Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 19:02
  • Data zakończenia: 19 grudnia 2025 19:29

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy1 i Dy5
B. Dy7 i Dy11
C. Dy3 i Dy9
D. Dy5 i Dy11
Wybór innych grup połączeń transformatorów, takich jak Dy3, Dy9, Dy1, Dy7, czy Dy11 nie jest w pełni uzasadniony w kontekście zastosowań praktycznych, co prowadzi do zrozumienia nieprawidłowości w podejściu do wyboru odpowiedniej konfiguracji. Połączenie Dy3, oparte na trójkącie, jest wykorzystywane, gdy nie ma potrzeby redukcji harmonik, co skutkuje większymi stratami mocy w niektórych warunkach eksploatacyjnych. Z kolei Dy9, mimo że również ma swoje zastosowanie, nie jest rekomendowane do ogólnych zastosowań z uwagi na większe ryzyko wystąpienia problemów z jakością energii. Odpowiedzi takie jak Dy1 i Dy5 mogą prowadzić do nieefektywności, ponieważ Dy1 nie jest standardowym ani zalecanym połączeniem w normach, co przypisuje mu mniejsze zastosowanie w praktycznych systemach. Dy7 ma swoje specyficzne zastosowania, ale w kontekście ogólnych norm i praktyk, nie jest zalecanym wyborem. Istotne jest, aby przy podejmowaniu decyzji o wyborze połączeń brać pod uwagę nie tylko teoretyczne aspekty, ale także praktyczną efektywność, niezawodność oraz zgodność z normami branżowymi, co jest kluczowe w projektowaniu i eksploatacji systemów zasilania.

Pytanie 2

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. mocy zainstalowanych urządzeń elektrycznych w instalacji
B. impedancji pętli zwarcia instalacji
C. maksymalnej współczynnika przepięć
D. maksymalnego spadku częstotliwości w sieci zasilającej
Odpowiedź dotycząca impedancji pętli zwarcia instalacji jest poprawna, ponieważ ta wartość jest kluczowa dla oceny skuteczności ochrony przeciwporażeniowej realizowanej przez samoczynne wyłączenie zasilania. Impedancja pętli zwarcia wpływa na prąd zwarciowy, który może przepłynąć przez instalację w przypadku awarii. Zgodnie z normami IEC 60364-4-41 oraz PN-IEC 61008-1, istotne jest, aby prąd wyłączający dla zastosowanego zabezpieczenia (np. wyłącznika nadprądowego lub różnicowoprądowego) był odpowiednio wyższy od wartości prądu zwarciowego, co zapewnia szybkie działanie zabezpieczeń. W praktyce, aby zapewnić skuteczność ochrony, projektanci instalacji elektrycznych muszą przeprowadzić obliczenia impedancji pętli zwarcia, co pozwala na dobór odpowiednich zabezpieczeń. Na przykład, w przypadku instalacji o napięciu znamionowym 230 V i użyciu bezpiecznika o prądzie wyłączającym 30 mA, wartość impedancji pętli zwarcia musi być obliczona tak, aby prąd zwarciowy wynosił co najmniej 150 mA, co zapewnia odpowiednie wyłączenie w wymaganym czasie.

Pytanie 3

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Ocena stanu pierścieni ślizgowych
B. Sprawdzenie połączeń elementów urządzenia
C. Ocena stanu szczotek i szczotkotrzymaczy
D. Sprawdzenie poziomu drgań
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 4

Jak często należy przeprowadzać oględziny domowej instalacji elektrycznej?

A. 60 miesięcy
B. 24 miesiące
C. 12 miesięcy
D. 35 miesięcy
Oględziny domowej instalacji elektrycznej powinno się robić co 60 miesięcy. To, co mówią polskie normy, jak PN-IEC 60364, jest dość jasne. Regularne przeglądy są mega ważne, bo zapewniają bezpieczeństwo użytkowników i sprawiają, że instalacja działa bez problemów. W ciągu tych pięciu lat warto, żeby właściciele domów robili dokładne inspekcje. To znaczy, że powinno się nie tylko patrzeć na to, jak wygląda instalacja, ale też zmierzyć najważniejsze parametry elektryczne. Można na przykład sprawdzić przewody, gniazdka, wyłączniki, a także zobaczyć, czy zabezpieczenia działają, jak powinny. Z własnego doświadczenia wiem, że regularne przeglądy mogą zapobiegają awariom i pomagają zaoszczędzić na rachunkach za prąd, co w obecnych czasach ma znaczenie. Ciekawe, że przepisy mogą się różnić, zwłaszcza w budynkach publicznych, gdzie te zasady są często bardziej restrykcyjne.

Pytanie 5

Jakie powinno być maksymalne wskazanie amperomierza do pomiaru natężenia prądu w instalacji zasilanej napięciem 230/400 V o częstotliwości 50 Hz, zasilanej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, n = 70%, cosφ = 0,96?

A. 1A
B. 3A
C. 2A
D. 4A
Wybór niewłaściwego zakresu pomiarowego amperomierza może prowadzić do poważnych błędów w pomiarach oraz potencjalnych uszkodzeń sprzętu. Na przykład, zbyt niski zakres pomiarowy, jak 1A czy 2A, nie uwzględnia rzeczywistego natężenia prądu, które może przekroczyć te wartości, zwłaszcza w przypadku rozruchu silnika, gdzie prąd może być znacznie wyższy niż nominalny. Takie podejście jest niebezpieczne, ponieważ może prowadzić do uszkodzeń amperomierza lub podzespołów instalacji. Dodatkowo, nie uwzględniając współczynnika mocy, można błędnie ocenić rzeczywiste natężenie prądu, co również wpływa na dokładność pomiaru. Przy pomiarach w instalacjach elektrycznych ważne jest również przestrzeganie dobrych praktyk, takich jak stosowanie urządzeń o odpowiednich parametrach technicznych oraz zapewnienie marginesu bezpieczeństwa, co jest kluczowe dla ochrony zarówno urządzeń, jak i osób pracujących w pobliżu instalacji. Wybór amperomierza powinien być zatem oparty na rzetelnych obliczeniach oraz analizie wszystkich czynników wpływających na obciążenie instalacji.

Pytanie 6

Jakiego składnika nie powinien mieć kabel zasilający do głównej rozdzielnicy w strefie przemysłowej, która jest klasyfikowana jako niebezpieczna pod względem pożaru?

A. Zewnętrznego splotu włóknistego.
B. Obudowy stalowej.
C. Żył z aluminium.
D. Pokrywy polietylenowej.
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem w przypadku kabli zasilających używanych w pomieszczeniach przemysłowych o podwyższonym ryzyku pożarowym. W takich środowiskach kluczowe jest zapewnienie wysokiego poziomu ochrony przed działaniem ognia oraz substancji chemicznych. Oplot włóknisty, choć lekki i elastyczny, nie oferuje wystarczającej odporności na wysokie temperatury ani zabezpieczenia przed rozprzestrzenieniem się ognia. W praktyce, kable w takich strefach powinny posiadać pancerz stalowy, który chroni przed mechanicznymi uszkodzeniami oraz powłokę polietylenową, która zapewnia odpowiednią odporność na ogień. Zastosowanie takich materiałów jest zgodne z normami, takimi jak PN-EN 50575, która określa wymagania dotyczące kabli w kontekście ochrony przeciwpożarowej. Warto również pamiętać, że odpowiednia konstrukcja kabli zasilających może mieć kluczowe znaczenie dla bezpieczeństwa całego systemu zasilania w obiektach przemysłowych.

Pytanie 7

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
B. Podwyższenia częstotliwości ponad wartość nominalną.
C. Nadkompensacji sieci.
D. Pojawienia się przepięcia.
Zrozumienie mechanizmów działania systemów elektroenergetycznych wymaga głębszej analizy sytuacji związanych z różnymi odpowiedziami na postawione pytanie. Stwierdzenie, że samoczynne częstotliwościowe odciążenie zadziała w przypadku przekompensowania sieci, jest mylące, ponieważ przekompensowanie oznacza, że moc bierna jest wyższa niż zapotrzebowanie. W takiej sytuacji nie dochodzi do problemów z częstotliwością, a wręcz przeciwnie, sieć staje się bardziej stabilna. Zwiększenie częstotliwości ponad wartość znamionową również nie jest sytuacją, gdzie SCO ma zastosowanie. Wysoka częstotliwość sygnalizuje, że generator dostarcza więcej mocy niż jest potrzebne, co prowadzi do ryzyka uszkodzenia sprzętu, a nie do aktywacji mechanizmów odciążających. Wreszcie, wystąpienie przepięcia, świadczy o nadmiarze napięcia, co nie jest równoznaczne ze zwiększoną mocą pobraną, a zatem również nie uruchamia samoczynnych mechanizmów odciążających. W praktyce, błędne zrozumienie tych mechanizmów prowadzi do nieefektywnego zarządzania obciążeniem w sieci, co może skutkować poważnymi konsekwencjami dla stabilności systemu energetycznego. Właściwe zarządzanie obciążeniem oraz umiejętność prognozowania zmian w zapotrzebowaniu na moc są kluczowe dla zapewnienia ciągłości dostaw energii elektrycznej.

Pytanie 8

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
B. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
C. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
D. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
Wybór odpowiedzi dotyczącej zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest uzasadniony. Zgodnie z normami instalacji elektrycznych, takimi jak PN-IEC 60364, zaleca się, aby gniazda wtykowe w pomieszczeniach mieszkalnych były podłączone do odrębnych obwodów. Taki układ zwiększa bezpieczeństwo, ponieważ w przypadku przeciążenia lub zwarcia, wyłączenie jednego obwodu nie wpływa na pozostałe gniazda w innych pomieszczeniach. Przykładem praktycznym jest sytuacja, gdy w jednym pomieszczeniu używamy wielu urządzeń elektrycznych, takich jak komputer, lodówka czy telewizor. Dzieląc zasilanie na poszczególne obwody, minimalizujemy ryzyko spadku napięcia i zapewniamy stabilność zasilania. Dodatkowo, urządzenia wymagające dużej mocy, jak pralki czy kuchenki, powinny być zasilane z osobnych obwodów, co wynika z zasad bezpieczeństwa oraz efektywności energetycznej.

Pytanie 9

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zwiększyć napięcie zasilające
B. Zwiększyć długość przewodów zasilających
C. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
D. Zastosować dodatkowy filtr harmonicznych
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 10

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. zmierzyć rezystancję izolacji kabla zasilającego
B. zmierzyć temperaturę uzwojenia stojana
C. ocenić stan szczotek
D. sprawdzić rezystancję przewodu ochronnego
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 11

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Rezystancja przewodów ulegnie zmniejszeniu
B. Przewodność elektryczna przewodów ulegnie zwiększeniu
C. Obciążalność długotrwała instalacji zostanie zmniejszona
D. Wytrzymałość elektryczna izolacji wzrośnie
Wybór przewodu YADY 3x1,5 mm2 zamiast YDY 3x1,5 mm2 to nie byle co. Wiesz, te przewody mają różne właściwości, zwłaszcza jeśli chodzi o to, jak długo mogą wytrzymać przy dużym obciążeniu. Przewód YADY ma inną izolację, która po prostu nie znosi wysokich temperatur i uszkodzeń mechanicznych tak dobrze, jak YDY. Jak przewód YADY się nagrzeje, to może mieć problem z przenoszeniem prądu bezpiecznie. Takie sprawy reguluje norma PN-IEC 60364 i dobrze mieć to na uwadze przy projektowaniu. Inżynierowie i wykonawcy muszą więc dobrze przemyśleć, co wybierają, bo niewłaściwy przewód to ryzyko przegrzania i awarii, a to przecież może być niebezpieczne. Warto zainwestować w dobry wybór, żeby uniknąć kłopotów.

Pytanie 12

W pomieszczeniu zainstalowano 40 żarówek o mocy 75 W każda. Jakiego wyłącznika nadprądowego powinno się użyć do zabezpieczenia jednofazowej instalacji oświetleniowej zasilanej napięciem 230 V?

A. B16
B. C6
C. B6
D. C10
Odpowiedź B16 jest poprawna, ponieważ dobór wyłącznika nadprądowego powinien być uzależniony od całkowitego obciążenia instalacji. W tym przypadku mamy do czynienia z 40 żarówkami o mocy 75 W każda, co daje łącznie 3000 W. Przy napięciu zasilania wynoszącym 230 V, całkowity prąd pobierany przez te żarówki można obliczyć za pomocą wzoru: I = P / U, co w naszym przypadku daje I = 3000 W / 230 V ≈ 13 A. Wyłącznik B16 zapewnia odpowiedni margines bezpieczeństwa, ponieważ jest w stanie obsłużyć prąd do 16 A, co oznacza, że może znieść chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu żarówek. Wyłączniki typu B są przeznaczone do obwodów, w których obciążenie jest głównie rezystancyjne, co jest typowe dla instalacji oświetleniowych. W praktyce, zastosowanie wyłącznika B16 w tym przypadku spełnia normy PN-IEC 60898-1, które regulują dobór zabezpieczeń nadprądowych, zapewniając jednocześnie bezpieczeństwo użytkowników oraz ochronę instalacji.

Pytanie 13

Który z poniżej wymienionych instrumentów umożliwia najbardziej precyzyjny pomiar rezystancji uzwojenia komutacyjnego prądnicy obcowzbudnej prądu stałego o dużej mocy?

A. Mostek Thomsona
B. Mostek Wheatstone'a
C. Omomierz analogowy
D. Omomierz cyfrowy
Użycie omomierzy analogowych i cyfrowych do pomiaru rezystancji uzwojeń komutacyjnych prądnicy obcowzbudnej dużej mocy może prowadzić do istotnych błędów pomiarowych. Omomierze analogowe, choć stosunkowo proste w obsłudze, są podatne na subiektywne odczyty oraz drift wskazówki, co czyni je mało wiarygodnymi w kontekście precyzyjnych pomiarów. Z kolei omomierze cyfrowe, mimo że oferują dokładniejsze odczyty, mogą mieć ograniczenia w pomiarach rezystancji w wysokiej dokładności z uwagi na wewnętrzne oporności i ograniczenia pomiarowe, które mogą wpływać na wyniki. Mostek Wheatstone'a, chociaż użyteczny w wielu zastosowaniach, nie jest wystarczająco precyzyjny do pomiaru bardzo niskich rezystancji, takich jak te występujące w uzwojeniach komutacyjnych. Pomiar rezystancji w tym kontekście wymaga zastosowania zaawansowanych technik pomiarowych, które eliminują wpływ dodatkowych czynników, takich jak temperatura czy indukcyjność, co jest jedną z kluczowych zalet mostka Thomsona. Dlatego, wybierając przyrząd do pomiaru rezystancji w skomplikowanych układach elektrycznych, warto kierować się nie tylko prostotą obsługi, ale przede wszystkim dokładnością i niezawodnością pomiarów.

Pytanie 14

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 10 A
B. 13 A
C. 16 A
D. 20 A
Aby obliczyć minimalną wartość znamionowego prądu wyłącznika nadprądowego, należy zastosować wzór na moc elektryczną, który łączy moc (P), napięcie (U) oraz prąd (I). Wzór ten można przedstawić jako P = U * I. Z naszej sytuacji mamy moc 2 kW (2000 W) oraz napięcie 230 V. Przekształcając wzór, otrzymujemy I = P / U. Podstawiając wartości, otrzymujemy I = 2000 W / 230 V, co daje około 8,7 A. Jabłko z tej wartości, zgodnie z normami i zaleceniami stosuje się wyłączniki nadprądowe o wartościach znamionowych, które są standardowo dostępne w sklepach. Wyłączniki te są dostępne w wartościach 6 A, 10 A, 16 A, 20 A i wyższych. Zatem, aby zapewnić odpowiedni margines bezpieczeństwa oraz zgodność z przepisami, minimalna wartość wyłącznika powinna wynosić 10 A. Dobrym przykładem zastosowania tego wyłącznika jest jego użycie w domowych instalacjach elektrycznych, gdzie piekarniki oporowe są powszechnie używane. Wybór wyłącznika o wartości znamionowej 10 A chroni obwód przed przeciążeniem oraz awarią sprzętu.

Pytanie 15

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Przerwa w uziemieniu neutralnego punktu
B. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
C. Niesymetryczne obciążenie transformatora
D. Przerwa w uzwojeniu pierwotnym
Zwarcie między uzwojeniem pierwotnym a wtórnym transformatora jest jednym z najpoważniejszych zagrożeń, które mogą prowadzić do uszkodzenia urządzenia. Przekaźnik Buchholtza działa jako ochrona transformatora przed skutkami zwarcia, gdyż monitoruje przepływ oleju w transformatorze. W przypadku zwarcia, dochodzi do nagłego wzrostu temperatury i ciśnienia, co powoduje ruch oleju, a to z kolei uruchamia przekaźnik. Odpowiedź na to pytanie odnosi się do podstawowych zasad ochrony urządzeń elektrycznych. Działanie przekaźnika Buchholtza jest zgodne z normami IEC 60214, które określają wymagania dla transformatorów olejowych. W praktyce, stosowanie przekaźników Buchholtza pozwala na wczesne wykrywanie problemów oraz minimalizowanie ryzyka poważnych awarii, co jest kluczowe dla zapewnienia ciągłości pracy systemów energetycznych. W przypadku zadziałania przekaźnika, operator jednostki powinien niezwłocznie przeprowadzić diagnostykę w celu ustalenia przyczyny i podjąć odpowiednie działania naprawcze.

Pytanie 16

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Poziom odchylenia napięcia zasilającego
B. Strzałka wskazująca wymagany kierunek obrotu
C. Typ zastosowanych zabezpieczeń przeciwzwarciowych
D. Termin kolejnego przeglądu technicznego
Strzałka oznaczająca wymagany kierunek wirowania jest kluczowym elementem oznaczenia elektrycznego urządzenia napędowego, który musi być widoczny dla operatorów i personelu technicznego. Oznaczenie to jest niezbędne, aby zapewnić poprawne uruchomienie i eksploatację maszyny. W przypadku napędów elektrycznych, niewłaściwy kierunek wirowania może prowadzić do poważnych uszkodzeń mechanicznych, zwiększonego zużycia energii oraz zagrożeń dla bezpieczeństwa pracowników. W praktyce oznaczenie kierunku wirowania powinno być zgodne z obowiązującymi standardami, takimi jak norma PN-EN 60204-1 dotycząca bezpieczeństwa maszyn oraz prawidłowej obsługi urządzeń elektrycznych. Przykładowo, w przypadku silników elektrycznych, strzałka na obudowie silnika wskazuje, w którą stronę wirnik powinien się obracać podczas pracy. Niezastosowanie się do tych oznaczeń może skutkować błędami w procesu produkcji, a także prowadzić do znacznych kosztów napraw i przestojów.

Pytanie 17

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar napięcia zasilającego
B. Przeprowadzenie próbnego rozruchu urządzenia
C. Pomiar rezystancji uzwojeń stojana
D. Weryfikacja stanu ochrony przeciwporażeniowej
Pomiar napięcia zasilania nie należy do badań eksploatacyjnych silnika elektrycznego, ponieważ jest to czynność raczej związana z kontrolą źródła zasilania, a nie diagnostyką samego silnika. W kontekście eksploatacji silników elektrycznych, kluczowe jest zrozumienie, że badania eksploatacyjne koncentrują się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia, izolacja czy mechanika. Pomiar rezystancji uzwojeń stojana oraz sprawdzenie stanu ochrony przeciwporażeniowej są kluczowe dla bezpieczeństwa i efektywności pracy silnika. Rozruch próbny urządzenia jest niezbędny do oceny jego działania w rzeczywistych warunkach. Przykładowo, w przemyśle, regularne badania eksploatacyjne pozwalają na wczesne wykrycie potencjalnych awarii, co zmniejsza ryzyko przestojów i zwiększa efektywność operacyjną.

Pytanie 18

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Kask ochronny
B. Rękawice ochronne
C. Uprząż ochronna
D. Buty robocze
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 19

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. zwarcie między przewodem fazowym a neutralnym
B. zwarcie przewodu ochronnego z obudową
C. uszkodzenie w przewodzie fazowym
D. uszkodzenie w grzałce
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 20

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 0,63
B. MMS-32S – 4A
C. MMS-32S – 1,6A
D. PKZM01 – 1
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 21

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 4
B. 12
C. 6
D. 10
Odpowiedź 10 gniazd wtyczkowych na jedno gniazdo obwodowe jest zgodna z normami oraz praktykami stosowanymi w instalacjach elektrycznych. Zgodnie z Polskimi Normami, a także wytycznymi zawartymi w normach europejskich, maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu, powinna wynosić 10. To ograniczenie wynika z konieczności zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji przed przeciążeniem. Zbyt duża liczba gniazd wtyczkowych podłączonych do jednego obwodu może prowadzić do przegrzewania się przewodów, a co za tym idzie, do ryzyka pożaru. Przykładem może być sytuacja, w której użytkownik podłącza wiele urządzeń o dużym poborze mocy, takich jak czajniki, mikrofalówki czy komputery, co może przekroczyć dopuszczalny prąd obwodu. Dlatego ważne jest przestrzeganie zasad bezpieczeństwa oraz odpowiednie projektowanie instalacji elektrycznych, aby uniknąć niebezpieczeństw związanych z przeciążeniem.

Pytanie 22

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
B. wzrost prędkości obrotowej silnika
C. spadek prędkości obrotowej silnika
D. unieruchomienie silnika
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 23

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Zwiększenie temperatury przewodu
B. Obniżenie obciążalności prądowej
C. Obniżenie rezystancji pętli zwarciowej
D. Wzrost spadku napięcia na przewodach
Kiedy analizujemy skutki wymiany przewodów, ważne jest zrozumienie, że nie wszystkie zmiany w instalacji prowadzą do negatywnych efektów. Stwierdzenie, że wymiana przewodów ADY na DY 2,5 mm² spowoduje zwiększenie nagrzewania się przewodu, jest błędne. Przewody DY, wykonane z materiałów o lepszej przewodności elektrycznej, mogą w rzeczywistości poprawić efektywność przewodzenia prądu, co skutkuje mniejszymi stratami energii w postaci ciepła. Zwiększenie spadku napięcia na przewodach również jest mylne; w rzeczywistości, bardziej efektywne przewody mogą zredukować spadki napięcia, co jest szczególnie istotne w długich instalacjach. Z kolei stwierdzenie, że obciążalność prądowa zwiększy się po wymianie, jest niepoprawne, gdyż nowe przewody mogą mieć lepsze właściwości izolacyjne i przewodzące, co w rzeczywistości zwiększa ich obciążalność. Typowe błędy myślowe prowadzące do takich konkluzji to zbytnie uogólnienie negatywnych skutków związanych z wymianą przewodów, a nie uwzględnienie ich specyfikacji technicznych oraz standardów branżowych, jak PN-IEC, które jasno określają wymagania dla instalacji elektrycznych. Kluczowe jest zrozumienie, że właściwy dobór i zastosowanie materiałów w instalacjach elektrycznych wpływa na ich bezpieczeństwo oraz efektywność działania.

Pytanie 24

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. otworzyć łączniki instalacyjne i wykręcić żarówki
B. zamknąć łączniki instalacyjne i wykręcić żarówki
C. otworzyć łączniki instalacyjne i wkręcić żarówki
D. zamknąć łączniki instalacyjne i wkręcić żarówki
Zamknięcie łączników i wykręcenie żarówek to naprawdę kluczowy krok przy przygotowywaniu instalacji elektrycznej do pomiarów rezystancji izolacji. Robiąc to, unikasz ryzyka przypadkowego załączenia prądu, co mogłoby narobić sporych szkód w sprzęcie pomiarowym oraz stwarzać niebezpieczeństwo dla osoby przeprowadzającej pomiary. Normy, jak PN-IEC 60364, mówią, że izolację trzeba sprawdzać przy wyłączonym zasilaniu, żeby wszystko było bezpieczne i wyniki były wiarygodne. Wykręcenie źródeł światła zmniejsza ryzyko przewodzenia prądu lub nieprzyjemnych napięć, co jest szczególnie ważne w mocnych instalacjach. Takie praktyki stosuje się np. w obiektach komercyjnych, gdzie bezpieczeństwo ludzi jest na pierwszym miejscu. Dobre przygotowanie instalacji do badań to nie tylko spełnienie przepisów, ale też sposób na to, żeby system elektryczny działał długo i bezawaryjnie.

Pytanie 25

Na podstawie przedstawionych w tabeli wyników pomiarów, dotyczących silnika prądu stałego, określ które z wymienionych uszkodzeń wystąpiło w tym silniku.

Rezystancja uzwojeń pomiędzy zaciskami:Rezystancja izolacji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Nadpalenie izolacji między uzwojeniem bocznikowym, a obudową.
B. Przebicie izolacji uzwojenia twornika do obudowy.
C. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
D. Przerwa w uzwojeniu twornika.
Analizując pozostałe odpowiedzi, możemy zauważyć, że przynajmniej każda z nich odnosi się do różnych typów uszkodzeń, które mogą wystąpić w silniku prądu stałego, jednak żadna z nich nie wyjaśnia problemu tak dokładnie jak zwarcie międzyzwojowe w uzwojeniu bocznikowym. Uszkodzenie polegające na nadpaleniu izolacji między uzwojeniem bocznikowym a obudową mogłoby sugerować wystąpienie nadmiernych temperatur, jednak przy wysokiej rezystancji między zaciskami E1-E2, które zostały podane w tabeli, można stwierdzić, że nie występuje bezpośrednie przebicie do obudowy. Przebicie izolacji uzwojenia twornika do obudowy jest problematycznym zagadnieniem, ale również nie pasuje do przedstawionych wartości rezystancji, które wskazują na stabilność izolacji. Z kolei przerwa w uzwojeniu twornika mogłaby prowadzić do braku prądu w silniku, co również nie znajduje odzwierciedlenia w zmierzonych wartościach. Typowe błędy myślowe, które prowadzą do błędnych odpowiedzi, to np. analizowanie jedynie pojedynczych aspektów uszkodzenia, bez uwzględnienia całościowego obrazu pomiarów. W kontekście diagnostyki silników prądu stałego, kluczowe jest przyjrzenie się nie tylko wartościom rezystancji, ale także ich wzajemnym relacjom, aby uzyskać pełny obraz stanu maszyny i jej ewentualnych uszkodzeń.

Pytanie 26

Który z podanych przewodów jest przeznaczony do instalacji wtynkowej?

A. OMYp
B. LYg
C. YADYn
D. YDYt
Odpowiedź YDYt jest poprawna, ponieważ ten typ przewodu jest specjalnie zaprojektowany do instalacji wtynkowych. Przewody YDYt są izolowane i osłonięte, co czyni je odpowiednimi do układania w ścianach oraz innych strukturach budowlanych. Zbudowane z miedzi, posiadają wielowarstwową izolację, która chroni je przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, co jest kluczowe w kontekście ich zastosowania w budynkach. Przewody te są zgodne z normami PN-IEC 60227, co potwierdza ich wysoką jakość oraz bezpieczeństwo użytkowania. Przykładem zastosowania YDYt może być instalacja oświetlenia w pomieszczeniach biurowych, gdzie przewody te są układane w ścianach, co zapewnia estetykę oraz bezpieczeństwo. Warto również zaznaczyć, że przewody te są dostępne w różnych przekrojach, co pozwala na dopasowanie do specyficznych wymagań instalacyjnych.

Pytanie 27

Wkładka topikowa przedstawiona na rysunku, zabezpieczająca jeden z obwodów elektrycznych w pewnym pomieszczeniu, zapewnia skuteczną ochronę

Ilustracja do pytania
A. przewodów elektrycznych tylko przed skutkami zwarć.
B. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
C. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
D. urządzeń energoelektronicznych tylko przed skutkami przeciążeń.
Wkładka topikowa jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych, a jej zadaniem jest ochrona przewodów przed skutkami zwarć i przeciążeń. Gdy prąd w obwodzie przekroczy ustalony bezpieczny poziom, wkładka topikowa przerywa obwód, co zapobiega przegrzaniu się przewodów i potencjalnym uszkodzeniom zarówno instalacji, jak i podłączonych urządzeń. Przykładem zastosowania wkładek topikowych jest ich użycie w domowych instalacjach elektrycznych oraz w przemyśle, gdzie ochrona przed przeciążeniem i zwarciem jest niezbędna dla zapewnienia ciągłości pracy oraz bezpieczeństwa. W praktyce, dobór odpowiedniej wkładki topikowej powinien być zgodny z obowiązującymi normami, takimi jak PN-EN 60269, które określają wymagania dotyczące bezpieczników. Właściwe dobranie wkładek topikowych do obciążenia oraz rodzaju przewodów jest kluczowe dla efektywności ochrony, co podkreśla znaczenie zrozumienia tego zagadnienia w kontekście projektowania i eksploatacji instalacji elektrycznych.

Pytanie 28

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 200 lx
B. 300 lx
C. 400 lx
D. 500 lx
Wymagana minimalna wartość natężenia oświetlenia powierzchni blatów ławek szkolnych w sali lekcyjnej wynosi 300 lx. Jest to standardowa wartość określona w normach oświetleniowych, takich jak PN-EN 12464-1, które regulują kwestie oświetlenia miejsc pracy, w tym również szkół. W praktyce oznacza to, że odpowiednie natężenie oświetlenia zapewnia komfort i efektywność nauki uczniów, co jest kluczowe dla ich skupienia oraz zdolności do przyswajania wiedzy. Oświetlenie na poziomie 300 lx pozwala na wygodne czytanie, pisanie i wykonywanie innych zadań wymagających precyzyjnego wzroku. Wartości poniżej tej normy mogą prowadzić do zmęczenia oczu i obniżenia wydajności uczniów. Przykładem zastosowania tej wartości jest projektowanie wnętrz w nowych szkołach, gdzie architekci uwzględniają odpowiednie źródła światła, aby zapewnić optymalne warunki do nauki.

Pytanie 29

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 1 A
B. 6 A
C. 10 A
D. 16 A
Wybór wartości prądu znamionowego bezpiecznika aparaturowego jest kluczowy dla prawidłowego funkcjonowania obwodów elektrycznych. W przypadku analizowanej sytuacji, niewłaściwe odpowiedzi mogą wynikać z kilku błędnych koncepcji. Na przykład, wartość 6 A mogłaby sugerować nadmierne zabezpieczenie, które zmniejszyłoby efektywność działania transformatora, jednocześnie nie spełniając potrzeb obciążenia. Bezpiecznik o tej wartości mógłby nie zareagować odpowiednio na chwilowe przeciążenia, co prowadzi do ryzyka uszkodzenia transformatora. Z kolei odpowiedź 10 A wydaje się bliska, ale nadal jest wyższa niż rzeczywiste potrzeby, co może skutkować nadmiernym ryzykiem w przypadku wystąpienia zwarć. Podobnie, wybór 16 A jest niewłaściwy, ponieważ znacznie przekracza obliczony prąd obciążenia 15 A, co byłoby niezgodne z zasadą ochrony przed przeciążeniem i zwarciem. W praktyce, dobór wartości prądu znamionowego powinien być oparty na rzeczywistym obciążeniu, a także dostępnych normach dotyczących zabezpieczeń. Właściwy wybór nie tylko zapewnia bezpieczeństwo instalacji, ale także optymalizuje jej działanie, co ma kluczowe znaczenie w kontekście długotrwałej eksploatacji transformatorów w systemach ładowania akumulatorów.

Pytanie 30

Przy eksploatacji odbiornika, oznaczonego przedstawionym symbolem, przewód zasilający

Ilustracja do pytania
A. powinien mieć żyłę PE.
B. nie musi mieć żyły PE.
C. musi mieć wtyczkę ze stykiem ochronnym.
D. musi mieć żyły ekranowane.
Odpowiedź "nie musi mieć żyły PE" jest poprawna, ponieważ urządzenia elektryczne oznaczone symbolem klasy ochronności II są zaprojektowane tak, aby nie wymagały połączenia z przewodem ochronnym PE (Protective Earth). Urządzenia te posiadają podwójną izolację lub izolację wzmocnioną, co eliminuje potrzebę stosowania uziemienia. Zastosowanie takich urządzeń jest powszechne w przypadku sprzętu, który może być narażony na kontakt z użytkownikiem, jak na przykład sprzęt AGD, narzędzia elektryczne czy lampy. W praktyce oznacza to, że nie musimy martwić się o dodatkowe podłączenia uziemiające, co zwiększa wygodę w użytkowaniu. Warto zatem zwrócić uwagę na oznaczenia na urządzeniach oraz stosować zalecenia w zakresie instalacji elektrycznych, aby zapewnić bezpieczeństwo ich eksploatacji. Przykładowo, w instalacjach domowych urządzenia klasy II mogą być stosowane bez obaw o pojawienie się niepożądanych efektów związanych z brakiem uziemienia.

Pytanie 31

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Zwarcie w obwodzie twornika
C. Przerwa w obwodzie twornika
D. Zwarcie w uzwojeniu komutacyjnym
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 32

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. B.
B. C.
C. A.
D. D.
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 33

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Transformatorem bezpieczeństwa
B. Dzielnikiem napięcia
C. Autotransformatorem
D. Falownikiem
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 34

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Cztery osoby
C. Dwie osoby
D. Trzy osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 35

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Realizowanie pracy w zespole
B. Przyłączenie wyłączonej linii do uziemienia
C. Używanie sprzętu izolacyjnego
D. Ogrodzenie terenu, na którym prowadzone są prace
Wykonywanie prac zespołowo, ogrodzenie miejsca wykonywania pracy oraz uziemienie wyłączonej linii to kluczowe środki ostrożności, które są istotne w kontekście bezpieczeństwa przy pracach przy linii napowietrznej. Pracowanie w zespole pozwala na lepszą koordynację działań oraz szybszą reakcję w sytuacjach awaryjnych, co jest niezbędne w okolicznościach, gdzie ryzyko wypadku jest wyższe. Ogrodzenie miejsca pracy jest podstawowym działaniem w celu zabezpieczenia obszaru, co zapobiega nieautoryzowanemu dostępowi osób trzecich oraz minimalizuje ryzyko przypadkowych incydentów. Uziemienie wyłączonej linii jest fundamentalną praktyką, gdyż pozwala na odprowadzenie wszelkich ładunków elektrycznych, które mogą występować na linii, co znacząco zwiększa bezpieczeństwo pracowników. Ignorowanie tych praktyk może prowadzić do tragicznych konsekwencji, dlatego też każdy pracownik powinien być odpowiednio przeszkolony w zakresie zastosowania tych środków. W branży energetycznej nieprzestrzeganie zasad BHP i standardów, takich jak normy IEC, może skutkować poważnymi wypadkami, dlatego tak istotne jest, aby każdy pracownik był świadomy i przestrzegał ustalonych procedur.

Pytanie 36

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem
B. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
C. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
D. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
Odpowiedź jest prawidłowa, ponieważ kolejność wykonywania czynności przed rozpoczęciem prac konserwacyjnych w urządzeniu elektrycznym ma kluczowe znaczenie dla bezpieczeństwa. Najpierw zabezpieczamy obwód przed przypadkowym załączeniem, co oznacza, że wyłączamy wszelkie źródła zasilania i stosujemy odpowiednie blokady. Następnie sprawdzamy brak napięcia, co można zrobić za pomocą odpowiednich narzędzi, takich jak wskaźniki napięcia lub multimetru. Uziemienie i zwarcie wszystkich faz to kolejne kroki, które mają na celu minimalizację ryzyka porażenia prądem oraz wyładowań elektrycznych. Zgodnie z normą PN-EN 50110-1, te działania stanowią integralną część procedur pracy w instalacjach elektrycznych. Przykładowo, w zakładach przemysłowych, gdzie pracuje się z dużymi maszynami, takie procedury są stosowane, aby zapewnić bezpieczeństwo pracowników i uniknąć poważnych wypadków. Dodatkowo, przestrzeganie tych zasad pomaga w zachowaniu zgodności z wymogami BHP oraz normami branżowymi.

Pytanie 37

W przypadku pomiarów rezystancji izolacyjnej w całej instalacji elektrycznej budynku, który jest zasilany napięciem 230/400 V, powinno się je przeprowadzać przy odłączonym zasilaniu i przy

A. otwartych łącznikach i załączonych odbiornikach
B. zamkniętych łącznikach i załączonych odbiornikach
C. zamkniętych łącznikach i odłączonych odbiornikach
D. otwartych łącznikach i odłączonych odbiornikach
Pomiar rezystancji izolacji w instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Wykonywanie tych pomiarów przy zamkniętych łącznikach oraz odłączonych odbiornikach minimalizuje ryzyko uszkodzeń sprzętu oraz zapewnia dokładność pomiaru. W takim ustawieniu można skutecznie ocenić stan izolacji przewodów, co jest zgodne z normami europejskimi, takimi jak PN-EN 61010, które wymagają, aby urządzenia pomiarowe były używane w odpowiednich warunkach. Odpowiednia izolacja przewodów jest niezbędna do zapobiegania zwarciom oraz wyciekowi prądu do ziemi, co mogłoby prowadzić do niebezpiecznych sytuacji, takich jak pożary czy porażenia prądem. Przykładowo, podczas inspekcji budynku, technik powinien najpierw upewnić się, że wszystkie urządzenia są wyłączone, a następnie przeprowadzić pomiar rezystancji izolacji. Taki proces jest standardową procedurą w przemyśle elektrycznym i jest zalecany przez wiele organizacji zajmujących się normami bezpieczeństwa.

Pytanie 38

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. uszkodzenie silnika.
B. zadziałanie wyłącznika różnicowoprądowego.
C. zmniejszenie mocy silnika.
D. zmniejszenie momentu rozruchowego.
Silnik jednofazowy rzeczywiście wymaga kondensatora rozruchowego do prawidłowego startu. Kondensator ten wytwarza przesunięcie fazowe, co jest kluczowe dla generowania odpowiedniego momentu obrotowego. Kiedy silnik jest uruchamiany, kondensator rozruchowy tworzy pole magnetyczne, które pozwala na zainicjowanie ruchu wirnika. Bez tego kondensatora silnik nie jest w stanie wytworzyć wystarczającego momentu obrotowego, co prowadzi do problemów z uruchomieniem. W praktyce, takie silniki są powszechnie stosowane w domowych urządzeniach, takich jak wentylatory czy pompy, gdzie ich niezawodność jest kluczowa. W standardach branżowych, zgodnie z zasadami eksploatacji silników elektrycznych, konieczne jest stosowanie odpowiednich komponentów, aby zapewnić optymalne warunki pracy. Dlatego brak kondensatora rozruchowego skutkuje nie tylko trudnościami w uruchomieniu, ale także może prowadzić do uszkodzeń silnika w dłuższej perspektywie czasowej.

Pytanie 39

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się czterokrotnie
Wybór opcji wskazującej na czterokrotne zmniejszenie wydzielanego ciepła w jednostce czasu wynika z mylnego rozumienia relacji między długością spirali grzejnej a oporem elektrycznym. Koncepcja, że zmiana długości spirali prowadzi do ekstremalnego spadku wydajności, ignoruje podstawowe zasady elektrotechniki. W rzeczywistości, zmniejszenie długości spirali grzejnika elektrycznego o połowę prowadzi do zmniejszenia oporu R, co z kolei, przy zachowaniu napięcia, skutkuje zwiększeniem wydobywanej mocy. Błędne podejście opiera się na założeniu, że wydajność grzejnika spadnie w sposób proporcjonalny do długości spirali, co jest nieprawdziwe. Również stwierdzenia, że zmniejszenie długości spirali o połowę prowadzi do zmniejszenia wydzielania ciepła w sposób czterokrotny, nie uwzględniają charakterystyki elektronicznego przewodzenia energii w materiałach. Efekt Joule'a, który wyjaśnia generację ciepła w przewodnikach, mówi o kwadracie napięcia podzielonym przez opór, co wykazuje jednoznaczną zależność, która w tym przypadku wskazuje na wzrost mocy. Zrozumienie tych zasad jest kluczowe nie tylko w kontekście teorii, ale także w praktycznym projektowaniu systemów grzewczych, gdzie odpowiednia regulacja parametrów, takich jak długość spirali i napięcie, może znacząco wpłynąć na efektywność energetyczną i komfort użytkowania.

Pytanie 40

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 3 lata
B. 2 lata
C. 5 lat
D. 4 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.