Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 12:26
  • Data zakończenia: 17 grudnia 2025 12:47

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. FBD (Function Block Diagram) - schemat bloków funkcyjnych
B. IL (Instruction List) - lista instrukcji - lista instrukcji
C. ST (Structured Text) - tekst strukturalny
D. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
Odpowiedź IL (Instruction List) jest jak najbardziej trafna! To jeden z tych języków programowania, które są używane w programowalnych sterownikach logicznych (PLC) i co ważne, jest w formie tekstowej. Zgodnie z normą IEC 61131-3, IL to język niskiego poziomu, przypominający asembler, co pozwala na programowanie sterowników w sposób bardziej zrozumiały dla osób znających tradycyjne języki programowania. Dzięki IL można tworzyć sekwencje instrukcji w prostych linijkach kodu, co na pewno pomoże w optymalizacji czasu działania systemu. Na przykład w automatyce, gdzie każda sekunda ma znaczenie, użycie IL może zmniejszyć opóźnienia w logice sterowania. A znajomość tego języka pozwala też łatwiej współpracować z innymi systemami, które korzystają z niskopoziomowego kodu. To naprawdę przydatna umiejętność w branży.

Pytanie 2

Symbol graficzny oznacza zawór

Ilustracja do pytania
A. maksymalny.
B. dławiący.
C. redukcyjny.
D. przełączający.
Wybór odpowiedzi niewłaściwych może prowadzić do poważnych konsekwencji w zrozumieniu funkcji różnych rodzajów zaworów. Zawór redukcyjny, mimo że również odgrywa ważną rolę w systemach hydraulicznych, nie jest tym samym co zawór maksymalny. Jego główną funkcją jest obniżenie ciśnienia, a nie jego ograniczanie. W systemach, w których ciśnienie musi być precyzyjnie utrzymywane na pewnym poziomie, zawór redukcyjny nie zapobiega nadmiernemu wzrostowi ciśnienia, co jest kluczową funkcją zaworu maksymalnego. Kolejna koncepcja, zawór przełączający, służy do zmiany kierunku przepływu medium w układzie, a nie do ograniczania ciśnienia, co czyni go nieodpowiednim w tym kontekście. Zawór dławiący, z drugiej strony, reguluje przepływ poprzez zwężenie, co może prowadzić do spadku ciśnienia, ale również nie ma na celu zabezpieczenia maksymalnego poziomu ciśnienia. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania systemów hydraulicznych i pneumatycznych, a niewłaściwe interpretacje mogą prowadzić do nieefektywności lub uszkodzenia sprzętu. Dlatego warto zwrócić uwagę na właściwe oznaczenia i symbole zaworów w dokumentacji technicznej oraz podczas praktycznego użytkowania.

Pytanie 3

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. symetryczny nieekranowany (tzw. skrętka nieekranowana)
B. koncentryczny
C. światłowodowy
D. symetryczny ekranowany (tzw. skrętka ekranowana)
Wybór innych typów kabli, jak kable symetryczne ekranowane czy koncentryczne, to nie najlepsze rozwiązanie, jeśli chodzi o przesył danych na długie dystansy i ochronę przed zakłóceniami. Kable symetryczne ekranowane mogą bronić sygnał przed zakłóceniami, ale nie są tak dobre jak światłowody na dłuższych trasach. Wynika to z tego, że w kablach miedzianych przesył opiera się na sygnałach elektrycznych, które są łatwo zakłócane. Kable koncentryczne, chociaż używa się ich w różnych aplikacjach, mają ograniczenia długości przesyłu i są bardziej narażone na zakłócenia. Z kolei kable symetryczne nieekranowane mogą działać lepiej w sprzyjających warunkach, ale w zgiełku elektromagnetycznym ich efektywność spada. Wybór złego kabla może prowadzić do problemów z komunikacją, większych opóźnień, a czasem nawet do całkowitej utraty sygnału. Zrozumienie tych różnic to kluczowa sprawa dla inżynierów, którzy tworzą systemy mechatroniczne, żeby wszystko działało jak należy.

Pytanie 4

Demontaż niepodłączonego elementu, przedstawionego na rysunku, zamontowanego na szynie DIN wymaga użycia

Ilustracja do pytania
A. klucza nasadowego.
B. wkrętaka o specjalnych końcówkach.
C. wkrętaka płaskiego.
D. klucza z regulowaną szerokością rozstawu szczęk.
Wybór wkrętaka płaskiego jako narzędzia do demontażu elementu zamontowanego na szynie DIN jest prawidłowy, ponieważ ten typ narzędzia został zaprojektowany do odciągania dźwigni blokującej, która jest typową konstrukcją w urządzeniach montowanych na szynach DIN, jak np. wyłączniki nadprądowe. W praktyce, aby wymontować ten element, należy najpierw zlokalizować dźwignię blokującą, a następnie włożyć wkrętak płaski w szczelinę i delikatnie pociągnąć, co pozwala na zwolnienie mechanizmu blokującego. Tego rodzaju operacje są powszechne w instalacjach elektrycznych, gdzie konieczna jest wymiana lub konserwacja urządzeń. Prawidłowe użycie narzędzi, takich jak wkrętaki płaskie, jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami, które zalecają użycie odpowiednich narzędzi do konkretnego zadania, co minimalizuje ryzyko uszkodzenia urządzeń oraz zapewnia bezpieczeństwo użytkownika.

Pytanie 5

Jaki rodzaj wyłącznika przedstawiono na rysunku?

Ilustracja do pytania
A. Różnicowoprądowy.
B. Silnikowy.
C. Krańcowy.
D. Nadprądowy.
Wyłącznik różnicowoprądowy, przedstawiony na rysunku, jest kluczowym elementem zabezpieczającym instalacje elektryczne przed porażeniem prądem. Oznaczenie 'FI-Schutzschalter' wskazuje na jego funkcję, a parametry takie jak 'IΔn 0,03A' oznaczają, że urządzenie jest zaprojektowane do wykrywania prądów upływowych o wartości 30 mA, co jest standardem dla ochrony ludzi w instalacjach domowych. Stosowanie wyłączników różnicowoprądowych jest szczególnie istotne w pomieszczeniach narażonych na wilgoć, takich jak łazienki czy kuchnie, gdzie ryzyko porażenia jest wyższe. W przypadku wykrycia różnicy między prądem wpływającym a wypływającym, wyłącznik automatycznie odłącza zasilanie, co skutecznie zapobiega niebezpiecznym sytuacjom. Dodatkowo, zgodnie z normami PN-IEC 61008, stosowanie wyłączników różnicowoprądowych w instalacjach elektrycznych jest wymogiem, co podkreśla ich znaczenie dla bezpieczeństwa użytkowników.

Pytanie 6

Silnik krokowy zastosowany w napędzie mechatronicznym sterowany jest za pomocą dedykowanego układu mikroprocesorowego. Która z wymienionych sekwencji komutacji spowoduje wirowanie wirnika silnika w prawo?

Ilustracja do pytania
A. (-P1)-(+P1)-(+P2)-(-P2)
B. (+P1)-(+P2)-(-P1)-(-P2)
C. (+P1)-(-P1)-(-P2)-(+P2)
D. (-P1)-(-P1)-(+P2)-(+P2)
Popatrzmy szerzej, dlaczego pozostałe sekwencje nie spowodują wirowania wirnika we właściwym kierunku. W silniku krokowym, szczególnie takim jak na rysunku, kolejność przełączania zasilania uzwojeń ma kluczowe znaczenie dla kierunku obrotu wirnika. Pojawiający się często błąd to założenie, że wystarczy dowolna zmiana stanu cewki, żeby silnik ruszył. Tymczasem tylko specyficzna logika, w której pole magnetyczne „ciągnie” wirnik wokół osi w sposób systematyczny, daje oczekiwany efekt. Przykładowo, sekwencje takie jak (-P1)-(-P1)-(+P2)-(+P2) czy (-P1)-(+P1)-(+P2)-(-P2) nie tworzą cyklicznego, przesuwającego się pola, lecz powodują losowe pobudzanie cewek, przez co wirnik może się zatrzymać lub zacząć „drgać”, zamiast obracać się w jednym kierunku. Stosowanie takich sekwencji prowadzi do nieefektywnej pracy – silnik nie wykonuje pełnych kroków, pojawiają się rezonanse, a czasem wręcz przepalenie uzwojeń przy dłuższym trzymaniu jednego stanu. Często spotykanym błędem jest mylenie logiki kolejności z logiką fazowania – nie wystarczy po prostu zmieniać polaryzacji, trzeba robić to w określonym rytmie. Gdy nie zachowasz odpowiedniej kolejności, silnik może nawet kręcić się w przeciwną stronę, co niestety jest nagminne przy pierwszych testach początkujących automatyków. Branżowe standardy (np. dokumentacje producentów silników krokowych) jasno opisują właściwe sekwencje dla danego kierunku obrotu – odstępstwa prowadzą do nieprzewidywalnych efektów. Moim zdaniem, żeby uniknąć tych błędów, najlepiej jest zawsze rozrysować sekwencje na osi czasu i przeanalizować zmianę kierunku pola magnetycznego. To bardzo pomaga w praktyce, szczególnie gdy projektuje się układy sterowania dla większych maszyn lub urządzeń precyzyjnych.

Pytanie 7

Jakie jest medium robocze w systemie hydraulicznym?

A. energia elektryczna
B. woda pod ciśnieniem
C. powietrze sprężone
D. olej pod ciśnieniem
Olej pod ciśnieniem jest najczęściej stosowanym medium roboczym w układach hydraulicznych ze względu na swoje doskonałe właściwości smarne oraz zdolność do przenoszenia dużych obciążeń. W układach hydraulicznych olej działa jako nośnik energii, co pozwala na efektywne przekazywanie siły i momentu obrotowego. Dzięki dużej gęstości oraz niskiej kompresyjności, olej hydrauliczny zapewnia stabilność działania systemu hydraulicznego. Przykładem zastosowania oleju pod ciśnieniem może być hydraulika w maszynach budowlanych, takich jak koparki czy ładowarki, gdzie siły generowane przez siłowniki hydrauliczne są ogromne. W branży motoryzacyjnej olej hydrauliczny jest wykorzystywany w układach wspomagania kierownicy oraz w systemach hamulcowych. Praktyki dobrej konserwacji i regularnej wymiany oleju są kluczowe, aby zapewnić długowieczność i niezawodność systemów hydraulicznych, a także aby uniknąć awarii spowodowanych zanieczyszczeniami czy degradacją oleju.

Pytanie 8

W układzie hydraulicznym zainstalowano zawór dławiąco-zwrotny w sposób pokazany na rysunku. Jaką reakcję wywołuje w tym układzie odkręcanie pokrętła ręcznego?

Ilustracja do pytania
A. Reguluje skok siłownika.
B. Zmniejsza prędkość wysuwu tłoka.
C. Stabilizuje ciśnienie pracy.
D. Zwiększa prędkość powrotu tłoka.
Zawór dławiąco-zwrotny jest kluczowym elementem w systemach hydraulicznych, który reguluje przepływ płynu roboczego. Odkręcanie pokrętła ręcznego powoduje zmniejszenie oporu przepływu, co z kolei prowadzi do zwiększenia prędkości powrotu tłoka. W praktyce oznacza to, że elementy napędu hydraulicznego mogą powracać do swojej pozycji wyjściowej szybciej, co przyspiesza cykl pracy maszyny. W zastosowaniach przemysłowych, takich jak prasy hydrauliczne czy maszyny do obróbki metali, szybki powrót tłoka jest istotny dla efektywności produkcji. Przykładowo, w procesie formowania na zimno, szybki powrót pozwala na skrócenie czasu cyklu, co przekłada się na wyższą wydajność oraz oszczędność energii. Warto również zauważyć, że dobór odpowiednich ustawień zaworu dławiąco-zwrotnego zgodny z zaleceniami producenta oraz standardami branżowymi, jak ISO 4414 dotyczące systemów hydraulicznych, ma kluczowe znaczenie dla bezpieczeństwa i niezawodności działania całego układu.

Pytanie 9

W siłowniku o jednostronnym działaniu, w trakcie realizacji ruchu roboczego tłoka, doszło do nagłego wstrzymania ruchu tłoczyska. Ruch ten odbywał się bez obciążenia i nie zaobserwowano nieszczelności w układzie pneumatycznym. Jakie mogą być przyczyny zatrzymania tłoczyska?

A. blokada odpowietrzania
B. niespodziewany spadek ciśnienia roboczego
C. zakleszczenie tłoka
D. wyboczenie tłoczyska
W analizowanej sytuacji, wyboczenie tłoczyska, nagły spadek ciśnienia roboczego oraz blokada odpowietrzania mogą wydawać się możliwymi przyczynami zatrzymania ruchu tłoczyska, ale ich rzeczywista analiza wskazuje na inne aspekty. Wyboczenie tłoczyska, czyli jego odkształcenie, zazwyczaj prowadzi do nieregularnych ruchów, a nie do nagłego zatrzymania. Tego typu problem najczęściej występuje w wyniku niewłaściwego montażu lub użycia nieodpowiednich komponentów, lecz w opisywanej sytuacji tłok pracował bez obciążenia, co znacząco zmniejsza ryzyko wystąpienia tego zjawiska. Spadek ciśnienia roboczego mógłby być powiązany z nieszczelnościami, jednak, jak zaznaczone w pytaniu, nie zaobserwowano takich usterek. Blokada odpowietrzania również nie jest typową przyczyną nagłego zatrzymania, gdyż raczej skutkowałaby ona powolnym wzrostem ciśnienia, a nie natychmiastowym zatrzymaniem ruchu. Takie myślenie może wynikać z niepełnej analizy pojęć związanych z układami pneumatycznymi, a warto zwrócić uwagę na to, że przyczyną problemu mogą być zewnętrzne czynniki, takie jak zanieczyszczenia lub uszkodzenia mechaniczne, które nie zostały uwzględnione w analizie. Wiedza na temat poprawnej diagnostyki i konserwacji układów pneumatycznych jest kluczowa dla prawidłowego funkcjonowania tego typu systemów.

Pytanie 10

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. kąta obrotu na impulsy elektryczne
B. prędkości obrotowej na napięcie stałe
C. kąta obrotu na regulowane napięcie stałe
D. prędkości obrotowej na impulsy elektryczne
Komutatorowa prądnica tachometryczna to urządzenie przetwarzające prędkość obrotową na napięcie stałe, co czyni je niezwykle użytecznym w aplikacjach mechatronicznych, w tym w systemach automatyki i robotyki. Podczas pracy, prądnica generuje napięcie proporcjonalne do prędkości obrotowej wału silnika, co umożliwia dokładne pomiary i kontrolę prędkości. Przykładowo, w systemach regulacji prędkości silników elektrycznych, informacje dostarczane przez prądnice tachometryczne stanowią feedback dla regulatorów PID, co pozwala na precyzyjne dostosowanie mocy dostarczanej do silnika. Zastosowanie takich urządzeń przyczynia się do zwiększenia efektywności i bezpieczeństwa systemów mechatronicznych, a ich standardy budowy i działania są zgodne z normami IEC i ISO, zapewniając niezawodność i zgodność w różnych warunkach pracy. Wiedza na temat działania prądnic tachometrycznych jest zatem kluczowa dla inżynierów projektujących nowoczesne systemy automatyki.

Pytanie 11

Którym medium roboczym jest zasilane urządzenie o symbolu graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Prądem stałym.
B. Prądem przemiennym.
C. Sprężonym powietrzem.
D. Cieczą hydrauliczną.
Cieczą hydrauliczną zasilane są urządzenia, które wykorzystują moc cieczy do generowania siły. W przypadku zaworów hydraulicznych, które widzimy na przedstawionym symbolu, ich głównym zadaniem jest kontrolowanie przepływu cieczy w układach hydraulicznych. Zawory mogą mieć różne funkcje, w tym regulację ciśnienia, kierunku przepływu oraz jego ilości, co jest kluczowe dla prawidłowego funkcjonowania maszyn i urządzeń przemysłowych. Systemy hydrauliczne są powszechnie stosowane w różnych branżach, takich jak budownictwo, przemysł motoryzacyjny i produkcja, gdzie siły generowane przez ciecz są wykorzystywane do napędu narzędzi, podnoszenia ciężarów i sterowania ruchem. Zrozumienie działania zaworów hydraulicznych oraz ich roli w systemach hydraulicznych jest niezwykle istotne, ponieważ prawidłowe ich dobranie i konfiguracja są kluczowe dla efektywności i bezpieczeństwa operacji. Przykładem może być maszyna budowlana, która wykorzystuje hydraulikę do podnoszenia i przemieszczania ciężkich elementów.

Pytanie 12

Który rodzaj połączenia przedstawiono na rysunku?

Ilustracja do pytania
A. klinowe.
B. sworzniowe.
C. wciskowe.
D. kołkowe.
Wybór odpowiedzi sugerującej inne rodzaje połączeń, takie jak klinowe, wciskowe czy sworzniowe, wskazuje na pewne nieporozumienia dotyczące charakterystyki i zastosowania tych mechanizmów łączenia. Połączenia klinowe wykorzystują kształt klinów do zapewnienia stabilności, co jest skuteczne w niektórych kontekstach, ale nie oddaje zasady działania kołków, które działają na zasadzie przejrzystego przepływu sił przez cylindryczny element. Ponadto, połączenia wciskowe opierają się na dopasowaniu elementów, które są łączone poprzez siłę tarcia, co również różni się od mechanizmu opartego na kołkach. W przypadku sworzniowych połączeń, elementy są łączone za pomocą sworzni, które również mają inną funkcję i zastosowanie. Wiele osób myli różne typy połączeń, co może prowadzić do nieefektywności w projektach inżynieryjnych czy konstrukcyjnych. Kluczowe jest, aby zrozumieć, jakie są różnice między tymi mechanizmami oraz ich specyfikę w kontekście materiałów i zastosowań. Znajomość standardów branżowych, takich jak PN-EN 1993 dla konstrukcji stalowych, pozwoli na lepsze zrozumienie, kiedy i jakie połączenie zastosować, aby zapewnić maksymalną wydajność, bezpieczeństwo i trwałość w budownictwie.

Pytanie 13

Którego z narzędzi przedstawionych na ilustracjach należy zastosować do cięcia przewodów miedzianych, wykorzystanych do budowy instalacji hydraulicznej?

Ilustracja do pytania
A. Narzędzia 4.
B. Narzędzia 2.
C. Narzędzia 3.
D. Narzędzia 1.
Wybór narzędzi wyłącznie na podstawie ich wyglądu lub intuicyjnego przekonania o ich zastosowaniu jest często przyczyną błędów w praktyce zawodowej. Narzędzie 1, które jest zaciskarką do kabli, jest przeznaczone do formowania i łączenia końców przewodów elektrycznych, co nie ma zastosowania w kontekście cięcia miedzianych rur. W przypadku narzędzia 2, nożyce do rur PVC, używane są głównie do cięcia rur z tworzyw sztucznych, a ich konstrukcja nie jest dostosowana do obróbki metalu, co może prowadzić do uszkodzenia zarówno narzędzia, jak i ciętego materiału. Ponadto, nożyce do przewodów elektrycznych (narzędzie 3) są specjalnie zaprojektowane do cięcia cienkowarstwowych przewodów, co czyni je niewłaściwymi do cięcia grubych przewodów miedzianych. Wybierając niewłaściwe narzędzie, można również nieumyślnie naruszyć normy bezpieczeństwa, co naraża na ryzyko zarówno użytkownika, jak i jakość wykonanego połączenia. Stosowanie odpowiednich narzędzi ma kluczowe znaczenie dla zapewnienia trwałości i funkcjonalności instalacji hydraulicznych oraz spełnienia standardów jakości, które są niezbędne w branży budowlanej.

Pytanie 14

Którą metodą jest mierzona prędkość obrotowa przy pomocy przedstawionego na rysunku miernika?

Ilustracja do pytania
A. Zbliżeniową.
B. Stroboskopową.
C. Dotykową.
D. Optyczną.
Wybór metody optycznej do pomiaru prędkości obrotowej opiera się na niewłaściwym założeniu, że pomiar można przeprowadzić bez fizycznego kontaktu z badanym obiektem. Metody optyczne wykorzystują światło do detekcji ruchu, co sprawdza się w wielu zastosowaniach, jednak wymaga odpowiedniego oświetlenia i odpowiednich warunków do obserwacji obiektu. W przypadku tachometru dotykowego, działanie opiera się na bezpośrednim połączeniu czujnika z obracającym się elementem, co eliminuje wpływ warunków zewnętrznych. Wybór metody zbliżeniowej również nie jest właściwy, ponieważ ta metoda wykorzystuje pole elektromagnetyczne do pomiaru odległości, co nie ma zastosowania w przypadku fizycznego pomiaru prędkości obrotowej. Wreszcie, metoda stroboskopowa, która polega na synchronizacji błysków światła z ruchem obiektu, może być stosowana do wizualizacji ruchu, ale nie jest to metoda bezpośrednia. Pomylenie tych metod wynika często z niepełnego zrozumienia podstawowych zasad działania różnych typów tachometrów. W praktyce, kluczowe jest zrozumienie, że różne metody pomiarów mają swoje unikalne zastosowania i ograniczenia, a ich wybór powinien być dostosowany do konkretnej sytuacji pomiarowej.

Pytanie 15

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wymienić łożyska silnika
B. wycentrować wirnik w stojanie
C. wyprostować skrzywiony wentylator lub osłonę
D. dokręcić śruby mocujące osłonę wentylatora
Fajnie, że pomyślałeś o prostowaniu tego skrzywionego wentylatora albo osłony. To ważne, bo jak coś jest krzywe, to wentylator może się ocierać o osłonę i robić hałas. Kiedy wentylator jest dobrze wyważony i ma odpowiednią geometrię, to działa lepiej i nie drga tak. Można nawet użyć wyważarek dynamicznych, żeby dokładnie dopasować kształt i wagę wirnika. Z mojego doświadczenia, przed włączeniem silnika warto zrobić szybką inspekcję wizualną, żeby zobaczyć, czy wszystko wygląda w porządku. No i warto trzymać się norm ISO, bo regularna konserwacja wentylatorów jest kluczowa, żeby długo działały. Dobrze też zapisywać, co już się sprawdziło, bo wtedy łatwiej monitorować stan techniczny urządzenia i przewidywać, kiedy może być potrzebny serwis.

Pytanie 16

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania
A. Silnika.
B. Czujnika optycznego.
C. Falownika.
D. Sterownika PLC.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 17

Na którym z rysunków przedstawiono symbol graficzny warystora?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Symbol graficzny warystora, przedstawiony na rysunku D, jest zgodny z Międzynarodowym Standardem IEC 60617, który definiuje symbole dla elementów elektronicznych. Warystor to element, którego rezystancja zmienia się w zależności od przyłożonego napięcia, co czyni go istotnym komponentem w obwodach ochronnych i stabilizujących. Przykładowo, warystory są powszechnie stosowane w układach ochrony przed przepięciami, gdzie ich zadaniem jest ograniczenie napięcia do poziomu bezpiecznego dla innych komponentów. W obwodach elektronicznych, warystory są wykorzystywane do absorbcji impulsów napięciowych, co z kolei zmniejsza ryzyko uszkodzenia delikatnych układów. Warto również zwrócić uwagę, że warystory są często stosowane w połączeniu z innymi elementami, takimi jak bezpieczniki czy diody, w celu zwiększenia efektywności ochrony. Zrozumienie symboliki graficznej oraz funkcji warystora jest kluczowe dla właściwego projektowania obwodów elektronicznych z zachowaniem zasad bezpieczeństwa i efektywności działania.

Pytanie 18

Które z narzędzi należy zastosować do usuwania nadmiaru roztopionego lutu z miejsca lutowania?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Narzędzie oznaczone literą "C" to lutowarka z odsysaczem, znana również jako desoldering pump, która jest kluczowym elementem w procesie lutowania. Umożliwia ona skuteczne usunięcie nadmiaru roztopionego lutu z miejsca lutowania, co jest niezbędne dla uzyskania czystych i trwałych połączeń. W praktyce, lutowarka z odsysaczem działa poprzez wytworzenie podciśnienia w momencie kontaktu z lutem, co pozwala na jego natychmiastowe wciągnięcie. To narzędzie jest szczególnie przydatne w sytuacjach, gdy konieczne jest poprawienie lub usunięcie lutowanych komponentów bez uszkodzenia płytki drukowanej. Zgodnie z najlepszymi praktykami w branży elektroniki, stosowanie odsysaczy jest rekomendowane do zabezpieczenia jakości połączeń, ponieważ nadmiar lutu może prowadzić do zwarć oraz nieprawidłowego działania układów. Ponadto, użycie lutowarki z odsysaczem jest zalecane w standardach przemysłowych dotyczących lutowania, aby zapewnić wysoką jakość wykonania oraz niezawodność produktów.

Pytanie 19

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. polerowania
B. lutowania
C. spawania
D. napawania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 20

Wskaż prawidłowe przyporządkowanie cyfr wskazujących części sprzęgła kłowego do ich nazw.

Piasta sprzęgłaKołnierz przykręcanyWkładka elastycznaPierścienie osadczePodkładka zabezpieczająca
Przyporządkowanie 1.1234 | 56
Przyporządkowanie 2.3124 | 56
Przyporządkowanie 3.4235 | 61
Przyporządkowanie 4.5124 | 63
Ilustracja do pytania
A. Przyporządkowanie 1.
B. Przyporządkowanie 4.
C. Przyporządkowanie 3.
D. Przyporządkowanie 2.
Odpowiedź jest prawidłowa, ponieważ przyporządkowanie 1. dokładnie odzwierciedla rzeczywiste rozmieszczenie i funkcje poszczególnych części sprzęgła kłowego. W praktyce, zrozumienie tych elementów jest kluczowe dla prawidłowego montażu i konserwacji urządzeń mechanicznych. Na przykład, płytka sprzęgła, oznaczona cyfrą 1, jest podstawowym elementem, który łączy różne części, a jej prawidłowe umiejscowienie zapewnia stabilność całego systemu. Kołnierz przykręcany (oznaczony cyfrą 2) odpowiada za mocowanie, co jest szczególnie istotne w kontekście obciążeń dynamicznych występujących w pracy sprzęgła. Wkładka elastyczna (cyfra 3) pełni kluczową rolę w amortyzacji drgań, co wpływa na żywotność oraz efektywność działania całego mechanizmu. Pozostałe elementy, takie jak pierścienie osadcze (4 i 5) i podkładka zabezpieczająca (6), również mają swoje określone funkcje, które są niezbędne dla prawidłowego działania sprzęgła. Zrozumienie tych interakcji jest nie tylko istotne z perspektywy inżynieryjnej, ale również w kontekście zachowania standardów jakości i bezpieczeństwa w przemyśle.

Pytanie 21

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. zestyku normalnie zamkniętego.
B. przycisku ręcznego zwiernego.
C. zestyku normalnie otwartego.
D. przycisku ręcznego rozwiernego.
Wybranie zestyku normalnie zamkniętego albo otwartego to coś, co może wprowadzać w błąd, zwłaszcza jeśli chodzi o symbole w rysunkach elektrycznych. Zestyk normalnie zamknięty oznacza, że obwód jest zamknięty, więc prąd sobie płynie bez potrzeby wciśnięcia czegokolwiek. Z kolei zestyk normalnie otwarty to taki, który jest otwarty, dopóki go nie aktywujesz, wtedy obwód się zamyka. I te dwa typy mają różne zastosowania, ale nie możesz ich mylić z przyciskiem manualnym rozwiernym, bo to działa na innych zasadach. Zrozumienie tego przycisku jest naprawdę ważne, bo głównie używa się go w sytuacjach, gdzie potrzebna jest chwilowa aktywacja obwodu. Błędne przypisanie symboli w schematach elektrycznych może prowadzić do poważnych problemów, jak niezamierzone uruchomienie sprzętu, co jest niebezpieczne. Dobrze byłoby zapoznać się z rysunkami i standardami, jak IEC 60617, które mówią, jak oznakować elementy w systemach elektrycznych, żeby nie mieć takich pomyłek. Każdy, kto pracuje w automatyce i elektryce, powinien to zrozumieć.

Pytanie 22

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Obniżanie napięcia sieciowego.
B. Zamiana prądu stałego na prąd przemienny.
C. Filtrowanie zakłóceń napięcia sieciowego.
D. Zamiana prądu przemiennego na prąd stały.
Element przedstawiony na ilustracji to mostek prostowniczy, który odgrywa kluczową rolę w przetwarzaniu energii elektrycznej. Jego głównym zastosowaniem jest zamiana prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod ułożonych w taki sposób, aby umożliwić przepływ prądu w jednym kierunku, co prowadzi do wyprostowania sygnału. W praktyce, mostki prostownicze są szeroko stosowane w zasilaczach, które zasilają różne urządzenia elektroniczne. Na przykład, w komputerach czy telewizorach mostki prostownicze są niezbędne do konwersji napięcia z sieci energetycznej na odpowiednie wartości potrzebne do pracy podzespołów. Dzięki zastosowaniu mostka prostowniczego, można osiągnąć stabilne i niezawodne źródło prądu stałego, co jest zgodne z najlepszymi praktykami projektowania zasilaczy. Warto również wspomnieć, że mostki prostownicze wykorzystuje się w systemach fotowoltaicznych, gdzie energia słoneczna, generująca prąd stały, jest przetwarzana na prąd zmienny do użytku w domach lub wprowadzania do sieci energetycznej.

Pytanie 23

Narzędzia przedstawione na rysunku są stosowane do

Ilustracja do pytania
A. wiercenia.
B. frezowania.
C. honowania.
D. gwintowania.
Narzędzia przedstawione na rysunku, czyli gwintownik oraz narzynka, są kluczowymi elementami w procesie gwintowania. Gwintowanie to technika obróbcza, która umożliwia tworzenie gwintów wewnętrznych i zewnętrznych, co jest niezbędne do łączenia elementów mechanicznych, takich jak śruby i nakrętki. Gwintownik to narzędzie skrawające, które umożliwia precyzyjne wykonanie gwintów wewnętrznych w otworach, natomiast narzynka służy do gwintowania zewnętrznego na prętach lub cylindrach. Standardy przemysłowe, takie jak ISO 68, definiują parametry gwintów, co pozwala na zachowanie odpowiednich tolerancji i wymagań jakościowych. Przykładowo, w branży motoryzacyjnej, gwintowanie jest używane do produkcji elementów montażowych, które muszą wytrzymać wysokie obciążenia. Zrozumienie i umiejętność stosowania gwintowników oraz narzynek jest fundamentalne dla inżynierów mechaników oraz techników obróbczych.

Pytanie 24

Którego z wymienionych przyrządów pomiarowych należy użyć do wykonania pomiaru szerokości bardzo głębokiego otworu nieprzelotowego blisko dna w sposób przedstawiony na ilustracji?

Ilustracja do pytania
A. Mikrometru wewnętrznego.
B. Wysokościomierza.
C. Średnicówki czujnikowej.
D. Głębokościomierza.
Wybór niewłaściwego przyrządu pomiarowego do pomiaru szerokości głębokiego otworu nieprzelotowego może prowadzić do poważnych błędów i nieścisłości w wynikach. Głębokościomierz, który służy głównie do pomiaru głębokości w otworach, nie jest przystosowany do określenia średnicy, co czyni go nieodpowiednim w tej sytuacji. Podobnie, wysokościomierz, który jest używany do pomiarów wysokości lub różnic wysokości, również nie daje możliwości pomiaru średnicy otworu. Mikrometr wewnętrzny jest narzędziem precyzyjnym, jednak jego zastosowanie ogranicza się do pomiarów otworów o mniejszych głębokościach i na ogół nie nadaje się do pomiaru w głębokich otworach nieprzelotowych, gdzie dostęp do dna otworu może być ograniczony. Wybierając niewłaściwe narzędzie, można także napotkać problemy z odczytem wyników, co prowadzi do błędnych wniosków i może skutkować nieefektywnym działaniem w dalszych etapach procesu produkcyjnego. Ważne jest, aby przed podjęciem decyzji o wyborze narzędzia, dokładnie ocenić specyfikę pomiaru oraz wymagania dotyczące precyzji, co jest kluczowe w standardach jakościowych przemysłu.

Pytanie 25

Jaką z wymienionych czynności należy regularnie przeprowadzać w trakcie konserwacji systemu pneumatycznego?

A. Regulować ciśnienie powietrza
B. Wymieniać rury pneumatyczne
C. Usuwać kondensat wodny
D. Wymieniać szybkozłącza
Usuwanie kondensatu wodnego z układu pneumatycznego jest kluczową czynnością konserwacyjną, która zapobiega wielu problemom technicznym. Kondensat wodny, który powstaje w wyniku różnicy temperatury między powietrzem a elementami układu, może prowadzić do korozji, uszkodzeń uszczelek oraz obniżenia efektywności działania systemu. Regularne usuwanie kondensatu jest nie tylko zalecane, ale wręcz wymagane przez standardy branżowe, takie jak ISO 8573, które definiują jakość sprężonego powietrza. Przykładem praktycznego zastosowania tej wiedzy jest instalacja odpowiednich separatorów kondensatu w systemie, które automatycznie usuwają wodę, minimalizując ryzyko jej nagromadzenia. Dodatkowo, regularne przeglądy układu oraz kontrola poziomu kondensatu w zbiornikach powinny być integralną częścią planu konserwacji, co pozwala na wczesne wykrywanie potencjalnych problemów i zapewnienie ciągłości pracy urządzeń.

Pytanie 26

Dla którego stanu wejść na wyjściu Y układu logicznego pojawi się "1"?

Ilustracja do pytania
A. A=0, B=0, C=0
B. A=0, B=1, C=1
C. A=l, B=0, C=0
D. A=1, B=1, C=1
W odpowiedzi A=1, B=0, C=0 wszystko pasuje, bo w tym przypadku układ logiczny daje nam wynik Y równy 1. A, B i C to stany logiczne, gdzie '1' to aktywny stan, a '0' to nieaktywny. Weźmy bramkę AND – jej wyjście działa tylko wtedy, kiedy wszystkie wejścia są równe '1'. W tej sytuacji A ma wartość '1', a B i C są '0', przez co Y jest '1'. To jest zgodne z tym, jak działają bramki logiczne. Wiedza o tych bramkach jest ważna, bo pomaga w budowie bardziej skomplikowanych systemów. Na przykład, w mikroprocesorach wykorzystuje się takie bramki do operacji arytmetycznych i logicznych, a to jest podstawą działania nowoczesnych urządzeń elektronicznych.

Pytanie 27

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. sys
B. exe
C. bmp
D. ini
Rozszerzenie .exe w Windows to pliki, które pozwalają na uruchamianie programów i aplikacji. Zawierają one kod, który system operacyjny potrafi odczytać i wykonać. Przykładowo, gdy uruchamiasz Worda lub jakąkolwiek grę, to właśnie plik .exe działa w tle. Często pliki te są używane jako instalatory, co sprawia, że instalacja nowego oprogramowania jest naprawdę łatwa. Ale trzeba uważać, bo pliki .exe mogą być też niebezpieczne – czasem mogą zawierać wirusy. Dlatego zawsze warto ściągać je tylko z miejsc, które znamy i którym ufamy. I dobrze jest przeskanować te pliki przed uruchomieniem, żeby zminimalizować ryzyko infekcji. Poza tym, Windows ma różne narzędzia, dzięki którym możemy kontrolować, jakie pliki .exe się uruchamiają, co na pewno zwiększa bezpieczeństwo systemu.

Pytanie 28

Do połączeń spoczynkowych trwałych nie wlicza się

A. nitowania
B. kołkowania
C. klejenia
D. spawania
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 29

W przekładni zbudowanej z kół przedstawionych na rysunku należy zastosować pasek

Ilustracja do pytania
A. klinowy.
B. wielorowkowy.
C. wieloklinowy.
D. zębaty.
Poprawna odpowiedź to zębaty pasek, który jest odpowiednio dostosowany do koła zębatego, jak przedstawiono na rysunku. Przekładnie zębate wykorzystywane są w wielu zastosowaniach przemysłowych, od napędów w maszynach po systemy przenoszenia mocy w pojazdach. Paski zębate zapewniają precyzyjne połączenie między kołami zębatymi, co pozwala na efektywną transmisję momentu obrotowego bez utraty energii, co jest kluczowe w aplikacjach wymagających wysokiej dokładności, takich jak drukarki 3D czy robotyka. W praktyce, dobór odpowiedniego paska zębatego wpływa na wydajność całego systemu, a jego parametry, takie jak szerokość i liczba zębów, muszą odpowiadać specyfikacjom technicznym kół zębatych. Zastosowanie pasków zębatych spełnia również normy i standardy branżowe, co zapewnia ich niezawodną pracę oraz długą żywotność w trudnych warunkach eksploatacyjnych. Stosowanie tego rodzaju rozwiązań technicznych jest zgodne z najlepszymi praktykami inżynieryjnymi, co pozwala na optymalne wykorzystanie zasobów oraz minimalizację ryzyka awarii.

Pytanie 30

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. zweryfikować stan izolacji.
B. odłączyć urządzenie od źródła zasilania.
C. zdjąć obudowę.
D. uziemić urządzenie.
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 31

Jaka jest średnica wałka zmierzona suwmiarką, której noniusz przedstawiono na rysunku?

Ilustracja do pytania
A. 3,20 mm
B. 3,85 mm
C. 3,10 mm
D. 3,65 mm
Poprawna odpowiedź to 3,85 mm, co wynika z dokładnego odczytu suwmiarki. Na głównej skali suwmiarki widzimy wartość 3 mm, a następnie analizujemy noniusz. Kluczowym krokiem jest zlokalizowanie linii noniusza, która pokrywa się z linią głównej skali. W tym przypadku jest to 8,5, co oznacza dodatkowe 0,85 mm. Łącząc te wartości, otrzymujemy 3,85 mm. Użycie suwmiarki jest standardową praktyką w precyzyjnym pomiarze wymiarów, co jest szczególnie istotne w inżynierii i produkcji, gdzie dokładność ma kluczowe znaczenie. Stosowanie suwmiarki wymaga umiejętności interpretacji odczytów oraz znajomości zasad pomiarów, co zapewnia wysoką jakość wyrobów oraz minimalizację błędów produkcyjnych.

Pytanie 32

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √3
B. maksymalna napięcia podzielona przez √2
C. średnia napięcia wyznaczona dla okresu
D. średnia napięcia wyznaczona dla półokresu
Odpowiedź wskazująca, że napięcie 230 V jest maksymalnym napięciem podzielonym przez √2 jest prawidłowa, ponieważ w przypadku napięcia przemiennego, wartość skuteczna (RMS) jest kluczowym parametrem. Wartość skuteczna napięcia przemiennego jest definiowana jako wartość napięcia, która dostarcza taką samą moc średnią jak napięcie stałe. W przypadku sygnału sinusoidalnego, wartość skuteczna jest uzyskiwana poprzez podział maksymalnego napięcia przez pierwiastek kwadratowy z dwóch (√2). W praktyce, w instalacjach elektrycznych, napięcie 230 V odnosi się do wartości skutecznej, co jest standardem w Europie. Dlatego cewki elektrozaworów zaprojektowane do pracy przy napięciu 230 V są przystosowane do napięcia o maksymalnej wartości 325 V (230 V × √2). Zastosowanie tego parametru jest istotne w kontekście projektowania systemów zasilania, gdzie należy uwzględnić zarówno wartości skuteczne, jak i maksymalne, aby zapewnić prawidłowe działanie urządzeń i uniknąć uszkodzeń. Warto zwrócić uwagę, że przestrzeganie tych norm jest kluczowe dla bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 33

Pierścienie uszczelniające siłownika dwustronnego działania są oznaczone cyframi

Ilustracja do pytania
A. 2 i 3
B. 5 i 8
C. 4 i 7
D. 1 i 9
Analizując odpowiedzi, można zauważyć, że wiele z nich bazuje na błędnych założeniach dotyczących działania siłowników dwustronnego działania oraz miejsca uszczelnień. Odpowiedzi takie jak 1 i 9, 2 i 3 czy 4 i 7 wskazują na niezrozumienie podstawowych zasad dotyczących struktury i funkcji uszczelnień w siłownikach. Często mylnie sądzono, że inne oznaczenia mogą odpowiadać za uszczelnienie, co prowadzi do nieprawidłowego wnioskowania. W przypadku siłowników, kluczowe jest, aby uszczelnienia znajdowały się w odpowiednich miejscach, gdzie występują największe siły i ciśnienia, co zapewnia prawidłową szczelność. Wybór niewłaściwych pierścieni uszczelniających może prowadzić do wycieków, a tym samym do obniżenia wydajności całego systemu. W praktyce, błędne zrozumienie oznaczeń na schematach i rysunkach technicznych może prowadzić do poważnych błędów w projektowaniu, montażu czy serwisie siłowników. Kluczowe jest, aby wiedzieć, że oznaczenia są ściśle powiązane z funkcjami poszczególnych elementów, a ich mylne interpretacje mogą skutkować uszkodzeniami i nieefektywnością systemu. Dlatego inwestycja w zrozumienie tych zasad oraz w szkolenia techniczne jest niezbędna dla zapewnienia wysokiej jakości pracy w branży hydraulicznej.

Pytanie 34

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Regulatora
B. Silnika
C. Sondy
D. Chwytaka
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 35

Który element należy zamontować we wskazanym strzałką otworze podzespołu przedstawionego na rysunku?

Ilustracja do pytania
A. Manometr.
B. Termometr.
C. Zawór.
D. Przyłączkę.
Manometr jest kluczowym elementem w systemach pneumatycznych i hydraulicznych, który pozwala na dokładne pomiary ciśnienia. W kontekście przedstawionego rysunku otwór między oznaczeniami IN i OUT sugeruje, że jest on przeznaczony specjalnie do podłączenia manometru. Zastosowanie manometru umożliwia monitorowanie i kontrolowanie ciśnienia w systemie, co jest niezbędne dla zachowania bezpieczeństwa i efektywności operacji. W praktyce, manometry mogą być stosowane w różnych aplikacjach, w tym w instalacjach przemysłowych, systemach grzewczych oraz w samochodach, gdzie precyzyjne pomiary ciśnienia mają kluczowe znaczenie dla optymalizacji wydajności i uniknięcia awarii. W branży inżynieryjnej, zgodnie ze standardami ISO 5171, manometry powinny być regularnie kalibrowane w celu zapewnienia ich dokładności, co podkreśla znaczenie ich prawidłowego montażu. Dlatego zainstalowanie manometru w tym otworze jest zgodne z najlepszymi praktykami oraz standardami branżowymi.

Pytanie 36

Najważniejszym parametrem opisującym kondensator jest

A. rezystancja
B. indukcyjność
C. ładunek
D. pojemność
Pojemność jest podstawowym parametrem charakteryzującym kondensator, który określa zdolność tego elementu do magazynowania ładunku elektrycznego. Pojemność kondensatora, oznaczana symbolem C, wyrażana jest w faradach (F) i definiowana jest jako stosunek zgromadzonego ładunku (Q) do przyłożonego napięcia (U). W praktycznych zastosowaniach kondensatory odgrywają kluczową rolę w różnych dziedzinach, takich jak filtry, układy zasilania, czy obwody rezonansowe. Na przykład w zasilaczach impulsowych kondensatory stabilizują napięcie wyjściowe, a w obwodach audio są używane do odfiltrowania niepożądanych częstotliwości. W związku z tym, znajomość pojemności kondensatora jest niezbędna dla inżynierów i techników pracujących w elektronice. Dodatkowo, standardy takie jak IEC 60384 określają wymagania dotyczące kondensatorów, co potwierdza ich istotność w projektowaniu oraz produkcji urządzeń elektronicznych.

Pytanie 37

Wartość mocy czynnej wskazana przez watomierz wynosi

Ilustracja do pytania
A. 325 W
B. 130 W
C. 500 W
D. 65 W
Wybór innej wartości mocy czynnej, takiej jak 500 W, 130 W czy 65 W, jest wynikiem błędnej interpretacji odczytu watomierza. Odczyt 500 W sugeruje, że mierzone urządzenie zużywa znacznie więcej energii, niż wskazane na zdjęciu, co może prowadzić do niewłaściwej oceny wydajności urządzenia. Odpowiedź 130 W sugeruje zbyt niski poziom zużycia energii, który jest niewłaściwy w kontekście pomiaru, który wykazuje moc czynna na poziomie 325 W. Z kolei wartość 65 W, mogąca wynikać z niepełnego zrozumienia działania watomierza, nie uwzględnia rzeczywistego obciążenia, jakie generuje urządzenie. Często popełnia się błąd w ocenie mocy czynnej jako mocy biernej lub pozornej; jednak te wartości są różne i wymagają innego podejścia do obliczeń. Przy pomiarach mocy czynnej kluczowe jest zrozumienie, że jedynie odczyt rzeczywistej mocy czynnika jest istotny, co potwierdzają standardy branżowe, takie jak PN-IEC 62053, dotyczące mocy czynnej. W praktyce, wiedza o mocy czynnej jest niezbędna do efektywnego zarządzania energią w instalacjach elektrycznych, co wpływa na koszty eksploatacji oraz zmniejszenie emisji zanieczyszczeń.

Pytanie 38

Odczytaj wynik pomiaru wykonanego mikrometrem.

Ilustracja do pytania
A. 4,30 mm
B. 5,30 mm
C. 4,80 mm
D. 5,80 mm
Wybór błędnej odpowiedzi może wynikać z kilku typowych nieporozumień dotyczących odczytu pomiarów mikrometrycznych. Wiele osób może błędnie zinterpretować pozycję na podziałce głównej, co prowadzi do wyboru wartości 5,80 mm lub 5,30 mm. Problemy te zazwyczaj wynikają z nieprawidłowego odczytu liczby głównej, gdzie osoba pomiarowa może pomylić się, myśląc, że wartość na podziałce głównej pokazuje coś innego niż faktycznie jest. Ponadto, niepoprawne odczytywanie noniusza, takiego jak linia 30 lub 50, mogą skutkować odpowiedzią 4,30 mm lub 4,80 mm. Tego rodzaju błędy są częste, gdy osoba nie zwraca uwagi na precyzyjność podziałki noniusza, co jest kluczowe dla uzyskania dokładnych pomiarów. Zmniejszenie takich pomyłek można osiągnąć poprzez regularne ćwiczenie technik odczytu oraz szkolenie w dziedzinie metrologii. Zrozumienie zasad działania mikrometru oraz umiejętność odczytywania wyników w kontekście wymagań technicznych i standardów branżowych jest fundamentalne dla każdego specjalisty zajmującego się pomiarami w inżynierii oraz produkcji. Warto zainwestować czas w naukę poprawnych technik, co zaowocuje zwiększoną precyzją i jakością wykonywanych pomiarów.

Pytanie 39

Który z przedstawionych na rysunkach podzespołów zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania urządzenia pneumatycznego powietrzem?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Podczas analizy odpowiedzi, wiele osób może pomylić rolę różnych komponentów w układzie pneumatycznym. Możliwe nieporozumienia mogą wynikać z nieznajomości funkcji poszczególnych elementów. Na przykład, podzespół A, który jest zestawem do spawania, ma zupełnie inny cel - jego zadaniem jest łączenie materiałów poprzez proces spawania, a nie redukcja ciśnienia czy filtracja zanieczyszczeń. Podobnie, odpowiedź B, zawór redukcyjny bez filtra, chociaż jest związany z regulacją ciśnienia, nie jest w stanie zatrzymać cząstek stałych, co czyni go niewystarczającym rozwiązaniem w kontekście omawianego pytania. Z kolei manometr, czyli podzespół C, służy do pomiaru ciśnienia, ale nie ma żadnej funkcji związanej z filtracją czy regulacją ciśnienia. Właściwe zrozumienie funkcji komponentów układów pneumatycznych jest niezbędne dla ich prawidłowego doboru i eksploatacji, co jest kluczowe w zapewnieniu bezpieczeństwa i efektywności procesów przemysłowych. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często wynikają z powierzchownego zrozumienia różnic między komponentami oraz ich funkcjami, co może prowadzić do nieefektywnego doboru części do systemów pneumatycznych.

Pytanie 40

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. nasadowego
B. imbusowego
C. płaskiego
D. nasadowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.