Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 grudnia 2025 11:11
  • Data zakończenia: 8 grudnia 2025 11:17

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. ósemkowym
B. dziesiętnym
C. szesnastkowym
D. dwójkowym
Adres IP 172.16.0.1 jest zapisany w systemie dziesiętnym, co oznacza, że każda liczba w tej sekwencji jest wyrażona w standardowym formacie dziesiętnym. Adresy IP w wersji 4 (IPv4) składają się z czterech oktetów, z których każdy jest reprezentowany jako liczba całkowita w zakresie od 0 do 255. System dziesiętny jest najczęściej używany do prezentacji adresów IP, co ułatwia ich odczyt i zapamiętanie przez użytkowników. Przykładem zastosowania adresów IP jest konfiguracja urządzeń w sieci lokalnej czy przydzielanie adresów IP przez serwery DHCP. W praktyce, standardy takie jak RFC 791 określają zasady dotyczące struktury adresów IP, w tym ich przedstawianie. Użycie systemu dziesiętnego w adresach IP jest zgodne z najlepszymi praktykami w dziedzinie inżynierii sieciowej, zapewniając przejrzystość i ułatwiając diagnostykę problemów sieciowych.

Pytanie 2

Aby uniknąć różnic w kolorystyce pomiędzy zeskanowanymi zdjęciami na wyświetlaczu komputera a ich oryginałami, konieczne jest przeprowadzenie

A. kalibrację skanera
B. kadrowanie skanera
C. interpolację skanera
D. modelowanie skanera
Kalibracja skanera to proces, w którym dostosowuje się parametry urządzenia, aby osiągnąć maksymalną zgodność kolorystyczną między zeskanowanymi obrazami a oryginałami. Proces ten jest niezbędny, ponieważ różnice w kolorach mogą wynikać z różnic w oprogramowaniu, sprzęcie, a także z ustawień skanera. Kalibracja polega na wykorzystaniu wzorców kolorystycznych, które pozwalają na dokładne odwzorowanie barw. Przykładem zastosowania kalibracji może być sytuacja, gdy grafika drukarska musi być zgodna z jej cyfrowym odpowiednikiem. Aby to osiągnąć, operator skanera wykonuje kalibrację na podstawie znanych standardów kolorów, takich jak sRGB czy Adobe RGB, co zapewnia spójność i powtarzalność kolorów. Ponadto, regularna kalibracja jest zalecana jako dobra praktyka w branży, aby zminimalizować błędy kolorystyczne, które mogą wystąpić z biegiem czasu.

Pytanie 3

Jaką minimalną ilość pamięci RAM powinien posiadać komputer, aby możliwe było zainstalowanie 32-bitowego systemu operacyjnego Windows 7 i praca w trybie graficznym?

A. 512 MB
B. 2 GB
C. 1 GB
D. 256 MB
Wybierając mniej niż 1 GB RAM, chyba nie do końca rozumiesz, co tak naprawdę potrzeba, żeby Windows 7 działał dobrze. Opcje jak 512 MB czy 256 MB to zdecydowanie za mało, żeby w ogóle myśleć o używaniu tego systemu. Przy takiej pamięci system będzie strasznie wolny, aplikacje będą się długo ładować, a interfejs graficzny może się nawet zawieszać. Na przykład, z 512 MB RAM możesz mieć poważne problemy z podstawowymi elementami wizualnymi. Nawet jeżeli 2 GB RAM teoretycznie spełnia wymagania, to w praktyce nie sprawdzi się, jeżeli otworzysz więcej aplikacji na raz. To zawsze będzie prowadzić do spowolnienia systemu, bo zacznie korzystać z pamięci wymiennej, co tylko obniża wydajność. Wydaje mi się, że trzeba lepiej zrozumieć, jak działa pamięć RAM, bo to kluczowe dla sprawnego działania komputera.

Pytanie 4

Jakie jest nominalne wyjście mocy (ciągłe) zasilacza o parametrach przedstawionych w tabeli?

Napięcie wyjściowe+5 V+3.3 V+12 V1+12 V2-12 V+5 VSB
Prąd wyjściowy18,0 A22,0 A18,0 A17,0 A0,3 A2,5 A
Moc wyjściowa120 W336 W3,6 W12,5 W
A. 336,0 W
B. 576,0 W
C. 456,0 W
D. 472,1 W
Odpowiedź 472,1 W jest trafna, bo moc wyjściowa zasilacza to nic innego jak suma mocy dla wszystkich napięć, gdzie są już przypisane odpowiednie prądy. Dla każdego napięcia moc P można policzyć ze wzoru P = U * I, gdzie U to napięcie, a I to prąd. Jeśli spojrzeć na obliczenia, to mamy: dla +5 V moc wynosi 5 V * 18 A = 90 W, dla +3.3 V moc to 3.3 V * 22 A = 72.6 W, następnie dla +12 V1 moc daje 12 V * 18 A = 216 W, dla +12 V2 to 12 V * 17 A = 204 W, zaś dla -12 V mamy -12 V * 0.3 A = -3.6 W. Ostatnia moc to dla +5 VSB, czyli 5 V * 2.5 A = 12.5 W. Jak to wszystko zsumujesz, wychodzi 90 W + 72.6 W + 216 W + 204 W - 3.6 W + 12.5 W = 572.5 W. Ale uwaga, bo zasilacz ma dwa napięcia +12 V, więc ich łączna moc to 216 W + 204 W = 420 W. Dlatego moc wyjściowa zasilacza to 90 W + 72.6 W + 420 W - 3.6 W + 12.5 W = 472,1 W. To podejście do obliczeń jest zgodne z tym, co jest uznawane za dobre praktyki w projektowaniu zasilaczy, gdzie trzeba brać pod uwagę zarówno dodatnie, jak i ujemne napięcia.

Pytanie 5

Nawiązywanie szyfrowanych połączeń pomiędzy hostami w sieci publicznej Internet, wykorzystywane w kontekście VPN (Virtual Private Network), to

A. mapowanie
B. tunelowanie
C. mostkowanie
D. trasowanie
Trasowanie, mapowanie i mostkowanie to techniki, które w kontekście sieci komputerowych mają różne zastosowania, ale nie są odpowiednie w kontekście tworzenia zaszyfrowanych połączeń przez publiczne sieci, takie jak Internet. Trasowanie odnosi się do procesu określania ścieżki, jaką pakiety danych pokonują w sieci, a nie do ich bezpieczeństwa. Kluczowym błędem w tym podejściu jest mylenie funkcji trasowania z funkcją zapewniania bezpieczeństwa. Trasowanie jest niezbędne do przesyłania danych, ale samo w sobie nie zapewnia ochrony przed nieautoryzowanym dostępem. Mapowanie, z kolei, to proces przypisywania adresów IP do lokalnych zasobów, co również nie ma bezpośredniego związku z szyfrowaniem danych. Można pomyśleć, że mapowanie mogłoby pomóc w lokalizacji zasobów, ale nie chroni danych w ruchu. Mostkowanie natomiast odnosi się do łączenia różnych segmentów sieci lokalnej, co jest niezbędne dla komunikacji wewnętrznej, ale nie odnosi się do przesyłania danych przez publiczne sieci. Błędem jest zatem założenie, że te techniki mogą zapewnić bezpieczeństwo równorzędne z tunelowaniem. Rozumienie tych podstawowych różnic jest kluczowe dla skutecznego projektowania i wdrażania bezpiecznych rozwiązań sieciowych.

Pytanie 6

Kabel pokazany na ilustracji może być zastosowany do realizacji okablowania sieci o standardzie

Ilustracja do pytania
A. 10Base-T
B. 100Base-SX
C. 100Base-TX
D. 10Base2
10Base2 to standard korzystający z kabla koncentrycznego, znanego również jako Thin Ethernet lub Cheapernet. Jest to starsza technologia, która nie jest już powszechnie używana ze względu na ograniczenia w szybkości transmisji oraz trudności w instalacji i konserwacji w porównaniu do nowoczesnych standardów, takich jak Ethernet na skrętce czy światłowodzie. 10Base-T oraz 100Base-TX są standardami wykorzystującymi skrętkę miedzianą. 10Base-T operuje z prędkością do 10 Mb/s, natomiast 100Base-TX umożliwia transmisję danych z prędkością do 100 Mb/s, co czyni go częścią Fast Ethernet. Te standardy są powszechnie używane w sieciach lokalnych, zwłaszcza w domach i małych biurach, ze względu na ich łatwość wdrożenia i niskie koszty. Niemniej jednak, w środowiskach, gdzie wymagane są wyższe prędkości oraz większa niezawodność, światłowody, takie jak 100Base-SX, stają się bardziej odpowiednim wyborem. Wybór niepoprawnych odpowiedzi często wynika z niewłaściwego rozpoznania typu kabla i jego zastosowania. Kluczowe jest zrozumienie, jakie medium transmisji jest używane w danym standardzie oraz jakie są jego specyficzne zalety i wady. Dzięki temu można dokładnie określić, jaki typ okablowania jest wymagany w określonych sytuacjach sieciowych. Ponadto, znajomość różnic między miedzią a światłowodem pomaga w wyborze odpowiedniego rozwiązania dla konkretnych potrzeb sieciowych, biorąc pod uwagę takie czynniki jak zasięg, przepustowość oraz odporność na zakłócenia. Dlatego ważne jest, aby w pełni zrozumieć zastosowania i ograniczenia każdej technologii, co pozwoli na lepsze podejmowanie decyzji projektowych w dziedzinie infrastruktury sieciowej. Podsumowując, wybór odpowiedniego standardu sieciowego powinien być oparty na specyficznych wymaganiach danej aplikacji oraz na właściwym dopasowaniu medium transmisji do tych wymagań.

Pytanie 7

W trakcie instalacji systemu Windows, zaraz po rozpoczęciu instalacji w trybie graficznym, istnieje możliwość otwarcia Wiersza poleceń (konsoli) za pomocą kombinacji klawiszy

A. CTRL + Z
B. SHIFT + F10
C. ALT + F4
D. CTRL + SHIFT
Kombinacja klawiszy SHIFT + F10 podczas instalacji systemu Windows jest kluczowym skrótem, który umożliwia otwarcie Wiersza poleceń (konsoli) w trybie graficznym. Jest to niezwykle przydatne narzędzie, które pozwala na zaawansowane operacje, takie jak zarządzanie dyskami, modyfikacja plików konfiguracyjnych, czy uruchamianie skryptów. Użycie Wiersza poleceń w tym etapie instalacji może być konieczne w sytuacjach problemowych, na przykład, gdy zachodzi potrzeba dostosowania ustawień sieciowych lub przeprowadzenia diagnostyki sprzętowej przed zakończeniem procesu instalacji. Praktycznym zastosowaniem tego skrótu jest możliwość uruchomienia polecenia DISKPART, które pozwala na zarządzanie partycjami dyskowymi i sprawdzenie ich stanu. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają korzystanie z narzędzi wiersza poleceń w sytuacjach, gdy interfejs graficzny nie wystarcza do rozwiązania problemów. Pamiętaj, że znajomość tych skrótów i funkcji może znacznie przyspieszyć i uprościć proces instalacji systemu operacyjnego.

Pytanie 8

Jaką sekwencję mają elementy adresu globalnego IPv6 typu unicast ukazanym na diagramie?

Ilustracja do pytania
A. 1 - globalny prefiks, 2 - identyfikator podsieci, 3 - identyfikator interfejsu
B. 1 - globalny prefiks, 2 - identyfikator interfejsu, 3 - identyfikator podsieci
C. 1 - identyfikator interfejsu, 2 - globalny prefiks, 3 - identyfikator podsieci
D. 1 - identyfikator podsieci, 2 - globalny prefiks, 3 - identyfikator interfejsu
Adres IPv6 składa się z kilku komponentów z których kluczowymi są globalny prefiks identyfikator podsieci oraz identyfikator interfejsu. Globalny prefiks to pierwsze 48 bitów i jest przydzielany przez dostawcę internetu jako unikalny identyfikator sieci. Identyfikator podsieci zajmuje kolejne 16 bitów i służy do podziału większej sieci na mniejsze segmenty co pozwala na lepsze zarządzanie ruchem sieciowym oraz zwiększa bezpieczeństwo. Ostatnie 64 bity to identyfikator interfejsu który musi być unikalny w ramach danej podsieci i zwykle jest generowany automatycznie na podstawie adresu MAC urządzenia. Taka organizacja adresu IPv6 umożliwia efektywne zarządzanie ogromnymi zasobami adresowymi tego protokołu. W praktyce daje to możliwość tworzenia dużych dobrze zorganizowanych sieci z zachowaniem wysokiego poziomu hierarchii i skalowalności. Dzięki takiemu podejściu można łatwo integrować nowe technologie takie jak Internet Rzeczy (IoT) zapewniając jednocześnie stabilność i wydajność.

Pytanie 9

Graficzny symbol ukazany na ilustracji oznacza

Ilustracja do pytania
A. bramę
B. przełącznik
C. koncentrator
D. most
Symbol graficzny przedstawiony na rysunku rzeczywiście oznacza przełącznik sieciowy co jest zgodne z odpowiedzią numer trzy Przełącznik jest kluczowym urządzeniem w infrastrukturze sieci komputerowych odpowiadającym za efektywne kierowanie ruchem sieciowym w ramach lokalnej sieci komputerowej LAN Działa na poziomie drugiego modelu ISO/OSI czyli warstwie łącza danych Jego podstawową funkcją jest przekazywanie pakietów pomiędzy urządzeniami w ramach tej samej sieci lokalnej poprzez analizę adresów MAC Dzięki temu przełączniki potrafią znacząco zwiększać wydajność sieci poprzez redukcję kolizji danych i efektywne zarządzanie pasmem sieciowym W praktyce przełączniki są wykorzystywane w wielu zastosowaniach od małych sieci domowych po zaawansowane sieci korporacyjne W środowiskach korporacyjnych przełączniki mogą obsługiwać zaawansowane funkcje takie jak VLAN wirtualne sieci LAN zapewniające segregację ruchu sieciowego oraz Quality of Service QoS umożliwiające priorytetyzację ruchu Odpowiednie zarządzanie i konfiguracja przełączników są kluczowe dla zachowania bezpieczeństwa i wydajności całej infrastruktury sieciowej Współczesne przełączniki często integrują technologię Power over Ethernet PoE co umożliwia zasilanie urządzeń sieciowych takich jak telefony VoIP czy kamery IP bezpośrednio przez kabel sieciowy co upraszcza instalację i obniża koszty eksploatacji

Pytanie 10

Który z poniższych mechanizmów zapewni najwyższy stopień ochrony sieci bezprzewodowych w standardzie 802.11n?

A. WPA (Wi-Fi Protected Access)
B. WEP (Wired Equivalent Privacy)
C. WPA2 (Wi-Fi Protected Access II)
D. WPS (Wi-Fi Protected Setup)
WPS (Wi-Fi Protected Setup) to mechanizm, który może być mylnie postrzegany jako skuteczne zabezpieczenie sieci bezprzewodowych, jednak w rzeczywistości jest on bardziej narzędziem ułatwiającym konfigurację urządzeń sieciowych, niż solidną metodą ochrony. Choć WPS umożliwia szybkie połączenie urządzeń za pomocą kodu PIN lub przycisku, jego implementacja była narażona na liczne ataki, co ujawniło poważne luki w bezpieczeństwie. WEP (Wired Equivalent Privacy) to kolejny przestarzały protokół, który był jednym z pierwszych standardów zabezpieczeń w sieciach Wi-Fi. Niestety, WEP opiera się na statycznych kluczach szyfrujących, co czyni go łatwym celem dla hakerów. Powoduje to poważne zagrożenia dla prywatności i integralności danych przesyłanych w sieci. Z kolei WPA (Wi-Fi Protected Access) wprowadza pewne poprawki w stosunku do WEP, ale nadal nie korzysta z tak silnych algorytmów, jak AES, co sprawia, że jest mniej bezpieczny od WPA2. Wiele osób może sądzić, że stosowanie WEP lub WPA wystarczy do zabezpieczenia ich sieci, co jest błędnym przekonaniem, ponieważ te mechanizmy są niewystarczające w obliczu współczesnych zagrożeń. Zrozumienie różnic między tymi standardami oraz ich słabości jest kluczowe dla skutecznej ochrony sieci bezprzewodowych.

Pytanie 11

AC-72-89-17-6E-B2 to adres MAC karty sieciowej zapisany w formacie

A. oktalnej
B. dziesiętnej
C. binarnej
D. heksadecymalnej
Adresy fizyczne, takie jak adres MAC, mogą być mylnie klasyfikowane w nieodpowiednich systemach liczbowych, co może prowadzić do nieporozumień. Na przykład, baza dwójkowa, czyli system binarny, używa tylko dwóch cyfr: 0 i 1. W przypadku adresów MAC, który jest sekwencją 12 heksadecymalnych cyfr, reprezentacja binarna byłaby niepraktyczna ze względu na długość i złożoność. Można by oczekiwać, że w takiej reprezentacji adres zajmowałby 48 bitów, co skutkowałoby znacznie bardziej skomplikowanym zapisem, co czyniłoby go trudniejszym do analizy i użycia. Podobnie, system oktalny, oparty na ośmiu cyfrach (0-7), nie jest używany do reprezentowania adresów MAC, co wynika z jego ograniczeń w zakresie wartości. W kontekście adresów sieciowych, system dziesiętny również jest niewłaściwy, ponieważ nie obsługuje on wymaganego zakresu wartości. Adresy MAC w zapisie heksadecymalnym są bardziej kompaktowe i łatwiejsze do interpretacji, co jest zgodne z praktykami branżowymi. Typowym błędem myślowym jest zakładanie, że wszystkie reprezentacje liczby mogą być stosowane zamiennie, co jest błędne, ponieważ każdy system liczbowy ma swoje specyficzne zastosowania i ograniczenia. Właściwe zrozumienie zastosowań różnych systemów liczbowych jest kluczowe w praktyce zawodowej w obszarze IT.

Pytanie 12

Jakie polecenie w systemie Linux pozwala na wyświetlenie oraz edytowanie tablicy trasowania pakietów sieciowych?

A. nslookup
B. route
C. netstat
D. ifconfig
Wybór poleceń takich jak 'netstat', 'ifconfig' czy 'nslookup' może prowadzić do zamieszania w kontekście zarządzania tablicą trasowania pakietów. 'Netstat' jest narzędziem do monitorowania połączeń sieciowych oraz statystyk, a także do wyświetlania aktywnych połączeń TCP/UDP. Choć dostarcza informacji o aktualnych trasach, nie umożliwia ich modyfikacji. 'Ifconfig', z drugiej strony, jest używane do konfigurowania interfejsów sieciowych, takich jak przypisywanie adresów IP do interfejsów, ale nie jest narzędziem do zarządzania trasami. Ostatnia odpowiedź, 'nslookup', służy do rozwiązywania nazw domenowych na adresy IP i nie ma związku z trasowaniem pakietów. Typowym błędem popełnianym przez osoby, które wybierają te opcje, jest mylenie funkcji narzędzi sieciowych. Kluczowe jest zrozumienie, że każde z tych poleceń ma swoją specyfikę i zastosowanie, które nie pokrywają się z funkcjonalnością polecenia 'route'. Aby skutecznie zarządzać trasami w sieci, należy stosować odpowiednie narzędzia i techniki, zgodne ze standardami branżowymi i najlepszymi praktykami, co pozwoli uniknąć błędów w konfiguracji i optymalizacji sieci.

Pytanie 13

Wskaż nieprawidłowy sposób podziału dysków MBR na partycje?

A. 1 partycja podstawowa oraz 1 rozszerzona
B. 3 partycje podstawowe oraz 1 rozszerzona
C. 2 partycje podstawowe oraz 1 rozszerzona
D. 1 partycja podstawowa oraz 2 rozszerzone
Podział dysków MBR na partycje jest tematem złożonym, a wiele osób ma tendencję do nieprawidłowego rozumienia zasadniczych zasad tego systemu. Odpowiedź sugerująca utworzenie 1 partycji podstawowej i 1 rozszerzonej nie ma sensu, ponieważ w takim przypadku nie ma możliwości utworzenia dodatkowych partycji logicznych, które są kluczowe w rozwiązywaniu problemów z ograniczeniami podziału. Ponadto, koncepcja posiadania dwóch partycji rozszerzonych jest błędna, ponieważ standard MBR zezwala tylko na jedną partycję rozszerzoną, która sama w sobie może zawierać do 128 partycji logicznych. Użytkownicy często mylą terminologię i nie rozumieją, że partycje rozszerzone służą do przechowywania większej liczby partycji logicznych, co jest niezbędne w przypadku, gdy potrzebne są dodatkowe systemy operacyjne lub aplikacje. Podobnie, stwierdzenie o trzech partycjach podstawowych i jednej rozszerzonej jest mylone, ponieważ przy takim podziale istnieje jeszcze możliwość utworzenia jedynie jednej rozszerzonej, co ogranicza elastyczność. Zrozumienie tych podziałów jest kluczowe, aby uniknąć problemów z zarządzaniem danymi i systemami operacyjnymi, co często prowadzi do frustracji i błędów w konfiguracji. Edukacja na temat standardów MBR pomaga w zrozumieniu ograniczeń oraz optymalizacji struktury dysków, co jest niezbędne w każdym środowisku informatycznym.

Pytanie 14

Aby bezpośrednio połączyć dwa komputery w przewodowej sieci LAN, należy zastosować

A. kabel sieciowy patch-cord bez krosowania oraz kabel Centronics
B. kabel sieciowy cross-over i po jednej karcie sieciowej w każdym z komputerów
C. kabel światłowodowy i jedną kartę sieciową w jednym z komputerów
D. kabel USB i po jednej karcie sieciowej w każdym z komputerów
Kabel sieciowy cross-over jest specjalnie zaprojektowany do bezpośredniego łączenia ze sobą dwóch komputerów, co oznacza, że umożliwia wymianę danych bez potrzeby stosowania switcha lub routera. W takim połączeniu każdy z komputerów musi być wyposażony w kartę sieciową, która obsługuje standardy Ethernet, takie jak 10Base-T, 100Base-TX lub 1000Base-T. Kabel cross-over różni się od standardowego kabla prostego, ponieważ w nim pary przewodów są zamienione, co pozwala na poprawne przesyłanie sygnałów transmitowanych i odbieranych pomiędzy dwoma urządzeniami. Praktycznym przykładem takiego rozwiązania jest konfiguracja sieci w małych biurach, gdzie dwa komputery muszą wymieniać pliki lub współdzielić zasoby bez dodatkowego sprzętu. Zastosowanie tego typu kabli jest zgodne ze standardem IEEE 802.3, co zapewnia wysoką jakość transmisji danych oraz minimalizację zakłóceń.

Pytanie 15

Rozmiar plamki na ekranie monitora LCD wynosi

A. odległość pomiędzy początkiem jednego a początkiem kolejnego piksela
B. rozmiar obszaru, na którym wyświetla się 1024 piksele
C. rozmiar jednego piksela wyświetlanego na ekranie
D. rozmiar obszaru, w którym możliwe jest wyświetlenie wszystkich kolorów obsługiwanych przez monitor
No więc, plamka monitora LCD to właściwie odległość między początkiem jednego piksela a początkiem kolejnego. To ważne, bo plamka dotyczy tego, jak widzimy pojedyncze piksele na ekranie. Każdy piksel ma swoje subpiksele: czerwony, zielony i niebieski. Im mniejsza odległość, tym lepsza jakość obrazu, bo więcej szczegółów możemy zobaczyć. Na przykład w monitorach Full HD (1920x1080) wielkość plamki ma ogromne znaczenie dla ostrości obrazu, bo wpływa na to, jak dobrze widzimy detale. Jak dla mnie, im mniejsze plamki, tym lepiej, bo pozwalają na wyświetlenie większej liczby szczegółów w małej przestrzeni, co jest super w grach, filmach czy grafice. Dobra plamka to klucz do jakości, a technologie ciągle idą do przodu, żeby pokazać jak najlepszy obraz w małych formatach.

Pytanie 16

Na ilustracji zaprezentowano końcówkę kabla

Ilustracja do pytania
A. rodzaju skrętka
B. światłowodowego
C. telefonicznego
D. koncentrycznego
Zakończenia kabli mogą przyjmować różne formy i pełnić odmienne funkcje w zależności od ich zastosowania i technologii transmisji. Skrętka to popularne rozwiązanie w sieciach Ethernet gdzie przewody są skręcone parami co redukuje zakłócenia elektromagnetyczne. Jest to jednak technologia oparta na miedzi co ogranicza zasięg i przepustowość w porównaniu do światłowodów. Kable telefoniczne są również wykonane w technologii miedzianej i najczęściej wykorzystywane do przesyłania sygnałów telefonicznych o niższej przepustowości. Kable koncentryczne z kolei stosowane m.in. w telewizji kablowej czy przesyłaniu sygnałów satelitarnych również bazują na technologii miedzianej i mają ograniczoną przepustowość w stosunku do światłowodów. Wybór nieodpowiedniego typu kabla prowadzi do nieefektywności i problemów z transmisją danych szczególnie w erze cyfryzacji i zwiększających się wymagań co do przepustowości. Zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego projektowania nowoczesnych systemów komunikacyjnych i infrastruktury IT gdzie światłowody odgrywają coraz ważniejszą rolę ze względu na swoje unikalne właściwości i wszechstronne zastosowanie w różnych dziedzinach przemysłu i technologii komunikacyjnych.

Pytanie 17

Przed rozpoczęciem instalacji sterownika dla urządzenia peryferyjnego system Windows powinien weryfikować, czy dany sterownik ma podpis

A. kryptograficzny
B. cyfrowy
C. elektroniczny
D. zaufany
Wybranie odpowiedzi 'kryptograficzny', 'zaufany' lub 'elektroniczny' wskazuje na pewne nieporozumienia dotyczące terminologii związanej z bezpieczeństwem oprogramowania. Choć każdy z tych terminów może mieć swoje znaczenie w kontekście technologii informacyjnej, żaden z nich nie odnosi się bezpośrednio do specyficznego procesu weryfikacji, który stosuje system Windows. Termin 'kryptograficzny' odnosi się ogólnie do technik używanych do zabezpieczania informacji, ale nie jest wystarczająco precyzyjny, aby opisać, co rzeczywiście dzieje się podczas instalacji sterownika. Z kolei 'zaufany' to termin zbyt subiektywny i nieokreślony, który nie ma odniesienia do technicznych standardów weryfikacji. Ostatnia opcja, 'elektroniczny', również nie oddaje specyfiki podpisu, który jest cyfrowym mechanizmem potwierdzającym autentyczność i integralność pliku. Powoduje to mylne wrażenie, że każda forma weryfikacji, która obejmuje elektronikę, jest wystarczająca dla zapewnienia bezpieczeństwa, co jest nieprawidłowe. Kluczowym błędem jest pomieszanie pojęć związanych z różnymi metodami zabezpieczeń, co prowadzi do niepełnego zrozumienia istoty procesu. W rzeczywistości, cyfrowy podpis jest jedynym, właściwym mechanizmem w tym kontekście, który łączy kryptografię z praktycznym zastosowaniem weryfikacji sterowników.

Pytanie 18

Kiedy dysze w drukarce atramentowej wyschną z powodu długotrwałych przerw w użytkowaniu, co powinno się najpierw wykonać?

A. oczyścić dyszę za pomocą wacika nasączonego olejem syntetycznym
B. dokonać oczyszczania dysz z poziomu odpowiedniego programu
C. wymienić cały mechanizm drukujący
D. ustawić tryb wydruku oszczędnego
Oczyszczanie dysz z poziomu odpowiedniego programu jest kluczowym krokiem w przywracaniu funkcjonalności drukarki atramentowej po długim okresie nieużywania. Większość nowoczesnych drukarek atramentowych wyposażona jest w funkcje automatycznego czyszczenia dysz, które można uruchomić za pomocą oprogramowania dostarczonego przez producenta. Proces ten polega na przepuszczaniu atramentu przez dysze w celu usunięcia zatorów i zaschniętego atramentu, co przyczynia się do poprawy jakości druku oraz wydajności urządzenia. Przykładowo, użytkownicy mogą skorzystać z opcji testowego wydruku lub czyszczenia dysz, które często są dostępne w menu ustawień drukarki. Regularne korzystanie z tej funkcji, szczególnie przed dłuższymi przerwami w użytkowaniu, jest standardową praktyką, która pozwala zapobiegać problemom związanym z zasychaniem atramentu. Dodatkowo, takie działania są zgodne z zaleceniami producentów, co przekłada się na dłuższą żywotność urządzenia oraz lepszą jakość wydruków.

Pytanie 19

Przy użyciu urządzenia zobrazowanego na rysunku możliwe jest sprawdzenie działania

Ilustracja do pytania
A. zasilacza
B. płyty głównej
C. procesora
D. dysku twardego
Przedstawione na rysunku urządzenie to tester zasilacza komputerowego. Urządzenie takie służy do sprawdzania napięć wyjściowych zasilacza, które są kluczowe dla stabilnej pracy komputera. Tester zasilacza pozwala na szybkie i efektywne sprawdzenie, czy zasilacz dostarcza odpowiednie napięcia na liniach 12V, 5V, 3.3V oraz -12V. Sprawdzenie poprawności tych napięć jest istotne, ponieważ odchylenia od normy mogą prowadzić do niestabilnej pracy komputera, zawieszania się systemu lub nawet uszkodzenia podzespołów. W praktyce, podczas testowania zasilacza, należy podłączyć jego złącza do odpowiednich portów testera, a wyniki są wyświetlane na ekranie LCD. Dobry tester pokaże również status sygnału PG (Power Good), który informuje o gotowości zasilacza do pracy. Stosowanie testerów zasilaczy jest powszechną praktyką w serwisach komputerowych i wśród entuzjastów sprzętu komputerowego, co pozwala na szybkie diagnozowanie problemów związanych z zasilaniem i uniknięcie kosztownych awarii.

Pytanie 20

Jak w systemie Windows zmienić port drukarki, która została zainstalowana?

A. Ustawienia drukowania
B. Właściwości drukarki
C. Menedżer zadań
D. Ostatnia znana dobra konfiguracja
Wybór opcji do zmiany portu drukarki w systemie Windows wymaga znajomości funkcji, które są rzeczywiście przeznaczone do zarządzania ustawieniami drukarek. Ostatnia znana dobra konfiguracja jest funkcją zapewniającą możliwość przywrócenia poprzednich ustawień systemowych w przypadku problemów z uruchomieniem systemu, a nie narzędziem do konfiguracji drukarki. Preferencje drukowania to miejsce, w którym użytkownik może zmieniać ustawienia związane z jakością druku, układem strony czy formatem papieru, lecz nie ma tam opcji związanej z portami. Menedżer zadań służy do monitorowania i zarządzania uruchomionymi procesami oraz aplikacjami, a nie do zarządzania ustawieniami sprzętowymi drukarek. Typowym błędem jest mylenie funkcji systemowych, co prowadzi do niepoprawnych decyzji przy konfiguracji sprzętu. Użytkownicy powinni zdawać sobie sprawę, że każdy element systemu operacyjnego ma swoje określone zastosowanie i funkcje. Aby skutecznie zarządzać drukarkami, kluczowe jest korzystanie z odpowiednich narzędzi dostępnych w systemie, takich jak Właściwości drukarki, które zapewniają pełną kontrolę nad ustawieniami sprzętu. Efektywne wykorzystywanie tych narzędzi pozwala uniknąć frustracji i błędów w codziennej pracy z drukarkami, co jest zgodne z najlepszymi praktykami w zarządzaniu infrastrukturą IT.

Pytanie 21

Jaką maksymalną długość może mieć kabel miedziany UTP kategorii 5e łączący bezpośrednio dwa urządzenia w sieci, według standardu Fast Ethernet 100Base-TX?

A. 100 m
B. 150 m
C. 1000 m
D. 300 m
Odpowiedź 100 m jest zgodna z normą TIA/EIA-568-B, która określa maksymalne długości kabli miedzianych UTP (Unshielded Twisted Pair) stosowanych w sieciach Ethernet. Standard Fast Ethernet, znany jako 100Base-TX, został zaprojektowany do pracy na dystansach do 100 metrów, co obejmuje segmenty kabli od urządzenia aktywnego, takiego jak switch czy router, do końcowego urządzenia, takiego jak komputer. Przekroczenie tej długości może prowadzić do degradacji sygnału, co skutkuje utratą pakietów, niestabilnością połączenia, a w ekstremalnych przypadkach - całkowitym brakiem łączności. W praktyce, instalując sieci w biurach czy budynkach użyteczności publicznej, należy pamiętać o tej długości, aby zapewnić optymalną wydajność sieci. Warto także zaznaczyć, że długość ta dotyczy połączeń pasywnych, nie uwzględniając dodatkowych elementów, takich jak patch panele czy gniazda, które również mogą wpływać na całkowitą długość instalacji. Dążenie do utrzymania maksymalnej długości 100 m jest kluczowe w projektowaniu infrastruktury sieciowej, aby zapewnić niezawodność i efektywność komunikacji.

Pytanie 22

W systemie DNS, aby powiązać nazwę hosta z adresem IPv4, konieczne jest stworzenie rekordu

A. MX
B. A
C. PTR
D. ISDN
Rekord A jest kluczowym elementem w systemie DNS, którego głównym zadaniem jest mapowanie nazw hostów na adresy IPv4. Umożliwia to przeglądarkom internetowym oraz innym aplikacjom komunikację z serwerami, gdy użytkownik wpisuje nazwę domeny. Przykładowo, gdy użytkownik wpisuje 'example.com', serwer DNS przeszukuje swoją bazę danych i znajduje rekord A, który wskazuje na adres IP, na przykład 192.0.2.1. To przekłada się na wysyłanie zapytań do właściwego serwera. Z danych wynika, że dla prawidłowego działania aplikacji internetowych oraz usług online, posiadanie poprawnych rekordów A jest niezwykle istotne. Zgodnie z najlepszymi praktykami zaleca się regularne aktualizowanie tych rekordów, szczególnie w przypadku zmian adresów IP związanych z migracją serwerów lub infrastrukturą. Warto również zauważyć, że w przypadku wielu adresów IP przypisanych do jednej nazwy hosta, można utworzyć wiele rekordów A, co zapewnia redundancję i zwiększa dostępność usług.

Pytanie 23

Jaką fizyczną topologię sieci komputerowej przedstawiono na załączonym rysunku?

Ilustracja do pytania
A. topologię gwiazdy rozszerzonej
B. topologię hierarchiczną
C. topologię magistrali
D. topologię gwiazdy
Topologia gwiazdy to struktura, w której wszystkie urządzenia są połączone do jednego centralnego węzła, zazwyczaj przełącznika lub koncentratora. Ten układ jest prosty do zarządzania i diagnozowania, ponieważ każde urządzenie łączy się z jednym punktem centralnym. Jednakże, jeżeli węzeł centralny ulegnie awarii, cała sieć przestaje działać. Topologia magistrali natomiast opiera się na jednym głównym kablu, do którego podłączone są wszystkie urządzenia sieciowe. Chociaż ta topologia jest łatwa do zainstalowania i wymaga mniejszej ilości kabla niż topologia gwiazdy, każdy problem z głównym kablem może doprowadzić do awarii całej sieci. Topologia gwiazdy rozszerzonej to wariant topologii gwiazdy, w którym kilka pojedynczych topologii gwiazdy jest połączonych za pomocą jednego centralnego węzła. Jest to bardziej złożone niż standardowa gwiazda, ale oferuje dodatkową redundancję i skalowalność. Żadna z tych topologii nie odpowiada przedstawionemu schematowi, ponieważ nie uwzględniają one hierarchicznego rozmieszczenia połączeń, które jest kluczowe dla zrozumienia topologii hierarchicznej. Błędne postrzeganie struktury sieci może prowadzić do nieprawidłowych konfiguracji, które w najlepszym razie są nieefektywne, a w najgorszym mogą powodować całkowitą niezdolność sieci do działania.

Pytanie 24

Do zrealizowania macierzy RAID 1 wymagane jest co najmniej

A. 3 dysków
B. 2 dysków
C. 4 dysków
D. 5 dysków
Macierz RAID 1, znana jako mirroring, wymaga minimum dwóch dysków, aby mogła efektywnie funkcjonować. W tym konfiguracji dane są kopiowane na dwa lub więcej dysków, co zapewnia ich redundancję. Gdy jeden z dysków ulegnie awarii, system nadal działa, korzystając z danych przechowywanych na pozostałym dysku. To podejście jest szczególnie cenione w środowiskach, gdzie dostępność danych jest kluczowa, na przykład w serwerach plików, bazach danych oraz systemach krytycznych dla działalności. Przykładem zastosowania RAID 1 mogą być serwery WWW oraz systemy backupowe, gdzie utrata danych może prowadzić do znacznych strat finansowych oraz problemów z reputacją. Standardy branżowe, takie jak te opracowane przez organizację RAID Advisory Board, podkreślają znaczenie RAID 1 jako jednego z podstawowych rozwiązań w kontekście ochrony danych. Z perspektywy praktycznej warto również zauważyć, że chociaż RAID 1 nie zapewnia zwiększenia wydajności zapisu, to jednak może poprawić wydajność odczytu, co czyni go atrakcyjnym rozwiązaniem dla niektórych zastosowań.

Pytanie 25

Podstawowym warunkiem archiwizacji danych jest

A. kompresja danych
B. kompresja i kopiowanie danych z równoczesnym ich szyfrowaniem
C. kopiowanie danych
D. kompresja oraz kopiowanie danych
Kompresja danych jest techniką związaną z redukcją rozmiaru plików, co może być użyteczne w kontekście archiwizacji, ale nie jest to warunek niezbędny do jej przeprowadzenia. Wiele osób myli archiwizację z optymalizacją przestrzeni dyskowej, co prowadzi do błędnego przekonania, że kompresja jest kluczowym elementem tego procesu. Mimo że kompresja może ułatwić przechowywanie większej ilości danych w ograniczonej przestrzeni, sama w sobie nie zabezpiecza danych ani nie umożliwia ich odtworzenia, co jest głównym celem archiwizacji. Również kopiowanie danych jest istotne, ale można archiwizować dane bez kompresji, co czyni tę odpowiedź niekompletną. W przypadku odpowiedzi, które łączą kompresję z kopiowaniem, należy zauważyć, że chociaż te elementy mogą być użyte w procesie archiwizacji, ich jednoczesne stosowanie nie jest konieczne dla zapewnienia skutecznej archiwizacji. Użytkownicy często mylą niezbędne kroki archiwizacji z dodatkowymi technikami, co prowadzi do nieprawidłowych wniosków. Archiwizacja powinna koncentrować się na zabezpieczeniu danych poprzez ich kopiowanie w sposób umożliwiający ich późniejsze odzyskanie, bez względu na to, czy dane te zostaną skompresowane.

Pytanie 26

Według modelu TCP/IP protokoły DNS, FTP i SMTP są przypisane do warstwy

A. transportowej
B. aplikacji
C. internetowej
D. dostępu do sieci
Wybór warstwy dostępu do sieci jako odpowiedzi prowadzi do nieporozumień dotyczących struktury modelu TCP/IP. Warstwa dostępu do sieci, często nazywana również warstwą fizyczną i łącza danych, odpowiada za sposób, w jaki dane są przesyłane przez fizyczne medium, takie jak kable czy fale radiowe. W tej warstwie nie ma miejsca na protokoły aplikacyjne, które zajmują się interfejsem użytkownika i wymianą danych w sposób zrozumiały dla aplikacji. Wybór warstwy internetowej również nie jest trafny. Ta warstwa odpowiedzialna jest za przekazywanie pakietów między hostami, wykorzystując protokoły takie jak IP (Internet Protocol). Warstwa transportowa, z kolei, obsługuje transmisję danych pomiędzy aplikacjami działającymi na różnych hostach i wykorzystuje protokoły takie jak TCP (Transmission Control Protocol) i UDP (User Datagram Protocol). Protokły DNS, FTP i SMTP funkcjonują na wyższym poziomie, umożliwiając aplikacje wymianę informacji i nie są związane z zadaniami warstwy fizycznej ani transportowej. Typowe błędy myślowe prowadzące do tego rodzaju odpowiedzi mogą obejmować mylenie różnych poziomów abstrakcji w modelu TCP/IP oraz niewłaściwe przyporządkowanie funkcji poszczególnych protokołów. Kluczowe jest, aby zrozumieć, że protokoły aplikacyjne są niezależne od warstwy transportowej czy dostępu do sieci, co daje możliwość ich uniwersalnego zastosowania w różnych sieciach.

Pytanie 27

Jaką liczbę komórek pamięci można bezpośrednio zaadresować w 64-bitowym procesorze z 32-bitową szyną adresową?

A. 2 do potęgi 64
B. 32 do potęgi 2
C. 2 do potęgi 32
D. 64 do potęgi 2
W odpowiedziach, które nie są poprawne, można zauważyć pewne powszechne nieporozumienia dotyczące zasad działania pamięci i architektury komputerowej. Odpowiedź 64 do potęgi 2 sugeruje, że bierzemy pod uwagę liczbę adresów pamięci jako graficzną reprezentację w postaci binarnej, co jest błędnym podejściem. Każdy adres w pamięci odpowiada konkretnej lokalizacji, a nie wszystkim możliwym kombinacjom. Z kolei odpowiedź 2 do potęgi 64, choć teoretycznie odnosi się do architektury procesora 64-bitowego, nie ma zastosowania w kontekście 32-bitowej szyny adresowej, ponieważ ta ostatnia ogranicza rzeczywistą ilość adresowalnej pamięci. Podobnie, odpowiedź 32 do potęgi 2 wynika z błędnego założenia, że ilość adresów jest określona przez bitowość procesora, a nie przez szynę adresową. W rzeczywistości, procesor 64-bitowy przetwarza dane w większych blokach, ale szyna adresowa decyduje o ilości pamięci, do której ma dostęp. Typowe błędy myślowe związane z tymi odpowiedziami obejmują mylenie pojęć architektury procesora z jej możliwościami adresowania pamięci oraz nieświadomość, że ilość dostępnej pamięci jest ściśle związana z parametrami sprzętowymi. W praktyce, dobrym podejściem jest zrozumienie, jak różne elementy architektury komputerowej współdziałają w zakresie adresowania pamięci.

Pytanie 28

Komunikat o błędzie KB/Interface, wyświetlany na monitorze komputera podczas BIOS POST firmy AMI, wskazuje na problem

A. baterii CMOS
B. sterownika klawiatury
C. pamięci GRAM
D. rozdzielczości karty graficznej
Ten komunikat KB/Interface error, który widzisz na ekranie, to sygnał, że coś jest nie tak z klawiaturą. Kiedy uruchamiasz komputer, BIOS robi parę testów, żeby sprawdzić, czy klawiatura działa i jest dobrze podłączona. Jak jej nie znajdzie, to pojawia się ten błąd. To może być spowodowane różnymi rzeczami, na przykład uszkodzonym kablem, złym portem USB albo samą klawiaturą. Klawiatura jest super ważna, bo bez niej nie da się korzystać z komputera i przejść dalej, więc trzeba to naprawić. Na początek warto sprawdzić, czy kabel jest dobrze wpięty, a potem spróbować innego portu USB lub użyć innej klawiatury, żeby sprawdzić, czy to nie sprzęt. Fajnie jest też pamiętać o aktualizacji BIOS-u, bo to może pomóc w lepszym rozpoznawaniu urządzeń.

Pytanie 29

Jaki symbol urządzenia jest pokazany przez strzałkę na rysunku?

Ilustracja do pytania
A. Serwera
B. Przełącznika
C. Routera
D. Koncentratora
Serwer to komputer, który udostępnia różne zasoby czy usługi innym komputerom w sieci. Działa bardziej jak pomocnik, który obsługuje zapytania od klientów i trzyma dane, a nie jak urządzenie do kierowania ruchem. Czasem ludzie mylą serwer z czymś, co zarządza wszystkimi danymi w sieci, ale to nie tak. Koncentrator to z kolei prosty element sieciowy, który działa na poziomie fizycznym. Jego rola polega na przesyłaniu danych do wszystkich podłączonych urządzeń, ale bez ich analizy. W dzisiejszych czasach koncentratory są zastępowane przez przełączniki, które są bardziej sprytne. Przełącznik działa na warstwie łącza danych i wysyła dane tylko do konkretnego portu, co sprawia, że sieć działa lepiej. Mimo, że jest bardziej zaawansowany niż koncentrator, nie robi routingu między różnymi sieciami. Często myli się go z routerem, ale jego zadanie to raczej zarządzanie ruchem w jednej sieci lokalnej, a nie między różnymi sieciami.

Pytanie 30

Symbol zaprezentowany powyżej, używany w dokumentacji technicznej, wskazuje na

Ilustracja do pytania
A. wymóg selektywnej zbiórki sprzętu elektronicznego
B. brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych
C. konieczność utylizacji wszystkich elementów elektrycznych
D. zielony punkt upoważniający do wniesienia opłaty pieniężnej na rzecz organizacji odzysku opakowań
Rozważając niepoprawne odpowiedzi, ważne jest zrozumienie ich podstawowych założeń i dlaczego mogą prowadzić do błędnych wniosków. Koncepcja konieczności utylizacji wszystkich elementów elektrycznych wydaje się intuicyjna, jednak nie jest zgodna z rzeczywistością prawną czy też praktykami branżowymi. Przepisy skupiają się nie tylko na utylizacji, ale przede wszystkim na recyklingu i ponownym użyciu wartościowych surowców. Z kolei brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych jako definicja tego symbolu jest błędnym uproszczeniem. Choć odpadów metalicznych rzeczywiście nie powinno się wyrzucać w sposób nieselektywny, to przekreślony kosz nie odnosi się bezpośrednio do tej kategorii odpadów. Natomiast zielony punkt upoważniający do wniesienia opłaty na rzecz organizacji odzysku opakowań to zupełnie inny symbol, który dotyczy systemu finansowania recyklingu materiałów opakowaniowych, a nie sprzętu elektronicznego. Tego rodzaju zrozumienie wskazuje na mylne utożsamienie różnych koncepcji zrównoważonego zarządzania odpadami. Ważne jest, aby jednoznacznie rozróżniać między nimi, szczególnie w kontekście regulacji takich jak dyrektywa WEEE, która skupia się na odpowiedzialnym zarządzaniu zużytym sprzętem elektronicznym przez wszystkich zainteresowanych uczestników rynku, od producentów po konsumentów.

Pytanie 31

Układy sekwencyjne stworzone z grupy przerzutników, zazwyczaj synchronicznych typu D, wykorzystywane do magazynowania danych, to

A. rejestry
B. bramki
C. kodery
D. dekodery
Bramki logiczne, kodery i dekodery są podstawowymi elementami cyfrowych układów logicznych, jednak nie są odpowiednie do przechowywania danych jak rejestry. Bramki, na przykład, to podstawowe elementy, które realizują funkcje logiczne, takie jak AND, OR, NOT, ale same w sobie nie mają zdolności do pamiętania stanu. Ich zadaniem jest jedynie przetwarzanie sygnałów wejściowych i generowanie sygnałów wyjściowych w czasie rzeczywistym. W odniesieniu do kodów, kodery są używane do konwertowania sygnałów wejściowych na bardziej skompaktowane reprezentacje binarne, co jest przydatne w procesach kompresji czy komunikacji, ale nie są one w stanie przechowywać danych na dłużej. Z kolei dekodery wykonują odwrotną operację, przekształcając sygnały binarne z powrotem na formę łatwiejszą do interpretacji, ale również nie służą do przechowywania danych. W praktyce, pomylenie tych elementów z rejestrami może prowadzić do błędnych wniosków o ich funkcjonalności. Kluczowe w zrozumieniu tej różnicy jest dostrzeganie, że rejestry operują w kontekście czasu i synchronizacji, co jest niezbędne do efektywnego zarządzania danymi w układach cyfrowych. Zrozumienie tych podstawowych różnic jest niezbędne do prawidłowego projektowania oraz analizy systemów cyfrowych.

Pytanie 32

Jakie polecenie powinno być użyte do obserwacji lokalnych połączeń?

A. netstat
B. route add
C. host
D. dir
Odpowiedzi 'dir', 'host' oraz 'route add' są błędne w kontekście monitorowania lokalnych połączeń sieciowych, ponieważ każde z tych poleceń pełni zupełnie inną funkcję w obszarze zarządzania systemem i siecią. Polecenie 'dir' jest używane do wyświetlania listy plików i folderów w danym katalogu, co nie ma nic wspólnego z monitorowaniem połączeń sieciowych. W sytuacji, gdy administratorzy potrzebują zrozumieć, jakie zasoby są dostępne na dysku, mogą skorzystać z tego polecenia, ale nie w kontekście analizy aktywności sieciowej. Z kolei polecenie 'host' służy do uzyskiwania informacji o adresach IP i domenach, co może być przydatne w kontekście rozwiązywania problemów związanych z DNS, ale nie dostarcza informacji o aktywnych połączeniach. Zrozumienie tego narzędzia jest istotne, jednak nie spełnia ono funkcji monitorowania połączeń. Natomiast 'route add' jest wykorzystywane do modyfikacji tablicy routingu w systemie operacyjnym; pozwala na dodawanie nowych tras, co może być przydatne w kontekście zarządzania ruchem sieciowym, ale również nie dotyczy monitorowania aktywnych połączeń. Te trzy narzędzia, mimo że są ważne w swoich kontekstach, prowadzą do nieporozumienia, gdy są stosowane w sytuacjach, gdzie wymagane jest zrozumienie rzeczywistych połączeń sieciowych. Często mylone jest pojęcie zarządzania plikami czy konfiguracji sieci z monitorowaniem, co może prowadzić do nieefektywnego diagnozowania problemów sieciowych oraz błędnych decyzji w obszarze administracji siecią.

Pytanie 33

Podaj polecenie w systemie Linux, które umożliwia określenie aktualnego katalogu użytkownika.

A. cls
B. pwd
C. mkdir
D. path
Odpowiedzi takie jak 'cls', 'path' czy 'mkdir' są mylące i nie spełniają funkcji identyfikacji bieżącego katalogu roboczego. 'cls' to polecenie używane w systemie Windows, które służy do czyszczenia ekranu terminala, a nie do sprawdzania lokalizacji. Użytkownicy często mylą je z podobnymi poleceniami, co prowadzi do nieporozumień w kontekście systemów Unixowych, w których 'clear' pełni rolę czyszczenia ekranu. Z kolei 'path' w systemach Unixowych nie jest poleceniem, a zmienną środowiskową, która określa zestaw katalogów, w których system operacyjny przeszukuje pliki wykonywalne. Użytkownicy mogą nie zdawać sobie sprawy, że zmiana zmiennej 'PATH' nie wpływa na lokalizację w terminalu, a jedynie definiuje, które foldery są przeszukiwane przy uruchamianiu programów. Natomiast 'mkdir' to polecenie do tworzenia nowych katalogów, co jest całkowicie inną czynnością, niezwiązaną z określaniem bieżącej lokalizacji. Często użytkownicy nowi w systemach Unixowych nie rozumieją różnicy między tymi poleceniami, co prowadzi do frustracji i pomyłek w codziennej pracy z systemem. Kluczowe jest zrozumienie, które polecenia służą do jakich celów, co nie tylko zwiększa efektywność pracy, ale również minimalizuje ryzyko błędów.

Pytanie 34

W dokumentacji płyty głównej znajduje się informacja "Wsparcie dla S/PDIF Out". Co to oznacza w kontekście tej płyty głównej?

A. analogowe złącze sygnału wyjścia wideo
B. analogowe złącze sygnału wejścia wideo
C. cyfrowe złącze sygnału audio
D. cyfrowe złącze sygnału wideo
Wybór opcji dotyczących analogowych złączy sygnałów video jest niepoprawny, ponieważ S/PDIF odnosi się wyłącznie do cyfrowego sygnału audio, a nie video. Zrozumienie różnicy między sygnałem analogowym a cyfrowym jest kluczowe w kontekście nowoczesnych systemów audio-wideo. Sygnały analogowe, w tym analogowe złącza sygnału wyjścia video, są podatne na różne zakłócenia, co może prowadzić do degradacji jakości obrazu i dźwięku. Z kolei cyfrowe złącza, takie jak S/PDIF, zapewniają lepszą jakość sygnału, ponieważ przesyłają dane w formie cyfrowej, co eliminuje błędy wynikające z zakłóceń elektromagnetycznych. Odpowiedzi dotyczące analogowych sygnałów wyjścia video mogą wynikać z mylenia terminów związanych z audio i video; jest to powszechny błąd wśród osób, które nie są dobrze zaznajomione z technologią audio-wideo. Aby poprawnie podłączyć źródło dźwięku do odpowiednich urządzeń, istotne jest, aby znać różne typy złączy i ich zastosowanie. W praktyce, wybór odpowiedniego złącza powinien opierać się na specyfikacji urządzeń oraz wymaganiach dotyczących jakości dźwięku i obrazu.

Pytanie 35

Zapis liczby w systemie oznaczonym jako #108 to

A. heksadecymalnym
B. binarnym
C. dziesiętnym
D. oktalnym
Odpowiedź heksadecymalna (#4) jest poprawna, ponieważ notacja # przed liczbą wskazuje na zapis liczby w systemie szesnastkowym, który używa 16 różnych cyfr: 0-9 oraz A-F. W systemie heksadecymalnym każda cyfra reprezentuje potęgę liczby 16, co czyni go efektywnym sposobem reprezentowania dużych wartości binarnych. Na przykład, liczba heksadecymalna 'A3' przekłada się na wartość dziesiętną 163 (A=10, 3=3, zatem 10*16^1 + 3*16^0 = 160 + 3). Heksadecymalny zapis jest szeroko stosowany w programowaniu, szczególnie przy definiowaniu kolorów w grafice komputerowej (np. #FF5733 reprezentuje kolor pomarańczowy) oraz w systemach operacyjnych do reprezentacji adresów pamięci. Znajomość systemu heksadecymalnego jest szczególnie ważna dla programistów i inżynierów, ponieważ pozwala na lepsze zrozumienie działania komputerów na poziomie bitowym, co jest kluczowe w kontekście optymalizacji kodu oraz rozwoju oprogramowania zgodnego z dobrymi praktykami branżowymi.

Pytanie 36

Wskaż rodzaj wtyczki zasilającej, którą należy połączyć z napędem optycznym podczas montażu komputera.

Ilustracja do pytania
A. Rys. B
B. Rys. D
C. Rys. C
D. Rys. A
Pozostałe wtyki przedstawione na ilustracjach pełnią różne funkcje w systemie komputerowym ale nie są używane do podłączania napędów optycznych Rysunek B przedstawia złącze ATX używane do zasilania płyty głównej Jest to jedno z najważniejszych złączy w systemie zapewniające energię dla najważniejszych komponentów komputera takich jak procesor i pamięć RAM Wtyk ten zazwyczaj posiada 20 lub 24 piny i jest kluczowy dla funkcjonowania całego systemu Rysunek C przedstawia złącze PCIe które jest używane do zasilania kart graficznych i innych komponentów o wysokim poborze mocy Takie złącze może mieć 6 lub 8 pinów w zależności od zapotrzebowania energetycznego danego urządzenia Wybór niewłaściwego złącza do napędu optycznego byłby błędny ponieważ karta graficzna wymaga specjalnego rodzaju zasilania i próba użycia tego złącza do napędu optycznego mogłaby prowadzić do uszkodzenia podzespołów lub niestabilności systemu Rysunek D pokazuje starsze złącze typu Molex które było używane w starszych modelach komputerów do zasilania dysków twardych i napędów optycznych Obecnie jednak standardem stały się złącza SATA co wynika z ich wyższej wydajności i lepszego zarządzania kablami Wybór złącza Molex zamiast SATA byłby niepraktyczny ze względu na ograniczenia przestrzenne i techniczne które czyniłyby montaż mniej efektywnym oraz mogłyby prowadzić do niepotrzebnych komplikacji w instalacji sprzętu Właściwe rozróżnienie typów złącz jest kluczowe dla efektywnego i bezpiecznego montażu zestawu komputerowego oraz zapewnienia jego optymalnego działania

Pytanie 37

Na załączonym zdjęciu znajduje się

Ilustracja do pytania
A. opaska do mocowania przewodów komputerowych
B. opaska uciskowa
C. bezprzewodowy transmiter klawiatury
D. opaska antystatyczna
Przy rozważaniu odpowiedzi na temat funkcji przedstawionych przedmiotów, należy zrozumieć specyficzne cechy każdego z nich. Opaska do upinania przewodów komputerowych służy do organizacji i porządkowania kabli, zapobiegając ich splątaniu i ułatwiając zarządzanie przestrzenią roboczą. Choć jest to praktyczne narzędzie, nie spełnia funkcji ochronnych związanych z ładunkami elektrostatycznymi. Transmiter klawiatury bezprzewodowej to urządzenie umożliwiające komunikację między klawiaturą a komputerem bez użycia kabli, co jest kluczowe w środowiskach, gdzie wygoda i mobilność są priorytetem. Jednakże nie dotyczy on ochrony przed wyładowaniami elektrostatycznymi. Opaska uciskowa, stosowana w medycynie, służy do tymczasowego zatrzymania przepływu krwi w określonych partiach ciała, np. podczas pobierania krwi, co również nie jest związane z ochroną elektroniki. Pojęcie opasek w kontekście elektroniki odnosi się głównie do opasek antystatycznych, które są nieodzowne w pracy z delikatnymi urządzeniami elektronicznymi. W wyniku błędnego rozumienia funkcji tych przedmiotów, można łatwo przeoczyć ich prawdziwe zastosowanie, co prowadzi do niepoprawnych wniosków. Kluczem do poprawnego zrozumienia jest precyzyjna znajomość zastosowań i branżowych praktyk każdego z wymienionych produktów, co jest istotne w kontekście profesjonalnych działań związanych z elektroniką. Właściwe rozróżnianie tych narzędzi jest kluczowe dla profesjonalistów, którzy muszą zapewnić bezpieczeństwo i efektywność pracy z urządzeniami elektronicznymi.

Pytanie 38

Polecenie uname -s w systemie Linux służy do identyfikacji

A. dostępnego miejsca na dysku twardym.
B. nazwa jądra systemu operacyjnego.
C. stanu aktywnych interfejsów sieciowych.
D. ilości dostępnej pamięci.
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji polecenia 'uname'. Na przykład, pierwsza odpowiedź dotycząca wolnej pamięci może być myląca; do monitorowania pamięci w systemie Linux używa się zazwyczaj poleceń takich jak 'free' lub 'top', które dostarczają informacji o aktualnym stanie pamięci operacyjnej. Odpowiedź dotycząca wolnego miejsca na dyskach twardych również jest niewłaściwa. W tym przypadku odpowiednie polecenia to 'df' (disk free) lub 'lsblk', które pokazują, ile miejsca pozostało na dyskach i jakie partycje są dostępne. Natomiast odpowiedź dotycząca statusu aktywnych interfejsów sieciowych można zweryfikować przez polecenia takie jak 'ifconfig' lub 'ip a', które umożliwiają dostęp do informacji o interfejsach sieciowych i ich konfiguracji. Te nieprawidłowe odpowiedzi wynikają z typowych błędów myślowych, gdzie użytkownicy mogą mylić różne narzędzia używane do monitorowania i zarządzania systemem Linux. Zrozumienie, które polecenie służy do jakiego celu, jest kluczowe w efektywnym zarządzaniu systemem oraz unikaniu nieporozumień, które mogą prowadzić do błędnej interpretacji danych lub niewłaściwego zarządzania zasobami systemowymi.

Pytanie 39

Na urządzeniu znajduje się symbol, który stanowi certyfikat potwierdzający zgodność sprzętu w zakresie emisji promieniowania, ergonomii, efektywności energetycznej oraz ekologii, co przedstawiono na rysunku

Ilustracja do pytania
A. rysunek D
B. rysunek C
C. rysunek A
D. rysunek B
Wybranie niewłaściwego symbolu może wynikać z mylnego rozumienia zakresu certyfikacji i znaczenia symboli. Symbol CE choć często spotykany na urządzeniach elektronicznych nie jest związany z emisją promieniowania ergonomią czy ekologią. Jest to oznaczenie wskazujące że produkt spełnia wymagania dyrektyw Unii Europejskiej dotyczące bezpieczeństwa zdrowia i ochrony środowiska. Nie obejmuje jednak szczegółowych standardów dotyczących ergonomii czy energooszczędności tak jak TCO. Symbol B jest mniej znanym oznaczeniem które nie odnosi się do emisji promieniowania czy ekologii. Często może być związany z oznaczeniami jakości w specyficznych krajach ale nie spełnia szerokiego spektrum wymagań tak jak TCO. Symbol TÜV SÜD reprezentuje akredytację od niemieckiej firmy zajmującej się testowaniem i certyfikacją produktów. Chociaż TÜV SÜD może obejmować testy dotyczące bezpieczeństwa i jakości to nie skupia się głównie na aspektach ergonomii czy energooszczędności określanych przez TCO. Błędne zrozumienie tych symboli może wynikać z niewystarczającej wiedzy na temat zakresu certyfikacji i wymagań jakie muszą spełniać urządzenia do uzyskania konkretnych certyfikatów. Uważna analiza zakresu działania każdej certyfikacji pomaga w zrozumieniu dlaczego symbol TCO jest właściwym wyborem w kontekście wymagań dotyczących promieniowania ergonomii energooszczędności i ekologii co jest kluczowe dla zrównoważonego rozwoju i komfortu użytkowania technologii w miejscu pracy.

Pytanie 40

Funkcja Intel Turbo Boost w mikroprocesorze umożliwia

A. automatyczne dostosowywanie częstotliwości działania mikroprocesora w zależności od obciążenia
B. aktywizację oraz dezaktywizację komponentów mikroprocesora w celu oszczędzania energii
C. wykonywanie skomplikowanych obliczeń przez dwa niezależne rdzenie, z których każdy może realizować do czterech pełnych instrukcji równocześnie
D. przeprowadzanie większej liczby instrukcji w jednym cyklu zegara
Funkcje mikroprocesorów są złożonymi mechanizmami, które wymagają precyzyjnego zrozumienia ich działania. Odpowiedzi, które sugerują, że Turbo Boost wiąże się z włączaniem i wyłączaniem elementów mikroprocesora w celu oszczędzania energii, są mylne. Choć oszczędzanie energii jest ważnym aspektem nowoczesnych mikroprocesorów, Turbo Boost nie polega na prostym włączaniu lub wyłączaniu rdzeni. Zamiast tego, technologia ta wpływa na regulację częstotliwości pracy istniejących rdzeni, co pozwala na elastyczne dopasowanie do obciążenia. Kiedy procesor nie potrzebuje pełnej mocy, nie oznacza to, że można go po prostu wyłączyć; zamiast tego, jego częstotliwość jest obniżana, co prowadzi do zmniejszenia zużycia energii. Inna odpowiedź wskazująca na wykonywanie rozległych obliczeń przez dwa niezależne rdzenie jest również błędna. Turbo Boost nie zwiększa liczby rdzeni, lecz optymalizuje wydajność już istniejących rdzeni poprzez zwiększenie ich częstotliwości. Ponadto, stwierdzenie, że pozwala na wykonywanie większej liczby instrukcji w jednym cyklu zegara, jest nieprecyzyjne. W rzeczywistości, Turbo Boost nie zmienia architektury procesora ani nie pozwala na równoległe przetwarzanie w sposób, który zwiększa liczbę wykonywanych instrukcji na cykl. Zrozumienie tych mechanizmów jest kluczowe dla efektywnego wykorzystania technologii mikroprocesorowej oraz prawidłowego podejścia do optymalizacji wydajności systemów komputerowych.