrach wytrzymałościowych. Dlatego, nieprzestrzeganie tych zasad i dobrych praktyk budowlanych prowadzi do poważnych problemów konstrukcyjnych oraz wytrzymałościowych w finalnej budowli.

Pytanie 27

Stalowe elementy, które mają służyć jako podłoże pod tynk, powinny być przygotowane na całej powierzchni

A. obłożyć listewkami drewnianymi
B. wyłożyć matami trzcinowymi
C. owinąć siatką stalową ocynkowaną
D. pokryć mleczkiem cementowym
Owinięcie elementów stalowych siatką stalową ocynkowaną jest najlepszym rozwiązaniem przed nałożeniem tynku, ponieważ zabezpiecza stal przed korozją oraz zapewnia odpowiednią przyczepność tynku do powierzchni. Siatka stalowa działa jako zbrojenie, które zwiększa wytrzymałość tynku, minimalizując ryzyko pęknięć oraz odspajania materiału od podłoża. Zastosowanie siatki ocynkowanej jest zgodne z zasadami dobrych praktyk budowlanych, które zalecają stosowanie materiałów odpornych na działanie wilgoci oraz chemikaliów. W praktyce, siatka powinna być przytwierdzona do elementów stalowych w sposób zapewniający jej stabilność, co dodatkowo można osiągnąć przez użycie specjalnych kołków montażowych. Przykład zastosowania to budowa ścianek działowych, gdzie stalowa konstrukcja wymaga trwałego i solidnego podłoża do nałożenia tynku, co jest istotne w kontekście długoterminowej eksploatacji budynku oraz jego estetyki.

Pytanie 28

Rozbiórkę ręczną stropu trzeba zacząć od

A. skucia tynku z sufitu
B. podstemplowania stropu
C. skucia wypełnienia stropu
D. wycięcia belek wzdłuż ścian
Ręczna rozbiórka stropu wymaga staranności i właściwego podejścia, aby zapewnić bezpieczeństwo i minimalizować ryzyko uszkodzeń. Rozpoczęcie prac od skucia tynku z sufitu jest kluczowe, ponieważ tynk nie tylko pełni funkcję estetyczną, ale również może wpływać na stabilność całej konstrukcji. Usunięcie tynku pozwala na dokładną ocenę stanu stropu oraz na identyfikację ewentualnych uszkodzeń. Dobrą praktyką jest również zabezpieczenie przestrzeni roboczej przed opadami tynku, co zwiększa bezpieczeństwo pracy. Podczas wykonywania tego etapu warto stosować odpowiednie środki ochrony osobistej, takie jak kaski, okulary ochronne oraz maski przeciwpyłowe, aby zminimalizować ryzyko obrażeń. Warto również korzystać z narzędzi dostosowanych do danego materiału, co ułatwi pracę oraz poprawi jej efektywność.

Pytanie 29

Na podstawie danych z KNR oblicz, ile pustaków ceramicznych Max220 potrzeba do wymurowania ścian o grubości 19 cm i powierzchni 35 m2.

Nakłady na 1 m² ścian wykonanych
z pustaków ceramicznych Max220
(wyciąg z KNR)
Grubość ścianLiczba pustaków
19 cm14,90 sztuk
39 cm22,40 sztuk
A. 784 szt.
B. 665 szt.
C. 522 szt.
D. 426 szt.
Odpowiedź 522 szt. jest prawidłowa, ponieważ obliczenia oparte na danych z KNR (Katalog Norm Rzeczowych) wskazują, że do wymurowania ściany o grubości 19 cm i powierzchni 35 m² potrzeba 14,90 pustaków ceramicznych Max220 na każdy metr kwadratowy. Aby uzyskać całkowitą ilość pustaków, wystarczy pomnożyć tę wartość przez powierzchnię ściany: 14,90 szt./m² x 35 m² = 521,5 szt. Zgodnie z dobrymi praktykami budowlanymi, zawsze zaokrąglamy do najbliższej pełnej liczby, co w tym przypadku daje 522 sztuki. Dobrze jest również uwzględnić ewentualny zapas materiałów budowlanych na wypadek uszkodzeń czy błędów podczas montażu. W praktyce, znajomość tych zasad jest niezbędna do efektywnego planowania i zarządzania projektami budowlanymi, co pozwala uniknąć opóźnień i dodatkowych kosztów.

Pytanie 30

Wypełnienie płyty ceglanej między stalowymi belkami, przedstawionej na rysunku, wykonuje się w stropie

Ilustracja do pytania
A. Kleina typu lekkiego.
B. Kleina typu ciężkiego.
C. Akermana.
D. DZ-3.
Wybór kleiny typu ciężkiego jako wypełnienia płyty ceglanej między stalowymi belkami jest decyzją zgodną z zasadami inżynierii budowlanej, zwłaszcza w kontekście konstrukcji stropowych narażonych na znaczne obciążenia. Kleina typu ciężkiego jest projektowana do przenoszenia dużych obciążeń, co jest istotne w przypadku stropów wspartych na stalowych belkach. Tego rodzaju wypełnienia są nie tylko bardziej odporne na deformacje, ale również zwiększają stabilność całej konstrukcji. W praktyce stosowanie kleiny typu ciężkiego jest powszechne w przypadku budowli przemysłowych oraz innych obiektów wymagających dużej nośności. Standardy budowlane, takie jak Eurokod 2, sugerują, że stosowanie odpowiednich materiałów w zależności od zapotrzebowania na nośność jest kluczowe dla zapewnienia bezpieczeństwa konstrukcji. Dodatkowo, kleiny tego typu są często wykorzystywane w projektach, w których istotnym czynnikiem są warunki środowiskowe, takie jak obciążenia dynamiczne czy udarowe, co czyni je idealnym rozwiązaniem w nowoczesnym budownictwie.

Pytanie 31

Perlit to lekki materiał stosowany w mieszankach tynkarskich?

A. odpornościowych
B. wzorzystych
C. termicznych
D. przestrzennych
Perlit to kruszywo lekkie, które jest wykorzystywane w budownictwie, szczególnie w zaprawach tynkarskich, ze względu na swoje doskonałe właściwości termoizolacyjne. Dzięki swojej strukturze, perlit posiada niską przewodność cieplną, co sprawia, że idealnie nadaje się do stosowania w systemach ociepleń budynków. Przykładowo, tynki z dodatkiem perlitu mogą znacznie zwiększyć efektywność energetyczną budynku, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska. W praktyce, perlit jest często stosowany w mieszankach tynkarskich, które są nakładane na ściany wewnętrzne i zewnętrzne, a także w systemach ociepleń zewnętrznych. Standardy budowlane często zalecają wykorzystanie takich materiałów do poprawy komfortu cieplnego oraz redukcji kosztów ogrzewania. Dodatkowo, perlit wykazuje również wysoką odporność na działanie ognia, co czyni go jeszcze bardziej atrakcyjnym w zastosowaniach budowlanych.

Pytanie 32

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 10,5 litra
B. 7,0 litrów
C. 14,0 litrów
D. 3,5 litra
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 33

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. nieorganicznym i kruszywa grubego
B. nieorganicznego i kruszywa drobnego
C. organicznym i kruszywa grubego
D. organicznym i kruszywa drobnego
Zrozumienie, z czego składa się zaprawa murarska, to naprawdę ważna sprawa, jeśli chcemy, żeby nasze konstrukcje były trwałe. Często ludzie się mylą i nie rozumieją, jak dobierać materiały. Jeśli ktoś myśli, że w zaprawie mogą być spoiwa organiczne, to się myli, bo w tradycyjnych zaprawach używa się spoiw nieorganicznych, a to one właściwie zapewniają wytrzymałość i odporność na różne czynniki zewnętrzne. Pamiętaj, że kruszywo drobne, a nie grube, jest kluczowe dla dobrej konsystencji zaprawy. Jak użyjesz kruszywa grubego, to może się okazać, że w strukturze będą ubytki, co jest kiepskie dla trwałości. Nieodpowiedni skład zaprawy to też szansa na osłabienie całej konstrukcji, co wynika z braku zrozumienia, jak działają te składniki. Standardy budowlane są jasno określone, więc lepiej stosować się do nich, żeby nie mieć problemów później.

Pytanie 34

Na fundamentowej ścianie budynku przeprowadzono pionową izolację poprzez dwukrotne pokrycie ściany lepikiem asfaltowym. Jakiego rodzaju jest to izolacja?

A. przeciwwilgociowa
B. termiczna
C. akustyczna
D. przeciwdrganiowa
Wybrana przez Ciebie odpowiedź dotycząca izolacji przeciwdrganiowej jest raczej nietrafiona. Ta izolacja ma na celu amortyzowanie drgań mechanicznych, a nie stawianie czoła wodzie. Najczęściej stosuje się ją w budownictwie przemysłowym, gdzie pojawiają się wibracje od maszyn czy pojazdów. Izolacje akustyczne, chociaż też są ważne dla komfortu w budynku, skupiają się głównie na redukcji hałasu. Odnośnie izolacji termicznej, to ona z kolei służy do ograniczenia utraty ciepła i nie ma nic wspólnego z zabezpieczaniem fundamentów przed wodą gruntową. Często ludzie mylą różne typy izolacji i nie dostrzegają, że każdy typ ma swoje specyficzne funkcje i materiały, co jest dość istotne. Z mojego doświadczenia, zrozumienie tych różnic jest kluczowe, żeby w przyszłości uniknąć problemów, takich jak zawilgocenia czy uszkodzenia budynku.

Pytanie 35

Zanim przystąpi się do otynkowania stalowych części konstrukcji budynku, ich powierzchnię należy

A. zaimpregnować
B. oszlifować
C. nawilżyć wodą
D. chronić siatką stalową
Odpowiedź "osłonić siatką stalową" jest poprawna, ponieważ przed nałożeniem tynku na stalowe elementy konstrukcyjne należy zapewnić ich odpowiednią ochronę. Siatka stalowa działa jako zbrojenie, które zwiększa przyczepność tynku do powierzchni oraz zapobiega pękaniu i odspajaniu się warstwy tynkowej. Dodatkowo, stosowanie siatki stalowej jest zgodne z normami budowlanymi, które podkreślają jej rolę w systemach ociepleń oraz w zabezpieczaniu elementów narażonych na różne obciążenia mechaniczne. Przykładem zastosowania siatki stalowej może być budowa elewacji, gdzie odpowiednie przygotowanie podłoża przyczynia się do trwałości oraz estetyki wykończenia. Właściwe wykonanie tego etapu prac budowlanych jest kluczowe, aby uniknąć wad budowlanych i kosztownych napraw w przyszłości.

Pytanie 36

Na podstawie danych zawartych w tablicy 1719 oblicz ilości składników potrzebnych do przygotowania 0,5 m3 zaprawy cementowo-wapiennej marki M7.

Ilustracja do pytania
A. cement - 0,5321, ciasto wapienne - 0,222 m3, piasek - 2,294 m3, woda - 0,600 m3
B. cement - 0,2661, ciasto wapienne - 0,111 m3, piasek - 1,147 m3, woda - 0,300 m3
C. cement - 0,133 t, ciasto wapienne - 0,056 m3, piasek - 0,574 m3, woda - 0,150 m3
D. cement - 0,0671, ciasto wapienne - 0,028 m3, piasek - 0,287 m3, woda - 0,075 m3
Odpowiedź jest w porządku, bo dobrze obliczyłeś ilości składników do zaprawy cementowo-wapiennej M7 na 0,5 m3. Udało ci się dobrze przeskalować dane z tabeli 1719. Na przykład, skoro w tabeli mamy 0,2661 t cementu na 1 m3, to na pół metra sześciennego to będzie 0,133 t. Tak samo z ciastem wapiennym, piaskiem i wodą – wszystko to wynika z tego samego przeliczenia. Dobrze jest wiedzieć, że takie obliczenia są ważne, bo zapewniają, że mieszanka będzie miała odpowiednią jakość, co wpływa na trwałość budowli. Zrozumienie tych zasad pomaga inżynierom lepiej planować i zarządzać materiałami, co jest naprawdę kluczowe w budownictwie.

Pytanie 37

Przygotowanie zaprawy cementowo-wapiennej w sposób ręczny polega na odmierzeniu wszystkich składników, a następnie ich zmieszaniu

A. cementu z ciastem wapiennym rozrzedzonym wodą i dodaniu piasku
B. wody z cementem i dodaniu piasku oraz ciasta wapiennego
C. wody z piaskiem i dodaniu ciasta wapiennego oraz cementu
D. cementu z piaskiem i dodaniu ciasta wapiennego rozrzedzonego wodą
Wiele osób może mylnie uważać, że kluczowe jest dodawanie różnych składników w różnych kolejnościach, co prowadzi do nieprawidłowego przygotowania zaprawy. Na przykład, w odpowiedzi sugerującej połączenie wody z piaskiem i ciastem wapiennym oraz cementem, brakuje podstawowego kroku, jakim jest połączenie cementu z piaskiem. Cement jest głównym składnikiem wiążącym, a jego mieszanie z piaskiem przed dodaniem innych komponentów jest niezbędne do osiągnięcia odpowiedniej struktury i właściwości zaprawy. Kolejne podejście, które sugeruje mieszanie wody z cementem, a następnie dodanie piasku oraz ciasta wapiennego, pomija istotny fakt, że zaprawy na bazie cementu muszą najpierw związać się z piaskiem, aby stworzyć stabilną masę. Z kolei stwierdzenie, że można połączyć cement z ciastem wapiennym rozrzedzonym wodą i dodać piasek, ignoruje rolę piasku jako składnika, który zapewnia strukturę. Takie podejścia prowadzą do nieprawidłowych proporcji oraz braku właściwości mechanicznych zaprawy, co może skutkować osłabieniem całej konstrukcji. W kontekście standardów budowlanych, istotne jest przestrzeganie norm dotyczących proporcji składników, co zapewnia bezpieczeństwo i trwałość wykonanych prac budowlanych.

Pytanie 38

Na podstawie informacji zawartych w tabeli określ, która ilość składników odpowiada proporcji wagowej stosowanej przy wykonaniu zaprawy cementowej klasy M7.

Skład i marka zapraw cementowych w zależności od klasy cementu
Klasa cementuSkład wagowy przy marce zaprawy
M4M7M12M15
32,51 : 5,51 : 4,51 : 3,51 : 3
A. 200 kg piasku i 900 kg cementu.
B. 100 kg cementu i 900 kg piasku.
C. 100 kg piasku i 450 kg cementu.
D. 200 kg cementu i 900 kg piasku.
Odpowiedź "200 kg cementu i 900 kg piasku" jest poprawna, ponieważ odpowiada proporcji wagowej 1:4,5, którą zastosowano przy wykonaniu zaprawy cementowej klasy M7. Zgodnie z tą proporcją, na każdą jednostkę cementu przypada 4,5 jednostki piasku. W tym przypadku, 200 kg cementu wymaga 900 kg piasku, co w pełni spełnia wymagania dotyczące tej mieszanki. Takie proporcje są kluczowe, ponieważ wpływają na właściwości mechaniczne zaprawy, takie jak wytrzymałość na ściskanie i trwałość. W praktyce, stosując te proporcje, uzyskujemy dobrze zharmonizowaną zaprawę, która zapewnia odpowiednią przyczepność i stabilność. Warto również pamiętać, że stosowanie właściwych proporcji jest zgodne z normami budowlanymi, co przekłada się na bezpieczeństwo i jakość realizowanych prac budowlanych.

Pytanie 39

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
B. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
C. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
D. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
Wskazanie organizacji stanowiska roboczego w robót murarskich jako podziału na prostopadłe pasma może prowadzić do poważnych błędów w praktyce budowlanej. W kontekście wykonywania robót murarskich, pasma prostopadłe do muru mogą ograniczać przestrzeń roboczą i powodować chaos w organizacji pracy. W sytuacji, gdy pasmo robocze jest prostopadłe do muru, wykonawcy mogą napotykać trudności z dostępem do materiałów budowlanych i narzędzi, co prowadzi do nieefektywności i opóźnień w realizacji projektu. Dodatkowo, nieprawidłowe zorganizowanie przestrzeni roboczej zwiększa ryzyko wypadków, ponieważ zatory i przeszkody mogą powodować potknięcia lub upadki. Podobnie, koncepcja czterech pasm, w tym pasma narzędziowego, może być myląca, ponieważ nadmiar podziałów w ograniczonej przestrzeni prowadzi do zamieszania i trudności w lokalizacji potrzebnych zasobów. W praktyce budowlanej ważne jest, aby zorganizować stanowisko pracy w sposób, który sprzyja płynności wykonywania robót, a nie utrudnia je. Kluczem do sukcesu jest więc utrzymanie trzech równoległych pasm, co jest powszechnie uznawane za najlepszą praktykę w branży budowlanej.

Pytanie 40

Cena realizacji 1 m2 tynku cementowo-wapiennego to 15,50 zł, natomiast przygotowanie 1 m2 podłoża pod tynk wymaga wydatku 7,70 zł. Oblicz całkowity koszt otynkowania ścian o łącznej powierzchni 250 m2.

A. 5 800,00 zł
B. 3 875,00 zł
C. 1 925,00 zł
D. 2 900,00 zł
Koszt otynkowania ścian o powierzchni 250 m² można obliczyć poprzez zsumowanie kosztów przygotowania podłoża oraz wykonania tynku. Przygotowanie podłoża pod tynk kosztuje 7,70 zł za m², co dla 250 m² daje 1 925,00 zł. Natomiast koszt wykonania tynku cementowo-wapiennego wynosi 15,50 zł za m², co dla tej samej powierzchni daje 3 875,00 zł. Suma tych dwóch kosztów to: 1 925,00 zł + 3 875,00 zł = 5 800,00 zł. Jest to poprawne podejście, ponieważ uwzględnia wszystkie etapy prac budowlanych, które są kluczowe w procesie otynkowania. W praktyce, takie wyliczenia są istotne dla budżetowania projektów budowlanych oraz dla zapewnienia, że wszystkie aspekty kosztowe są odpowiednio zaplanowane i zrealizowane zgodnie z obowiązującymi standardami branżowymi.