Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 16 listopada 2025 19:46
  • Data zakończenia: 16 listopada 2025 20:23

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
B. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
C. pierwszy i drugi działają prawidłowo.
D. pierwszy i drugi działają nieprawidłowo.
Kiedy patrzymy na odpowiedzi, widać, że część z nich opiera się na błędnych założeniach na temat działania wyłączników różnicowoprądowych. Wyłącznik nr 2, który ma prąd wyzwalający 10 mA, nie działa prawidłowo, bo jego wartość nie spełnia minimalnych wymagań dla znamionowego prądu różnicowego 30 mA. W kontekście bezpieczeństwa, ten wyłącznik nie zapewni skutecznej ochrony przed porażeniem, co może prowadzić do poważnych problemów. Mylenie sytuacji, że oba wyłączniki są w porządku, jest trochę na wyrost, bo opiera się na założeniu, że każdy niski prąd wyzwalający jest ok, a to nie jest zgodne z przepisami. W praktyce, wiele osób nie zdaje sobie sprawy, że nawet małe odchylenia od normy mogą prowadzić do dużych kłopotów. Obsługa tych zakresów prądowych jest kluczowa, bo nieodpowiednie ich interpretacje mogą prowadzić do lekkomyślności przy ochronie przed porażeniem. Dlatego warto zwracać uwagę na detale techniczne i stosować się do ustalonych norm, żeby mieć pewność, że systemy bezpieczeństwa w budynkach działają jak powinny.

Pytanie 2

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
B. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
C. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
D. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
Usunięcie usterki w instalacji elektrycznej przez przeciągnięcie uszkodzonych żył za pomocą przewodów jednodrutowych jest niewłaściwym podejściem, które może prowadzić do poważnych problemów. Przewody jednodrutowe mają inne właściwości mechaniczne i elektryczne niż przewody wielodrutowe, co może skutkować niższą elastycznością oraz zwiększoną podatnością na uszkodzenia. Ponadto, takie połączenia są często niezgodne z obowiązującymi normami i przepisami dotyczącymi instalacji elektrycznych, co może narażać użytkownika na niebezpieczeństwo. Przeprowadzenie naprawy bez montażu puszki zwiększa ryzyko wystąpienia zwarć i utrudnia ewentualne przyszłe konserwacje. Połączenie przewodów jedynie za pomocą taśmy izolacyjnej jest również niewłaściwe, ponieważ nie zapewnia stabilności oraz bezpieczeństwa elektrycznego. W kontekście przepisów, jak norma PN-IEC 60364, zaleca się unikanie takich praktyk, które mogą prowadzić do nieodwracalnych uszkodzeń instalacji. Ważne jest, aby pamiętać, że każdy interwencja w instalacji elektrycznej powinna być przeprowadzana zgodnie z zasadami sztuki, co zapewnia bezpieczeństwo oraz trwałość wykonania. Zastosowanie pilotów do przeciągania nowych przewodów bez odpowiedniej inspekcji i naprawy uszkodzeń jest także niebezpieczne, ponieważ może wpłynąć na integralność całego obwodu.

Pytanie 3

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Obciążalność długotrwała instalacji zostanie zmniejszona
B. Przewodność elektryczna przewodów ulegnie zwiększeniu
C. Rezystancja przewodów ulegnie zmniejszeniu
D. Wytrzymałość elektryczna izolacji wzrośnie
Jest trochę zamieszania, jeśli chodzi o różnice między YDY a YADY, co prowadzi do mylnych przekonań. Wydaje się, że ludzie myślą, że przewodność elektryczna się zwiększa z innym materiałem, ale to nie tak działa. Przewody 1,5 mm2 z obu typów mają tę samą przewodność, bo to zależy od przekroju, a nie od samego materiału. Też, jak mowa o wytrzymałości izolacji, to YADY wcale nie jest lepszy. Właściwości izolacyjne YADY są gorsze niż YDY, więc nie ma szans, że YADY jest bardziej odporny na wysokie napięcia. I wiesz, rezystancja też się nie zmienia, bo to zależy od materiału i długości, a nie od typu przewodu. W praktyce dobór przewodu powinien być oparty na normach, takich jak PN-IEC 60364, bo jak się użyje złych przewodów, to może być niebezpiecznie. Awaria sprzętu, przegrzewanie – to nie są rzeczy, które chcesz mieć na głowie.

Pytanie 4

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Zwiększa zakres pomiarowy woltomierza
B. Daje możliwość zdalnego pomiaru energii elektrycznej
C. Poszerza zakres pomiarowy amperomierza
D. Umożliwia pomiar upływu prądu przez izolację
Wszystkie pozostałe odpowiedzi sugerują zastosowanie bocznika rezystancyjnego w kontekście pomiarów, jednak żaden z tych scenariuszy nie odzwierciedla jego rzeczywistej roli. Rozszerzenie zakresu pomiarowego woltomierza nie jest realizowane za pomocą bocznika, ponieważ bocznik działa w kontekście pomiaru prądu, a nie napięcia. Woltomierze mogą być używane do pomiaru napięcia w obwodach, ale w tym przypadku stosuje się inne techniki, takie jak dzielniki napięcia, które są zaprojektowane do pracy z wysokimi wartościami napięcia, a nie prądu. Twierdzenie, że bocznik pozwala zmierzyć upływ prądu przez izolację, jest mylne, ponieważ upływ prądu można oceniać za pomocą testów izolacyjnych, które angażują inne metody pomiarowe, jak megametry. Natomiast sugestia, że bocznik umożliwia zdalny pomiar energii elektrycznej, jest również nieprecyzyjna. Zdalne pomiary energii wymagają zastosowania bardziej złożonych układów pomiarowych, które mogą obejmować rozdzielnicze liczniki energii oraz komunikację bezprzewodową, co wykracza poza funkcjonalność bocznika. W efekcie, mylenie funkcji bocznika z innymi technikami pomiarowymi pokazuje brak zrozumienia podstawowych zasad działania tych urządzeń oraz ich zastosowań w praktyce inżynieryjnej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Które z poniższych zjawisk nie wpływa na pogorszenie jakości energii elektrycznej?

A. Obecność harmonicznych
B. Wahania napięcia
C. Czystość powietrza
D. Przepięcia
Czystość powietrza nie jest czynnikiem wpływającym na jakość energii elektrycznej, ponieważ nie ma bezpośredniego związku z parametrami elektrycznymi sieci. Jakość energii elektrycznej określana jest przez stabilność napięcia, częstotliwość, zawartość harmonicznych oraz obecność przepięć i zapadów napięcia. Czystość powietrza może mieć wpływ na inne aspekty funkcjonowania instalacji, takie jak chłodzenie urządzeń czy ochrona przed korozją, ale nie bezpośrednio na jakość samej energii. W kontekście eksploatacji maszyn, urządzeń i instalacji elektrycznych, czystość powietrza jest bardziej istotna z punktu widzenia utrzymania sprzętu w dobrej kondycji, a nie jakości energii elektrycznej jako takiej. W praktyce, osoby zajmujące się eksploatacją instalacji powinny zwracać uwagę na zanieczyszczenia, które mogą osadzać się na urządzeniach, powodując ich przegrzewanie lub przyspieszoną korozję.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SZR
B. SPZ
C. SCO
D. SRN
Wybór skrótów SCO, SRN i SZR może prowadzić do nieporozumień dotyczących funkcji i zastosowania systemów automatyki w energetyce. Skrót SCO (samoczynne odłączenie) odnosi się do mechanizmu, który działa w odwrotny sposób niż SPZ; jego celem jest automatyczne odłączenie zasilania w przypadku wykrycia awarii lub zagrożenia, co nie sprzyja przywracaniu normalnej pracy linii. Takie podejście jest istotne, jednak nie odpowiada na pytanie dotyczące przywracania zasilania. Z kolei skrót SRN (sterowanie ruchem nocnym) dotyczy zarządzania oświetleniem i nie ma bezpośredniego związku z automatycznym przywracaniem zasilania, co może prowadzić do błędnych koncepcji dotyczących działania systemów w energetyce. Ostatecznie, SZR (samoczynne załączenie rezerwy) również nie jest odpowiedni, ponieważ dotyczy procedur aktywacji rezerwowych źródeł zasilania, co różni się od funkcji SPZ. Zrozumienie tych różnic jest kluczowe w kontekście systemów automatyki energetycznej, a błędne interpretacje mogą prowadzić do niewłaściwego zarządzania zasilaniem oraz zwiększonego ryzyka awarii w sieci energetycznej.

Pytanie 11

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Uszkodzenie przewodu N
B. Zwarcie między fazami L1-L2
C. Przebicie izolacji między L1-N
D. Brak ciągłości przewodu PE
Uszkodzenie przewodu N, przebicie izolacji między L1-N, czy zwarcie między fazami L1-L2 to powszechnie mylone koncepcje związane z problemami w instalacjach TN-C-S. W przypadku uszkodzenia przewodu N, napięcie na tym przewodzie zazwyczaj ulega znacznemu wzrostowi, co może prowadzić do nieprawidłowych pomiarów, ale nie wyjaśnia różnicy potencjałów między PEN a PE. Przebicie izolacji między L1 a N zazwyczaj skutkuje zwarciem lub innymi poważnymi uszkodzeniami, co również nie odzwierciedla wskazania napięcia 10 V między PEN a PE. Z kolei zwarcie między fazami, chociaż może prowadzić do poważnych awarii, nie ma związku z różnicą napięć między przewodami neutralnymi i ochronnymi. Typowym błędem myślowym jest mylenie symptomów z przyczynami; nieprawidłowy pomiar może prowadzić do fałszywych wniosków. W rzeczywistości, różnica napięcia między PEN a PE jednoznacznie wskazuje na problem z ciągłością przewodu ochronnego, a nie na uszkodzenia przewodów neutralnych czy zwarcia. Właściwe zrozumienie funkcji przewodów ułatwia diagnozowanie problemów oraz zapobiega niebezpiecznym sytuacjom w instalacjach elektroenergetycznych. Normy takie jak PN-EN 50110-1 wskazują na znaczenie monitorowania i konserwacji instalacji w celu zapewnienia ich bezpieczeństwa.

Pytanie 12

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 500 mA
B. 30 mA
C. 100 mA
D. 1 000 mA
Wybór wyłącznika różnicowoprądowego o prądzie różnicowym 100 mA, 500 mA lub 1 000 mA jest niewłaściwy w kontekście ochrony przed porażeniem prądem elektrycznym w obwodach gniazd wtyczkowych. Wyłączniki o wyższych wartościach prądu różnicowego są przeznaczone głównie do ochrony obwodów przed pożarem spowodowanym prądami upływowymi, a nie do natychmiastowej ochrony osób. Wyłącznik o prądzie różnicowym 100 mA może być stosowany w obwodach, gdzie ochrona przed porażeniem nie jest kluczowa, jak w przypadku dedykowanych obwodów zasilających urządzenia przemysłowe, w których ryzyko kontaktu z człowiekiem jest ograniczone. Prąd różnicowy 500 mA i 1 000 mA to wartości, które są zbyt wysokie dla skutecznej ochrony ludzi, co może prowadzić do tragicznych konsekwencji w przypadku wystąpienia porażenia elektrycznego. Użytkownicy często mylą te wartości, sądząc, że im wyższy prąd różnicowy, tym lepsza ochrona, co jest błędnym rozumowaniem. W rzeczywistości, niższe wartości prądu różnicowego, takie jak 30 mA, są kluczowe dla zapewnienia szybkiej reakcji w sytuacjach zagrożenia życia i zdrowia. Ochrona przed porażeniem powinna być zawsze priorytetem w projektowaniu instalacji elektrycznych, co jest zgodne z normami i najlepszymi praktykami w branży.

Pytanie 13

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 25 V
B. 12 V
C. 50 V
D. 60 V
Wartości napięcia dotykowego, które są podane w odpowiedziach, mogą wprowadzać w błąd, jeśli nie zostaną właściwie zrozumiane w kontekście bezpieczeństwa elektrycznego. Odpowiedzi 12 V, 25 V oraz 60 V nie spełniają kryteriów bezpieczeństwa, które zostały określone przez normy dotyczące ochrony przed porażeniem prądem. Przykładowo, napięcie 12 V jest często uznawane za stosunkowo bezpieczne, lecz w praktyce może być nieadekwatne w kontekście długotrwałego kontaktu z ciałem ludzkim, zwłaszcza w obecności wilgoci, co zwiększa ryzyko przepływu prądu. Z kolei napięcie 25 V, chociaż niższe od 50 V, nie jest wystarczające do oceny realnych zagrożeń, które mogą wystąpić w standardowych ustaleniach. Natomiast napięcie 60 V przekracza bezpieczny poziom, wprowadzając znaczne ryzyko dla zdrowia użytkowników. Pamiętajmy, że ochrona przed porażeniem prądem opiera się na systematycznym podejściu do projektowania instalacji elektrycznych, które uwzględniają nie tylko wartości napięcia, ale także warunki ich użytkowania. Kluczowe jest zrozumienie, że przekraczanie ustalonych wartości granicznych napięcia może prowadzić do poważnych konsekwencji zdrowotnych, a także odpowiedzialności prawnej w przypadku awarii. Normy bezpieczeństwa elektrycznego, takie jak IEC 60479, podkreślają znaczenie przestrzegania tych zasad, aby zminimalizować ryzyko dla użytkowników.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Wkładek bezpiecznikowych.
B. Wyłączników różnicowoprądowych.
C. Elementów łącznikowych.
D. Opraw oświetleniowych.
Wymiana łączników instalacyjnych, wyłączników różnicowoprądowych czy opraw oświetleniowych bez wyłączania zasilania jest niebezpieczna i niezgodna z praktykami branżowymi. Łączniki instalacyjne pełnią kluczową rolę w kontrolowaniu przepływu energii w obwodach elektrycznych. Ich wymiana w warunkach zasilania może prowadzić do zwarcia, co stwarza ryzyko pożaru oraz uszkodzenia sprzętu. Wyłączniki różnicowoprądowe (RCD) są zaprojektowane do ochrony ludzi przed porażeniem prądem, a ich wymiana w aktywnym obwodzie może skutkować niebezpiecznymi sytuacjami, takimi jak porażenie prądem elektrycznym. W przypadku opraw oświetleniowych, ich wymiana bez wyłączenia zasilania może prowadzić do uszkodzenia lamp oraz obwodów elektrycznych, a także stwarzać zagrożenie dla użytkowników. Dlatego kluczowe jest przestrzeganie zasad bezpieczeństwa, które nakazują wyłączanie zasilania przed dokonaniem wszelkich zmian w instalacji elektrycznej. Normy takie jak PN-EN 50110-1 wyraźnie podkreślają znaczenie bezpieczeństwa podczas pracy z instalacjami elektrycznymi, wskazując na konieczność zabezpieczenia obwodów przed ich modyfikacją.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody aluminiowe
B. Przewody o podwyższonej odporności na UV
C. Przewody do instalacji wewnętrznych
D. Przewody z miedzi beztlenowej
Wybór odpowiednich przewodów do instalacji zewnętrznych jest kluczowy, aby zapewnić ich trwałość i bezpieczeństwo. Przewody aluminiowe, choć lżejsze i tańsze, są mniej odporne na korozję i mają niższą przewodność elektryczną w porównaniu do przewodów miedzianych. Aluminiowe przewody mogą być stosowane w niektórych przypadkach, ale wymagają szczególnej uwagi podczas montażu, aby zminimalizować ryzyko utleniania się i utraty połączeń. Przewody z miedzi beztlenowej charakteryzują się wysoką przewodnością i są często stosowane w audiofilskich zastosowaniach, gdzie zależy nam na minimalizacji strat sygnału. Jednak w kontekście instalacji zewnętrznych ich odporność na czynniki atmosferyczne nie różni się znacząco od standardowych przewodów miedzianych. Przewody do instalacji wewnętrznych są projektowane z myślą o innych warunkach eksploatacyjnych. Nie są one przystosowane do odporności na promieniowanie UV, zmiany temperatury czy wilgotności. Użycie takich przewodów na zewnątrz może prowadzić do ich szybkiej degradacji, co z kolei zwiększa ryzyko awarii systemu. Dlatego ważne jest, aby zawsze stosować przewody odpowiednie do specyficznych warunków środowiskowych, w jakich będą eksploatowane.

Pytanie 19

Jakie zadanie związane z utrzymaniem sprawności technicznej instalacji elektrycznej spoczywa na dostawcy energii?

A. Nadzór nad jakością realizacji prac eksploatacyjnych
B. Prowadzenie dokumentacji dotyczącej eksploatacji obiektu
C. Zachowanie zasad bezpieczeństwa korzystania z urządzeń elektrycznych
D. Okresowa legalizacja, naprawa lub wymiana licznika energii
Odpowiedź dotycząca okresowej legalizacji, naprawy lub wymiany licznika energii jest poprawna, ponieważ dostawcy energii są odpowiedzialni za zapewnienie, że urządzenia pomiarowe są w dobrym stanie technicznym i zgodne z obowiązującymi normami. Legalizacja licznika oznacza jego zatwierdzenie przez odpowiednie organy, co gwarantuje, że pomiary energii są wiarygodne i zgodne z przepisami prawa. W praktyce, dostawcy przeprowadzają regularne kontrole i konserwacje liczników, aby upewnić się, że działają one z wymaganymi tolerancjami. Na przykład, zgodnie z normą PN-EN 62053-21, liczniki energii elektrycznej muszą być regularnie sprawdzane, aby zapewnić ich dokładność. Dobre praktyki w tym zakresie obejmują również prowadzenie szczegółowej dokumentacji dotyczącej stanu technicznego liczników oraz przeprowadzonych działań, co pozwala na łatwe monitorowanie i zarządzanie infrastrukturą pomiarową. Współpraca między dostawcami a organami regulacyjnymi w zakresie legalizacji liczników jest kluczowa dla utrzymania jakości usług i ochrony konsumentów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na podstawie przedstawionych w tabeli wyników pomiarów, dotyczących silnika prądu stałego, określ które z wymienionych uszkodzeń wystąpiło w tym silniku.

Rezystancja uzwojeń pomiędzy zaciskami:Rezystancja izolacji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Nadpalenie izolacji między uzwojeniem bocznikowym, a obudową.
B. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
C. Przebicie izolacji uzwojenia twornika do obudowy.
D. Przerwa w uzwojeniu twornika.
Analizując pozostałe odpowiedzi, możemy zauważyć, że przynajmniej każda z nich odnosi się do różnych typów uszkodzeń, które mogą wystąpić w silniku prądu stałego, jednak żadna z nich nie wyjaśnia problemu tak dokładnie jak zwarcie międzyzwojowe w uzwojeniu bocznikowym. Uszkodzenie polegające na nadpaleniu izolacji między uzwojeniem bocznikowym a obudową mogłoby sugerować wystąpienie nadmiernych temperatur, jednak przy wysokiej rezystancji między zaciskami E1-E2, które zostały podane w tabeli, można stwierdzić, że nie występuje bezpośrednie przebicie do obudowy. Przebicie izolacji uzwojenia twornika do obudowy jest problematycznym zagadnieniem, ale również nie pasuje do przedstawionych wartości rezystancji, które wskazują na stabilność izolacji. Z kolei przerwa w uzwojeniu twornika mogłaby prowadzić do braku prądu w silniku, co również nie znajduje odzwierciedlenia w zmierzonych wartościach. Typowe błędy myślowe, które prowadzą do błędnych odpowiedzi, to np. analizowanie jedynie pojedynczych aspektów uszkodzenia, bez uwzględnienia całościowego obrazu pomiarów. W kontekście diagnostyki silników prądu stałego, kluczowe jest przyjrzenie się nie tylko wartościom rezystancji, ale także ich wzajemnym relacjom, aby uzyskać pełny obraz stanu maszyny i jej ewentualnych uszkodzeń.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
B. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
C. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
D. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 24

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 20 A
B. 16 A
C. 10 A
D. 6 A
Dobór wyłącznika nadprądowego o niewłaściwej wartości prądu znamionowego najczęściej wynika z błędnych obliczeń lub nieprawidłowego zrozumienia parametrów obciążenia. W przypadku wartości 6 A, 10 A i 20 A, można zauważyć, że każdy z tych wyborów nieprawidłowo odzwierciedla rzeczywisty prąd roboczy urządzenia. Wyłącznik 6 A jest zdecydowanie zbyt niski dla obciążenia 10,43 A, co skutkowałoby jego ciągłym wyłączaniem przy normalnej pracy grzejnika. Z kolei wybór wyłącznika o prądzie znamionowym 10 A również nie zapewnia odpowiedniego marginesu bezpieczeństwa, co może prowadzić do częstych wyłączeń w trakcie pracy przy pełnym obciążeniu. Z kolei zastosowanie wyłącznika 20 A może wydawać się bezpieczniejsze, jednak może prowadzić do sytuacji, w której rzeczywiste zwarcie nie zostanie odpowiednio zidentyfikowane i zadziała z opóźnieniem, co jest niebezpieczne. Obliczenia przekładają się na praktyczne podejście do projektowania instalacji, gdzie stosowanie wyłączników nadprądowych o zbyt wysokiej wartości prądu może narazić instalację na ryzyko uszkodzeń. Zgodnie z normami obowiązującymi w branży, ważne jest, aby zawsze dobierać wyłączniki w oparciu o rzeczywiste obciążenia i ich charakterystykę, aby zapewnić bezpieczeństwo oraz właściwe działanie całej instalacji.

Pytanie 25

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji przewodu ochronnego
B. prądu upływu
C. rezystancji uzwojeń stojana
D. prądu stanu jałowego
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Obwody SELV
B. Obwody PELV
C. Separacja elektryczna
D. Izolowanie stanowiska
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie mogą być powody częstego wypalania się żarówki w żyrandolu?

A. Uszkodzenie przewodu ochronnego
B. Niewłaściwie dobrane zabezpieczenie przeciążeniowe
C. Luźne połączenie oprawy z instalacją
D. Zainstalowanie żarówki o niewystarczającej mocy
Wybór żarówki o zbyt małej mocy jako przyczyny częstego przepalania się żarówek jest błędnym rozumowaniem. Mniejsza moc żarówki nie prowadzi do jej przepalania; wręcz przeciwnie, może skutkować mniejszym poborem prądu, co jest korzystne dla instalacji elektrycznej. Warto jednak zauważyć, że stosowanie żarówek o zbyt dużej mocy w oprawach może prowadzić do przegrzewania się, ale nie w przypadku mocy zbyt niskiej. Z kolei źle dobrane zabezpieczenie przeciążeniowe może wprowadzać problemy z nadmiernym przepływem prądu, co również przyczynia się do uszkodzeń, ale nie jest bezpośrednio związane z przepalaniem żarówek w żyrandolu. Istotne jest, aby dobrać odpowiednie zabezpieczenia, które chronią przed przeciążeniem i zwarciem, co jest zgodne z normami instalacyjnymi. Natomiast uszkodzenie przewodu ochronnego, chociaż poważne, nie wpływa bezpośrednio na częstotliwość przepalania się żarówek. Uszkodzony przewód ochronny stwarza zagrożenie elektryczne i może prowadzić do porażenia prądem, ale nie jest przyczyną problemów z samymi żarówkami. Kluczem do zrozumienia problemu jest znajomość zasad działania instalacji elektrycznych oraz prawidłowe podejście do konserwacji i przeglądów, co pozwala unikać błędnych interpretacji takich przypadków.

Pytanie 30

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. stratności magnetycznej blach stojana
B. natężenia pola magnetycznego rozproszenia
C. rezystancji uzwojeń stojana
D. rezystancji uzwojeń wirnika
Pomiar rezystancji uzwojeń stojana jest kluczowym elementem badań eksploatacyjnych silnika klatkowego, ponieważ pozwala na ocenę stanu technicznego silnika oraz jego efektywności. Wysoka rezystancja może wskazywać na uszkodzenia uzwojeń, które mogą prowadzić do przegrzewania i obniżenia sprawności energetycznej silnika. Przykładem zastosowania tej wiedzy jest regularna konserwacja silników w przemyśle, gdzie monitorowanie rezystancji uzwojeń pozwala na wczesne wykrycie potencjalnych awarii. Zgodnie z normą IEC 60034, regularne pomiary rezystancji oraz analiza ich trendów mogą być wykorzystane do planowania działań prewencyjnych, co znacząco wydłuża żywotność maszyny i zwiększa bezpieczeństwo pracy. Dodatkowo, wiedza na temat rezystancji uzwojeń stoi w związku z szerszym zagadnieniem strat w silnikach elektrycznych, co jest kluczowe dla optymalizacji zużycia energii w zakładach przemysłowych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Typ materiału żyły
B. Przekrój żył
C. Typ materiału izolacji
D. Długość przewodu
Rodzaj materiału izolacji nie wpływa na wartość spadku napięcia w instalacji elektrycznej, ponieważ spadek napięcia jest determinowany przez właściwości przewodnika, a nie jego otoczenie. Kluczowymi czynnikami wpływającymi na spadek napięcia są długość przewodu, jego przekrój oraz materiał, z którego wykonana jest żyła. Spadek napięcia można obliczyć przy pomocy wzorów, które uwzględniają opór przewodnika, a ten z kolei zależy od jego długości, przekroju oraz rodzaju materiału (miedź lub aluminium). W praktyce, dla zminimalizowania spadków napięcia w instalacjach elektrycznych, stosuje się przewody o większym przekroju oraz starannie planuje długości odcinków przewodów. Na przykład, w instalacjach o dużym obciążeniu, takich jak sieci zasilające przemysłowe, zastosowanie przewodów miedzianych o dużym przekroju pozwala na skuteczne ograniczenie strat napięcia, co jest zgodne z wymogami norm PN-IEC 60364-5-52.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Przerwa w uziemieniu neutralnego punktu
B. Przerwa w uzwojeniu pierwotnym
C. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
D. Niesymetryczne obciążenie transformatora
Przerwa w uziemieniu punktu neutralnego, niesymetryczne obciążenie czy przerwa w uzwojeniu pierwotnym nie są bezpośrednimi przyczynami zadziałania przekaźnika Buchholtza. Uziemienie punktu neutralnego jest istotne dla stabilizacji pracy transformatora, ale jego przerwanie nie generuje bezpośrednio warunków do zadziałania przekaźnika ochronnego. Niesymetryczne obciążenie natomiast, choć może prowadzić do przegrzewania uzwojeń, nie wywołuje nagłych zmian w przepływie oleju, które są podstawą działania przekaźnika Buchholtza. Przerwa w uzwojeniu pierwotnym może prowadzić do poważnych uszkodzeń transformatora, jednak nie wywołuje ona sytuacji, w której przekaźnik odnotowuje nieprawidłowy przepływ oleju. W rzeczywistości, aby przekaźnik Buchholtza działał, muszą wystąpić warunki, które wpływają na właściwości fizyczne oleju izolacyjnego, co jest wynikiem zwarcia. Dobrym przykładem jest fakt, że w przypadku zwarcia, olej zaczyna się szybko podgrzewać, co prowadzi do ruchu powietrza w zbiorniku transformatora i zadziałania przekaźnika. Zrozumienie, jak przekaźnik Buchholtza funkcjonuje w kontekście rzeczywistych zagrożeń, jest kluczowe dla prawidłowej eksploatacji transformatorów oraz skutecznego zarządzania ryzykiem w systemach energetycznych.

Pytanie 35

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. świetlówki
B. żarówki
C. lampy sodowe
D. lampy rtęciowe
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 9
B. 12
C. 50
D. 35
Wybór odpowiedzi 12, 50 lub 35 jest błędny, ponieważ nie odpowiada rzeczywistemu oznaczeniu wirnika szlifierki zawartemu w dokumentacji techniczno-ruchowej. Często zdarza się, że technicy i operatorzy nie zwracają dostatecznej uwagi na szczegóły w dokumentacji, co prowadzi do identyfikacji niewłaściwych części. Na przykład, numer 12 może być związany z inną częścią maszyny, taką jak wałek napędowy, co jest typowym błędem myślowym przy zbyt szybkim przeszukiwaniu dokumentacji bez dokładnej analizy. Numer 50 mógłby odnosić się do innego modelu szlifierki lub odrębnego rodzaju obrabiarki, co pokazuje, jak ważne jest zrozumienie kontekstu oznaczeń w dokumentacji. Ponadto, numer 35 nie jest związany z wirnikiem, co może prowadzić do poważnych problemów w przypadku wymiany uszkodzonej części. W takich sytuacjach, nieodpowiednie oznaczenie może skutkować wykorzystaniem niewłaściwych komponentów, co z kolei wprowadza ryzyko awarii maszyny. Dlatego tak kluczowe jest przeszkolenie w zakresie czytania i interpretacji dokumentacji technicznej, aby unikać takich pomyłek. Znajomość standardów branżowych i dobrych praktyk jest istotna, aby zapewnić prawidłowe funkcjonowanie maszyn oraz bezpieczeństwo ich użytkowania.

Pytanie 40

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Dwie osoby
B. Jedna osoba
C. Trzy osoby
D. Cztery osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.