Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 14:29
  • Data zakończenia: 8 grudnia 2025 14:42

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiej z wymienionych funkcji nie realizuje system SCADA?

A. Zbieranie danych
B. Archiwizacja danych
C. Zwalczanie i usuwanie wirusów komputerowych
D. Prezentacja danych
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym elementem w zarządzaniu systemami przemysłowymi. Jego podstawowe funkcje obejmują zbieranie danych z różnych czujników i urządzeń, wizualizację tych danych w postaci graficznej, a także archiwizację informacji, co pozwala na późniejszą analizę wydajności i diagnostykę. SCADA umożliwia operatorom monitorowanie procesów w czasie rzeczywistym, co jest istotne dla utrzymania wydajności produkcji oraz bezpieczeństwa operacji. Na przykład, w zakładach chemicznych oprogramowanie SCADA zbiera dane dotyczące temperatury, ciśnienia czy poziomu substancji, które są następnie wizualizowane na panelach operatorskich. Dzięki archiwizacji danych, inżynierowie mogą analizować trendów i podejmować decyzje na podstawie historycznych danych. Standardy takie jak ISA-95 i IEC 61512 definiują ramy dla implementacji systemów SCADA, podkreślając ich rolę w automatyzacji procesów przemysłowych. W związku z tym, zrozumienie, że SCADA nie zajmuje się zwalczaniem wirusów komputerowych, jest kluczowe dla prawidłowego zastosowania tej technologii w praktyce.

Pytanie 2

Jak skutecznie programować sterownik PLC w celu sterowania silnikiem elektrycznym?

A. Zmienić napięcie wejściowe na wyższe, co może być niebezpieczne
B. Zwiększyć ilość podłączonych przewodów, co zwykle nie jest konieczne
C. Zainstalować dodatkowe czujniki podczerwieni, aby monitorować otoczenie
D. Zaprojektować algorytm sterowania uwzględniający warunki startu i zatrzymania
Programowanie sterownika PLC do sterowania silnikiem elektrycznym to zadanie wymagające uwzględnienia wielu czynników. Kluczem do sukcesu jest zaprojektowanie algorytmu sterowania, który uwzględnia warunki startu, zatrzymania oraz inne istotne elementy procesu sterowania. Algorytm powinien być przemyślany w kontekście bezpieczeństwa oraz efektywności energetycznej. Dobre praktyki branżowe wskazują, że należy używać strukturyzowanego podejścia do programowania, które umożliwia łatwe utrzymanie i modyfikację kodu w przyszłości. Przykładowo, przed uruchomieniem silnika należy upewnić się, że wszystkie warunki startowe są spełnione, a w przypadku zatrzymania – że proces ten odbywa się w sposób kontrolowany. Moim zdaniem, warto także uwzględnić mechanizmy zabezpieczające przed przeciążeniem silnika. Istotnym elementem jest również testowanie algorytmu w różnych scenariuszach przed wdrożeniem go w rzeczywistym środowisku.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Którego symbolu graficznego należy użyć, aby przedstawić na schemacie układu cyfrowego bramkę logiczną, której wyjście Y=1 tylko wtedy, gdy A ≠ B?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź D jest poprawna, ponieważ symbol ten reprezentuje bramkę logiczną XOR (exclusive OR). Bramki XOR są kluczowe w cyfrowych układach logicznych, ponieważ ich wyjście jest równe 1 tylko wtedy, gdy dokładnie jedno z wejść jest równe 1. W kontekście podanego zadania, mamy do czynienia z funkcją, która zwraca Y=1 w sytuacji, gdy wejścia A i B są różne, co idealnie odpowiada działaniu bramki XOR. Takie bramki znajdują zastosowanie w różnych dziedzinach, w tym w arytmetyce binarnej, przy budowie sumatorów, które zliczają bity w operacjach dodawania. Ponadto, bramki XOR są wykorzystywane w kryptografii oraz w kodowaniu informacji, gdzie kluczowe jest rozróżnienie między różnymi stanami logicznymi. Warto również zauważyć, że zgodnie z międzynarodowymi standardami projektowania układów cyfrowych, bramka XOR jest klasyfikowana jako bramka uniwersalna, co potwierdza jej wszechstronność i znaczenie w praktycznych zastosowaniach.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie polecenie w środowisku programowania sterowników PLC pozwala na przesłanie programu z urządzenia do komputera?

A. Chart Status
B. Upload
C. Single Read
D. Download
Wybór odpowiedzi Download, Single Read lub Chart Status wskazuje na pewne nieporozumienia dotyczące funkcji w środowisku programowania PLC. Polecenie Download jest odwrotnością Upload i służy do przesyłania programu z komputera do sterownika, co może prowadzić do błędnych wniosków, że jest to proces, który pozwala na przekazanie danych z urządzenia. Analogicznie, Single Read to komenda, która pozwala na odczytanie pojedynczych danych z pamięci sterownika, ale nie ma związku z przesyłaniem programów. W efekcie, wybierając tę opcję, można pomylić się, sądząc, że polecenie to ma na celu przesyłanie danych, co jest niezgodne z jego rzeczywistą funkcjonalnością. Z kolei Chart Status to polecenie odnoszące się do monitorowania stanu wykresów lub procesów, ale nie ma związku z operacjami transferu danych między sterownikiem a komputerem. Wiele osób przy podejmowaniu decyzji w tej kwestii może kierować się intuicją lub wcześniejszym doświadczeniem z różnymi systemami, co może prowadzić do błędnych wyborów. Kluczowe jest zrozumienie, że każde z tych poleceń ma swoją specyfikę i zastosowanie, a nieprawidłowe ich rozumienie może prowadzić do poważnych błędów w praktyce inżynieryjnej.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. multiplikację przełożenia.
B. multiplikację obrotów.
C. ruch ciągły.
D. ruch przerywany.
Odpowiedź 'ruch przerywany' jest prawidłowa, ponieważ mechanizm przedstawiony na rysunku jest typowym przykładem mechanizmu krzywkowego, który przekształca ruch obrotowy w ruch przerywany. W zastosowaniach przemysłowych, mechanizmy krzywkowe są często używane w automatyzacji procesów, takich jak w maszynach pakujących, robotach przemysłowych czy systemach transportowych. Dzięki swojej zdolności do generowania ruchu z okresowymi przestojami, mechanizmy te pozwalają na precyzyjne dozowanie materiałów oraz synchronizację działania różnych elementów maszyn. W standardach branżowych, takich jak ISO 9001, efektywność procesów produkcyjnych jest kluczowa, a zastosowanie ruchu przerywanego przyczynia się do optymalizacji cykli produkcyjnych i zwiększenia wydajności. Dlatego zrozumienie działania tych mechanizmów jest istotne dla inżynierów i projektantów maszyn, którzy muszą zapewnić najwyższą jakość i niezawodność w swoich projektach.

Pytanie 9

Którego symbolu należy użyć rysując schemat elektroniczny z tranzystorem unipolarnym MOSFET-P?

Ilustracja do pytania
A. Symbolu 3.
B. Symbolu 2.
C. Symbolu 1.
D. Symbolu 4.
Wybrałeś symbol 2 jako oznaczenie tranzystora MOSFET-P i to jest dobrze, bo ten symbol ma strzałkę skierowaną do wewnątrz. To pokazuje, że w tranzystorach typu P nośnikiem ładunku są dziury, które poruszają się od źródła do drenu. Tranzystory MOSFET-P są często wykorzystywane w różnych układach analogowych i cyfrowych, na przykład jako wzmacniacze albo przełączniki. Można je spotkać w zasilaczach impulsowych czy konwerterach DC-DC. No i w schematach elektronicznych, takich jak ten symbol 2, są zgodne z normami, co pomaga w projektowaniu, bo wszystko jest jasne i czytelne. Dobrze jest używać poprawnych symboli, to ułatwia komunikację między inżynierami oraz czytelność schematów.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W urządzeniu mechatronicznym zastosowano pasek zębaty jako mechanizm przenoszenia napędu. W trakcie regularnej inspekcji tego paska należy przede wszystkim ocenić stopień jego zużycia oraz

A. bicie osiowe
B. temperaturę
C. naprężenie
D. smarowanie
Prawidłowe naprężenie paska zębatego jest kluczowe dla efektywnego przenoszenia napędu w urządzeniach mechatronicznych. Zbyt luźny pasek może powodować poślizgnięcia i przeskakiwanie zębów, co prowadzi do zwiększonego zużycia oraz uszkodzeń mechanicznych. Z kolei zbyt mocno napięty pasek może powodować zwiększone obciążenie na łożyskach oraz prowadzić do szybszego zużycia samego paska. Standardy branżowe, takie jak ISO 5296, wskazują na konieczność regularnego monitorowania naprężeń w elementach przenoszących napęd, aby zapewnić ich długowieczność i niezawodność. Praktyka przemysłowa sugeruje, że przed każdą dłuższą eksploatacją należy przeprowadzić kontrolę naprężenia, co pozwala na optymalizację wydajności systemu oraz minimalizację ryzyka awarii. Dlatego umiejętność prawidłowego pomiaru i regulacji naprężenia paska zębatego jest fundamentalną umiejętnością w konserwacji urządzeń mechatronicznych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaką grupę oznaczeń powinno się wykorzystać do przedstawienia przyłącza czterodrogowych rozdzielaczy hydraulicznych na schemacie układu hydraulicznego?

A. X, Y, Z, W
B. 1, 2, 3, 4
C. 1, A, 2, B
D. P, T, A, B
Odpowiedź P, T, A, B jest poprawna, ponieważ te oznaczenia są powszechnie akceptowane w branży hydraulicznej do opisu przyłączy czterodrogowych rozdzielaczy hydraulicznych. Oznaczenie 'P' reprezentuje przyłącze ciśnieniowe, z którego dochodzi olej pod ciśnieniem do rozdzielacza. 'T' odnosi się do przyłącza powrotnego, które skupia olej z powrotem do zbiornika, a 'A' i 'B' to przyłącza robocze, które kierują olej do siłowników lub innych elementów wykonawczych w układzie. Zastosowanie tych oznaczeń pozwala na jasne i zrozumiałe schematy, co jest niezbędne w skomplikowanych układach hydraulicznych. Standardy ISO oraz normy branżowe, takie jak ISO 1219, potwierdzają użycie tych oznaczeń jako najlepszej praktyki w inżynierii hydraulicznej. Na przykład, w przemyśle maszynowym, stosowanie tych oznaczeń przyczynia się do efektywności diagnostyki i konserwacji systemów hydraulicznych, co jest kluczowe dla minimalizacji przestojów i zwiększenia wydajności operacyjnej.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Na podstawie harmonogramu czynności serwisowych przedstawionych w tabeli określ, jak często należy przeprowadzać kontrolę działania zaworów bezpieczeństwa.

Harmonogram czynności serwisowych (fragment)
Lp.Czynność serwisowaOkres wykonywania
1.Sprawdzanie temperatury pracyCodziennie
2.Kontrola przewodu zasilającegoCodziennie
3.Sprawdzanie podciśnienia generowanego przez sprężarkęCo 3 miesiące
4.Kontrola obiegu oleju w sprężarceCo 3 miesiące
5.Sprawdzanie zaworówCo 6 miesięcy
6.Kontrola działania zaworów bezpieczeństwaCo 6 miesięcy
7.Kontrola ustawień zabezpieczenia przeciążeniowego w sprężarceCo 6 miesięcy
8.Sprawdzanie rurociągu, skraplacza, części chłodniczychCo rok
9.Sprawdzanie łączników i bezpiecznikówCo rok
A. Raz na kwartał.
B. Raz na pół roku.
C. Raz na dzień.
D. Raz na rok.
Kontrola działania zaworów bezpieczeństwa co 6 miesięcy jest kluczowym elementem strategii zarządzania bezpieczeństwem w każdym zakładzie przemysłowym. Zgodnie z normami branżowymi, takimi jak ISO 9001 oraz dyrektywami Unii Europejskiej, regularne inspekcje i konserwacje urządzeń zabezpieczających są niezbędne dla zapewnienia ich prawidłowego działania w sytuacjach kryzysowych. Zawory bezpieczeństwa są zaprojektowane w celu ochrony systemu przed nadmiernym ciśnieniem, a ich awaria może prowadzić do poważnych incydentów, w tym eksplozji. Przykładowo, w przemyśle petrochemicznym, podejmowanie działań prewencyjnych, takich jak systematyczna kontrola zaworów, pozwala na identyfikację potencjalnych problemów zanim dojdzie do ich wystąpienia. Ponadto, zaleca się prowadzenie dokumentacji związanej z każdym przeglądem, co ułatwia późniejsze audyty oraz pozwala na lepsze planowanie konserwacji.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. dowodu zakupu urządzenia
B. dokumentacji techniczno-ruchowej urządzenia
C. protokółu przekazania urządzenia do eksploatacji
D. karty gwarancyjnej
Dokumentacja techniczno-ruchowa urządzenia mechatronicznego jest kluczowym źródłem informacji dotyczących jego eksploatacji, konserwacji oraz napraw. Zawiera szczegółowe specyfikacje techniczne, instrukcje obsługi oraz harmonogramy przeglądów, co pozwala użytkownikom na odpowiednie przygotowanie się do pracy z urządzeniem. Przykładowo, regularne przeglądy oraz konserwacja zgodnie z wytycznymi zawartymi w dokumentacji są niezbędne dla zapewnienia długotrwałej i bezawaryjnej pracy urządzenia. Dobre praktyki branżowe wskazują, że niewłaściwa eksploatacja sprzętu, wynikająca z braku znajomości zasad zawartych w dokumentacji, może prowadzić do poważnych usterek oraz zwiększonych kosztów napraw. Ponadto, dokumentacja techniczno-ruchowa zapewnia również aktualizacje dotyczące zmian w procedurach eksploatacyjnych, co jest istotne w kontekście dostosowania się do nowych standardów i norm bezpieczeństwa. Rzetelne przestrzeganie zawartych tam wytycznych jest zatem fundamentem dla efektywnej i bezpiecznej eksploatacji urządzeń mechatronicznych.

Pytanie 23

Do którego segmentu pamięci w sterowniku PLC podczas wykonywania programu są generowane odniesienia do sprawdzania stanów fizycznych wejść urządzenia?

A. Programu
B. Roboczej
C. Systemowej
D. Użytkowej
Wybór innych bloków pamięci, takich jak Programu, Użytkowej czy Roboczej, odzwierciedla brak zrozumienia podstawowej architektury sterowników PLC oraz zasad ich działania. Blok Programu jest zarezerwowany dla logiki działania aplikacji, gdzie definiowane są sekwencje operacji, ale nie przechowuje on informacji o rzeczywistych stanach fizycznych wejść. Z kolei blok Użytkowej, który może zawierać dodatkowe funkcje lub instrukcje zdefiniowane przez użytkownika, nie ma dostępu do danych o stanach wejść. Natomiast blok Roboczej jest używany do przechowywania danych tymczasowych i nie ma związku z zarządzaniem stanami wejść lub wyjść. Typowym błędem myślowym jest przekonanie, że wszystkie bloki pamięci są równorzędne i mogą pełnić te same funkcje. Należy pamiętać, że każdy blok ma swoje specyficzne zastosowanie i funkcjonalność. Właściwe zrozumienie podziału pamięci w sterownikach PLC jest kluczowe dla skutecznego programowania i diagnozowania systemów automatyki. Wiedza ta jest również zgodna z normami takimi jak IEC 61131, które definiują struktury oraz sposób zarządzania pamięcią w systemach sterujących.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Który komponent powinno się wykorzystać do galwanicznego oddzielenia wyjścia z PLC od elementów, które są nim sterowane?

A. Dławik
B. Kondensator
C. Transoptor
D. Transformator
Transoptor to element elektroniczny zaprojektowany w celu zapewnienia galwanicznej separacji sygnałów, co jest kluczowe w zastosowaniach automatyki i sterowania. Dzięki zastosowaniu transoptora, sygnały wejściowe są izolowane od sygnałów wyjściowych, co chroni wrażliwe komponenty sterujące przed niepożądanym wpływem zakłóceń lub awarii w obwodach wykonawczych. Przykładem zastosowania transoptora może być sytuacja, gdy sygnał z czujnika (np. fotokomórka) musi zostać przekazany do PLC, ale z uwagi na różnice poziomów napięcia lub ryzyko zakłóceń, konieczne jest zastosowanie izolacji. W takich przypadkach transoptor działa jako mostek, który pozwala na bezpieczne przekazywanie sygnału bez ryzyka uszkodzenia urządzenia. Ponadto, transoptory są wykorzystywane w systemach komunikacyjnych, gdzie wymagane jest zabezpieczenie przed zakłóceniami przesyłanymi przez medium transmisyjne. Przykładem dobrych praktyk w branży jest stosowanie transoptorów w kontrolerach, gdzie ich zastosowanie zwiększa niezawodność i bezpieczeństwo całego systemu.

Pytanie 28

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Cienką z długą kreską oraz kropką.
B. Grubą kreską.
C. Cienką ciągłą linią zygzakową.
D. Grubą linią punktową.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 29

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. R
B. |
C. Q
D. S
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 30

Wskaż operator używany w języku IL, który musi być uwzględniony w programie sterującym, aby zrealizować instrukcję skoku do etykiety FUN_1?

A. JMP FUN_1
B. RET FUN_1
C. LD FUN_1
D. CAL FUN_1
Operator JMP (jump) w języku IL (Instruction List) odgrywa kluczową rolę w programowaniu sterowników PLC, umożliwiając bezwarunkowe skoki do wskazanych etykiet. Użycie JMP jest szczególnie istotne w sytuacjach, gdy istnieje potrzeba wykonania fragmentu kodu w odpowiedzi na określony warunek lub zdarzenie. Na przykład, w przypadku pętli kontrolnych, operator ten pozwala na powrót do początku pętli, co jest niezbędne dla płynności działania programu. JMP jest zgodny z normą IEC 61131-3, która definiuje języki programowania PLC, co czyni go standardowym rozwiązaniem w branży. Dobrą praktyką jest korzystanie z etykiet, które są jasno zdefiniowane i opisują funkcjonalność, co ułatwia zrozumienie kodu. Przykładem zastosowania może być system automatyki w zakładzie produkcyjnym, gdzie operator JMP kieruje przepływem programu w oparciu o zmieniające się warunki, takie jak sygnały z czujników czy stany maszyn.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. N
B. R
C. D
D. S
Kwalifikator "N" w metodzie SFC (Sequential Function Chart) oznacza brak kwalifikatora, co oznacza, że nie ma dodatkowego opisu dla danego działania. Jego pominięcie nie wpływa na sposób realizacji bloku akcji, ponieważ nie dodaje on żadnych warunków ani szczegółów, które musiałyby być brane pod uwagę w procesie wykonawczym. W praktyce, stosowanie kwalifikatorów w SFC jest kluczowe dla zapewnienia przejrzystości i zrozumiałości diagramów, jednak w przypadku "N" mamy do czynienia z sytuacją, w której blok akcji działa w taki sam sposób, niezależnie od tego, czy ten kwalifikator jest obecny, czy nie. W branży automatyki przemysłowej, znajomość i umiejętność stosowania kwalifikatorów w SFC jest niezbędna do efektywnego modelowania procesów, co pozwala na łatwiejszą analizę i optymalizację działań. Na przykład, w przypadku zautomatyzowanego procesu pakowania, kwalifikatory mogą pomóc w określeniu, kiedy maszyna powinna przejść do kolejnego etapu, a ich odpowiednie stosowanie zapewnia płynność całej operacji.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaki jest główny cel stosowania symulatorów w edukacji mechatronicznej?

A. Zwiększenie kosztów nauki
B. Zwiększenie doświadczenia praktycznego bez ryzyka uszkodzenia sprzętu
C. Zwiększenie złożoności nauczania
D. Ograniczenie liczby studentów w laboratorium
Symulatory w edukacji mechatronicznej odgrywają kluczową rolę, pozwalając uczniom zdobywać praktyczne doświadczenie bez ryzyka uszkodzenia kosztownego sprzętu. W praktyce mechatroniki często operujemy złożonymi systemami, gdzie błąd może prowadzić do znacznych strat materialnych. Dzięki symulatorom studenci mogą eksperymentować i popełniać błędy w kontrolowanym środowisku, co sprzyja procesowi uczenia się. Przykładowo, symulacje mogą obejmować programowanie sterowników PLC, gdzie każda pomyłka może zostać natychmiast poprawiona bez wpływu na rzeczywisty proces produkcyjny. Jest to również zgodne z najlepszymi praktykami branżowymi, gdzie symulacje wykorzystywane są na szeroką skalę do testowania nowych rozwiązań przed ich implementacją w rzeczywistych warunkach. Z mojego doświadczenia wynika, że symulacje pozwalają na lepsze zrozumienie teorii poprzez praktykę, co jest nieocenione w złożonych dziedzinach, takich jak mechatronika. Dzięki nim studenci mogą również ćwiczyć reakcje na nietypowe sytuacje, co jest trudne do zrealizowania w rzeczywistych warunkach laboratoryjnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.