Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 10 listopada 2025 17:28
  • Data zakończenia: 10 listopada 2025 17:38

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby ograniczyć prąd płynący w obwodzie zasilania silnika indukcyjnego pierścieniowego podczas rozruchu, co należy zrobić?

A. zmienić kolejność faz w stojanie
B. zwiększyć obciążenie na wale
C. dostosować rozrusznik obwodu wirnika
D. przetoczyć pierścienie ślizgowe wirnika
Dopasowanie rozrusznika obwodu wirnika jest kluczowym działaniem mającym na celu zmniejszenie prądu rozruchowego silnika indukcyjnego pierścieniowego. W momencie uruchamiania silnika indukcyjnego, zwłaszcza w przypadku silników o dużej mocy, prąd rozruchowy może być kilkukrotnie większy od prądu nominalnego. Użycie rozrusznika, który ogranicza ten prąd, umożliwia płynne rozpoczęcie pracy silnika oraz zabezpiecza pozostałe elementy obwodu przed uszkodzeniem. Przykładem takiego rozrusznika jest rozrusznik z opornikami, który na początku wprowadza oporność do obwodu wirnika, a następnie stopniowo ją zmniejsza, co pozwala na kontrolowanie momentu obrotowego i prądu. W praktyce, prawidłowe dopasowanie rozrusznika do parametrów silnika i obciążenia ma kluczowe znaczenie dla efektywności energetycznej oraz długowieczności urządzenia, co jest zgodne z najlepszymi praktykami w branży. Warto również zwrócić uwagę na normy ustanowione przez organizacje takie jak IEC, które wskazują na znaczenie odpowiednich systemów rozruchowych w przemyśle.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaką czynność należy wykonać podczas konserwacji instalacji elektrycznej w biurze?

A. Zweryfikować działanie wyłącznika różnicowoprądowego za pomocą przycisku testowego
B. Zamienić przewody w rurach winidurowych
C. Wymienić wszystkie gniazda elektryczne
D. Sprawdzić średnicę wszystkich przewodów w instalacji
Sprawdzanie wyłącznika różnicowoprądowego przyciskiem testowym jest kluczowym etapem okresowej konserwacji instalacji elektrycznej. Wyłączniki różnicowoprądowe (RCD) mają za zadanie zabezpieczenie przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Użycie przycisku testowego pozwala na symulację sytuacji, w której RCD powinien zareagować, co potwierdza jego sprawność. Regularne testowanie tych urządzeń jest zgodne z normą PN-EN 61008-1, która zaleca, aby RCD były testowane co najmniej raz na 3 miesiące. W praktyce, jeżeli wyłącznik nie wyłącza obwodu po naciśnięciu przycisku testowego, oznacza to, że wymaga on natychmiastowej wymiany lub naprawy, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. W przypadku biura, gdzie pracuje wiele osób, poziom bezpieczeństwa elektrycznego powinien być szczególnie priorytetowy. Dodatkowo, zaleca się prowadzenie dokumentacji wykonanych testów.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Rezystancji uziomu
B. Impedancji pętli zwarcia
C. Prądu upływu w przewodzie ochronnym
D. Rezystancji izolacji przewodu ochronnego
Odpowiedź dotycząca impedancji pętli zwarcia jest poprawna, ponieważ jest to kluczowy parametr w ocenie ciągłości przewodu ochronnego w systemie TN-S. W systemach ochrony przeciwporażeniowej, takich jak TN-S, impedancja pętli zwarcia odgrywa istotną rolę w zapewnieniu skutecznej i szybkiej reakcji zabezpieczeń na zwarcie. Wysoka jakość przewodu ochronnego wymaga, aby jego impedancja była odpowiednio niska, co pozwala na szybkie załączenie wyłącznika nadprądowego w przypadku wystąpienia zwarcia. Praktyczne zastosowanie tego pomiaru można zobaczyć w trakcie testów instalacji elektrycznych, gdzie zmierzone wartości impedancji pętli zwarcia są porównywane z wymaganiami standardów, takich jak PN-IEC 60364, które wskazują na maksymalne wartości impedancji, aby zapewnić bezpieczeństwo użytkowników. Odpowiednia analiza impedancji pętli zwarcia jest także niezbędna w procesie odbioru instalacji elektrycznych oraz w regularnych przeglądach technicznych, co wpływa na długotrwałe i bezpieczne użytkowanie instalacji elektrycznej.

Pytanie 7

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 50 V
B. 12 V
C. 25 V
D. 60 V
Wartość skuteczna przemiennego napięcia dotykowego, która jest dopuszczalna długotrwale w warunkach normalnych dla rezystancji ciała ludzkiego wynoszącej około 1 kΩ, wynosi 50 V. To napotykane w praktyce napięcie odnosi się do wyjątkowo istotnych norm bezpieczeństwa elektrycznego, takich jak normy IEC 60479, które klasyfikują skutki działania prądu elektrycznego na ciało ludzkie. Napięcie dotykowe 50 V jest graniczną wartością, poniżej której ryzyko porażenia prądem jest znacznie mniejsze, a powyżej której mogą wystąpić niebezpieczne skutki. W praktyce oznacza to, że instalacje elektryczne, które są do 50 V, są uważane za bezpieczne przy normalnych warunkach użytkowania. Przykłady zastosowania tej wiedzy obejmują projektowanie systemów zasilania w budynkach mieszkalnych oraz w urządzeniach użytkowych, gdzie zastosowane napięcia nie powinny przekraczać tej wartości, aby zminimalizować ryzyko dla użytkowników, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie. Zrozumienie i przestrzeganie tych ograniczeń jest kluczowe dla bezpieczeństwa użytkowników oraz zgodności z obowiązującymi przepisami i normami branżowymi.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. B16
B. C10
C. B20
D. C16
Odpowiedź 'B16' jest prawidłowa, ponieważ dotyczy wyłącznika, który spełnia wymogi samoczynnego wyłączenia zasilania w przypadku uszkodzenia. W przypadku instalacji o napięciu 230 V, zasilanej z sieci TN-S, ważne jest, aby wyłącznik miał odpowiednią wartość prądową oraz aby czas zadziałania był krótki, co pozwoli na zabezpieczenie osób przed porażeniem prądem. Zgodnie z normą PN-EN 61008-1, dla instalacji o impedancji pętli zwarcia wynoszącej 2,5 Ω, maksymalny czas zadziałania wyłącznika powinien wynosić 0,4 sekundy. Wyłącznik typu B16, charakteryzujący się prądem znamionowym 16 A, jest w stanie skutecznie zadziałać w tym czasie, co czyni go odpowiednim do ochrony przed porażeniem. Przykładowo, w domowych instalacjach elektrycznych często stosuje się wyłączniki B16 do zabezpieczenia obwodów oświetleniowych lub gniazd zasilających, co dodatkowo wspiera bezpieczeństwo użytkowników.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Przerwanie pionowego uziomu w ziemi
B. Pogorszenie stanu mechanicznego połączeń przewodów
C. Obniżenie rezystancji izolacji przewodów
D. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
Pogorszenie się stanu mechanicznego połączeń przewodów jest odpowiedzią prawidłową, ponieważ podczas oględzin instalacji elektrycznej można fizycznie ocenić jakość połączeń. W praktyce, mechaniczne uszkodzenia, takie jak luźne złącza, korozja czy pęknięcia, mogą prowadzić do zwiększonego oporu, co z kolei zwiększa ryzyko przegrzewania się i potencjalnych awarii. Standardy takie jak PN-IEC 60364 podkreślają znaczenie regularnych inspekcji połączeń w celu zapewnienia ich niezawodności. W sytuacjach awaryjnych, takich jak pożar spowodowany zwarciem, wiele incydentów można przypisać właśnie do niewłaściwego stanu połączeń. Przykładem skutków takiego pogorszenia może być utrata ciągłości elektrycznej prowadząca do nieprawidłowego działania urządzeń czy nawet ich uszkodzenia. Dlatego też, podczas oględzin, należy szczegółowo badać stan wszystkich połączeń, aby zapewnić bezpieczeństwo i sprawność całej instalacji elektrycznej.

Pytanie 12

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 3 A
B. 1 A
C. 4 A
D. 2 A
Aby obliczyć wymagany zakres pomiarowy amperomierza dla silnika elektrycznego o mocy 0,55 kW, sprawności η = 70% oraz współczynniku mocy cosα = 0,96, należy najpierw obliczyć prąd pobierany przez urządzenie. Wzór na moc elektryczną to P = U * I * cosα, gdzie P to moc, U to napięcie, I to natężenie prądu, a cosα to współczynnik mocy. Przyjmując napięcie 230 V, przekształcamy wzór: I = P / (U * cosα). Wartość mocy czynnej P wynosi 0,55 kW / 0,7 (sprawność) = 0,7857 kW. Po podstawieniu wartości do wzoru otrzymujemy I = 0,7857 kW / (230 V * 0,96) co daje około 3,5 A. W związku z tym, potrzebny jest amperomierz o zakresie pomiarowym co najmniej 4 A, co daje możliwość bezpiecznego pomiaru prądu, uwzględniając ewentualne przeciążenia. W praktyce, dla pomiarów w instalacjach elektrycznych, zaleca się wybór przyrządów o zakresie pomiarowym przynajmniej 20% wyższym niż maksymalne oczekiwane wartości, co zapewnia dokładność i bezpieczeństwo pomiaru.

Pytanie 13

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Rodzaj materiału izolacyjnego.
B. Długość ułożonych przewodów.
C. Metoda ułożenia przewodów.
D. Przekrój poprzeczny żył.
Długość ułożonych przewodów nie wpływa na dopuszczalną obciążalność długotrwałą przewodów w instalacji elektrycznej, ponieważ obciążalność ta zależy od parametrów takich jak przekrój poprzeczny żył, materiał izolacji oraz sposób ułożenia przewodów. Przekrój żył determinuje opór elektryczny, co bezpośrednio wpływa na wydzielanie się ciepła i możliwość jego odprowadzania. Rodzaj materiału izolacji, takiego jak PVC czy XLPE, również ma kluczowe znaczenie, ponieważ różne materiały mają różne właściwości termiczne i odporność na wysoką temperaturę. Sposób ułożenia przewodów (np. w kanale kablowym, na otwartym powietrzu) wpływa na możliwość odprowadzania ciepła oraz na obciążalność cieplną. Przykładowo, przewody ułożone w pakietach mają ograniczone możliwości odprowadzania ciepła w porównaniu do przewodów luźno ułożonych. W praktyce, zgodność z normami, takimi jak PN-IEC 60364, jest kluczowa w projektowaniu i wykonaniu instalacji elektrycznych, co zapewnia bezpieczeństwo oraz efektywność energetyczną.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Organ inspekcji technicznej
B. Dostawca energii elektrycznej
C. Użytkownicy mieszkań
D. Właściciel lub zarządca nieruchomości
Właściciel lub zarządca budynku jest odpowiedzialny za sporządzenie planów okresowych kontroli i napraw instalacji elektrycznej, co wynika z przepisów prawa budowlanego oraz standardów dotyczących zarządzania budynkami. Właściciel budynku ma obowiązek zapewnienia bezpieczeństwa instalacji elektrycznej, co obejmuje regularne przeglądy, które mogą wykryć potencjalne zagrożenia, takie jak przestarzałe komponenty, uszkodzenia mechaniczne czy nieprawidłowe połączenia. W praktyce, właściciele i zarządcy często korzystają z usług wyspecjalizowanych firm zajmujących się audytem i konserwacją instalacji elektrycznych. Dobre praktyki branżowe wskazują, że takie kontrole powinny być przeprowadzane co najmniej raz w roku, a szczególnie w przypadku starszych budynków, gdzie ryzyko awarii jest wyższe. Dodatkowo, zgodnie z normą PN-IEC 60364-6, regularne inspekcje są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz minimalizacji ryzyka pożarowego. Właściciele powinni również prowadzić dokumentację tych przeglądów, co jest istotne nie tylko dla utrzymania standardów, ale także w kontekście ewentualnych roszczeń ubezpieczeniowych.

Pytanie 19

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Zwiększenie temperatury przewodu
B. Obniżenie obciążalności prądowej
C. Wzrost spadku napięcia na przewodach
D. Obniżenie rezystancji pętli zwarciowej
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 20

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. spisu terminów oraz zakresów prób i pomiarów kontrolnych
B. specyfikacji technicznej instalacji
C. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
D. opisu doboru urządzeń zabezpieczających
Opis doboru urządzeń zabezpieczających nie jest konieczny w instrukcji eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowo-prądowymi, ponieważ taki dobór powinien być już wykonany na etapie projektowania instalacji. Instrukcja eksploatacji koncentruje się na użytkowaniu oraz utrzymaniu instalacji, nie zaś na jej projektowaniu. W praktyce oznacza to, że wszystkie istotne decyzje dotyczące doboru wyłączników, takich jak typ, charakterystyka oraz zasady działania, powinny być przedstawione w dokumentacji projektowej, zgodnie z normami takimi jak PN-IEC 60947-2, które regulują zasady stosowania urządzeń zabezpieczających. Przykładem może być sytuacja, w której instalacja elektryczna już funkcjonuje i wymaga okresowych przeglądów – w takim przypadku istotne jest, aby instrukcja eksploatacji zawierała informacje o terminach przeglądów oraz zasadach ich przeprowadzania, a nie szczegóły dotyczące wcześniejszego doboru sprzętu. To pozwala na efektywne zarządzanie instalacją oraz zapewnia zgodność z przepisami BHP i normami technicznymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L2
B. Przewód N
C. Przewód L1
D. Przewód L3
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z jednofazowych wyłączników zabezpieczających spełnia wymagania ochrony przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. C16
B. B10
C. C10
D. B16
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy o charakterystyce B zapewnia odpowiednią ochronę przeciwporażeniową przy impedancji pętli zwarcia wynoszącej 4,2 Ω. W przypadku prądu zwarciowego, który może wynosić około 6-10 kA, czas wyłączenia powinien być maksymalnie 0,4 sekundy, aby zminimalizować ryzyko obrażeń ciała. Wyłącznik B10 charakteryzuje się wartością prądową 10 A oraz czasem zadziałania odpowiednim do ochrony ludzi w przypadku zwarcia. Normy PN-EN 60947-2 i PN-IEC 60364-4-41 podkreślają znaczenie odpowiedniego doboru wyłączników nadprądowych, a także określają wymagania dotyczące zabezpieczeń przed dotykiem bezpośrednim i pośrednim. W praktyce, zastosowanie tego typu wyłączników w instalacjach domowych i komercyjnych pozwala na efektywne zabezpieczenie obwodów przed przeciążeniami, a także zwiększa ogólne bezpieczeństwo użytkowników. Warto również zauważyć, że odpowiedni dobór wyłącznika wpływa na komfort korzystania z elektryczności w codziennym życiu oraz minimalizuje ryzyko awarii systemów elektrycznych.

Pytanie 25

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B16
B. B25
C. B20
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 26

Który z poniższych sposobów łączenia uzwojeń transformatora zapewnia jednoczesne zasilanie wszystkich faz?

A. Układ równoległy
B. Układ trójkąt-gwiazda
C. Układ szeregowy
D. Układ gwiazda-trójkąt
Układ gwiazda-trójkąt jest jednym z popularnych sposobów łączenia uzwojeń w transformatorach trójfazowych. W tym rozwiązaniu uzwojenie pierwotne transformatora połączone jest w układzie gwiazdy, a wtórne w układzie trójkąta. Taki sposób połączenia pozwala na efektywne zasilanie wszystkich trzech faz jednocześnie, co jest kluczowe w zastosowaniach przemysłowych. Gwiazda-trójkąt jest często stosowany, gdy potrzebujemy obniżyć napięcie z sieci przesyłowej na poziom użytkowy w zakładach produkcyjnych. Moim zdaniem, jedną z głównych zalet tego układu jest jego zdolność do redukcji prądów w fazach transformatora, co przyczynia się do zwiększenia efektywności energetycznej i zmniejszenia strat cieplnych. W praktyce, transformator z układem gwiazda-trójkąt może być częścią infrastruktury zasilającej różnorodne maszyny, które wymagają stabilnego i wydajnego dostarczania energii. Zastosowanie tego układu jest zgodne z dobrymi praktykami w branży elektroenergetycznej, co jest szczególnie ważne przy projektowaniu systemów zasilania w dużych obiektach przemysłowych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80
A. 30,82 A
B. 32,66 A
C. 37,72 A
D. 38,64 A
Obciążalność prądowa przewodu YDY w temperaturze 50°C to 32,66 A. Dlaczego tak jest? Otóż przy tej temperaturze używa się współczynnika poprawkowego dla PVC, który wynosi 0,71. Przewód w 30°C miał obciążalność 46 A, ale wyższa temperatura sprawia, że musi być ona niższa. Żeby obliczyć nową wartość, wystarczy pomnożyć 46 A przez 0,71 i mamy 32,66 A. To ważne, żeby to zrozumieć, bo przy projektowaniu instalacji elektrycznych bezpieczeństwo jest kluczowe. Jak nie zastosujesz współczynników, to przewody mogą się przeciążać, co prowadzi do ich uszkodzenia, a w najgorszym wypadku do pożaru. Na przykład w miejscach, gdzie przewody są w izolowanych lub ciasnych przestrzeniach, takie obliczenia są naprawdę istotne. Projektanci muszą znać normy, jak PN-IEC 60364, żeby wszystko było zgodne z wymaganiami i dostosowane do warunków, w jakich będą pracować.

Pytanie 30

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. B.
B. D.
C. A.
D. C.
Odpowiedź C jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz standardami technicznymi, pomiary skuteczności ochrony przeciwporażeniowej w szkołach powinny być przeprowadzane co 5 lat, natomiast pomiary rezystancji izolacji wymagają okresowego sprawdzania co rok. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników obiektów edukacyjnych, gdzie prawidłowa ochrona przed porażeniem prądem elektrycznym jest kluczowa. Przykładowo, w przypadku awarii systemów ochronnych, konsekwencje mogą być nie tylko materialne, ale przede wszystkim zdrowotne, zagrażające życiu uczniów i personelu. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zmniejszenia ryzyka wypadków. Warto zwrócić uwagę na standardy, takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące instalacji elektrycznych oraz ich okresowej konserwacji. Przestrzeganie tych zasad jest nie tylko obowiązkiem, ale również najlepszą praktyką w zarządzaniu bezpieczeństwem elektrycznym w obiektach edukacyjnych.

Pytanie 31

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. spisu terminów oraz zakresów testów i pomiarów kontrolnych
B. charakterystyki technicznej instalacji
C. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
D. opisu doboru urządzeń zabezpieczających
Twoja odpowiedź jest całkiem trafna. Wiesz, że instrukcje dotyczące eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowoprądowymi nie muszą zawierać szczegółowych informacji o doborze urządzeń. Z mojego doświadczenia, dobór tych urządzeń najczęściej robi się na etapie projektowania, według norm, jak chociażby PN-IEC 60364-1. W instrukcji powinno być raczej opisane, jak działają już wybrane urządzenia, ich typy i zasady użytkowania. Na przykład, lista terminów i zakresów prób oraz pomiarów kontrolnych jest kluczowa, żeby wszystko działało bezpiecznie i sprawnie. No i oczywiście, zasady bezpieczeństwa przy pracach eksploatacyjnych to podstawa, bo przecież chcemy zminimalizować ryzyko wypadków. Dobrze, żeby dokumentacja była jasna i zgodna z aktualnymi przepisami – to przecież wpływa na bezpieczeństwo i efektywność pracy. Instrukcja to powinna być pomoc, która zapewnia, że instalacja będzie działać prawidłowo, a nie miejsce na podstawowe zasady doboru zabezpieczeń.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 500 mA
B. 100 mA
C. 30 mA
D. 1 000 mA
Wyłącznik RCD o znamionowym prądzie różnicowym 30 mA jest zalecany do ochrony osób przed porażeniem elektrycznym, szczególnie w obwodach zasilających gniazda wtyczkowe, gdzie może wystąpić kontakt z wodą lub innymi substancjami przewodzącymi. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki te są projektowane w celu wykrywania niewielkich różnic prądowych, które mogą wskazywać na niebezpieczne sytuacje. Przykładowo, w łazienkach, kuchniach czy miejscach narażonych na wilgoć, użycie RCD 30 mA znacząco zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko porażenia prądem. Dodatkowo, warto zauważyć, że wyłączniki o wyższych wartościach prądów różnicowych, jak 100 mA czy 500 mA, są zazwyczaj stosowane w obwodach ochrony przeciwpożarowej, a nie w zastosowaniach bezpośrednio związanych z użytkownikami, co czyni 30 mA optymalnym wyborem w kontekście ochrony osób.

Pytanie 36

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Zewnętrznego oplotu włóknistego
B. Pancerza stalowego
C. Powłoki polietylenowej
D. Żył aluminiowych
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YDYżo 5x2,5 mm2
B. YStY 5xl mm2
C. YSLY 3x2,5 mm2
D. YADY 3x4 mm2
Wybór przewodów YADY 3x4 mm2, YSLY 3x2,5 mm2 oraz YStY 5xl mm2 na instalację siłową w układzie TN-S niesie za sobą szereg nieprawidłowych koncepcji. Przewód YADY, mimo że ma większy przekrój, jest przeznaczony głównie do instalacji sygnalizacyjnych i telekomunikacyjnych, co nie spełnia wymogów dla instalacji siłowej. YSLY to przewód ekranowany, którego zastosowanie w takim układzie jest ograniczone i niewłaściwe dla zasilania, ponieważ nie zapewnia odpowiedniej ochrony przed przeciążeniem i zwarciem. Z kolei YStY to przewód z żyłami aluminiowymi, który w kontekście instalacji siłowych nie jest zalecany, ponieważ aluminium ma gorsze właściwości przewodzenia prądu oraz może prowadzić do problemów z połączeniami, co w efekcie zwiększa ryzyko awarii. Wybór niewłaściwego przewodu do instalacji siłowych może skutkować przegrzewaniem się przewodów oraz stwarzać zagrożenie dla bezpieczeństwa użytkowników. Dlatego kluczowe jest, aby do instalacji siłowych stosować przewody zgodne z normami oraz dobrymi praktykami branżowymi, co pozwala na zapewnienie zarówno efektywności, jak i bezpieczeństwa systemu elektrycznego.