Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 22 stycznia 2026 07:57
  • Data zakończenia: 22 stycznia 2026 08:06

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

Ilustracja do pytania
A. YDY
B. YKY
C. UTP
D. LgY
Przewód typu YKY jest najlepszym wyborem do wykonania wewnętrznej linii zasilającej (WLZ) w instalacji trójfazowej. Jego konstrukcja, oparta na miedzi i izolacji PVC, zapewnia odporność na różne warunki atmosferyczne oraz mechaniczne uszkodzenia, co jest kluczowe w instalacjach zarówno wewnętrznych, jak i zewnętrznych. W praktyce, YKY jest często stosowany w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagana jest stabilna i bezpieczna dostawa energii elektrycznej. Użycie przewodu YKY pozwala na zachowanie wysokiej wydajności energetycznej oraz minimalizację strat energii. Dodatkowo, zgodność z normami PN-EN 60228 oraz PN-EN 50525 potwierdza jego zastosowanie w instalacjach trójfazowych. Wybór YKY zamiast YDY jest uzasadniony tym, że YDY, mimo że również wykonany z miedzi, ma mniejszą odporność na czynniki zewnętrzne, co może prowadzić do uszkodzeń w trudniejszych warunkach. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznej.

Pytanie 2

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Przekształcenie prądu przemiennego na stały
B. Regulacja napięcia wyjściowego
C. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
D. Ochrona przed przeciążeniem obwodu
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 3

W układzie prostego jednofazowego przekształtnika AC-DC zasilanego z sieci 230 V, którego schemat ideowy przedstawiono na rysunku, uległa uszkodzeniu jedna z diod prostowniczych. W czasie pracy odbiornik R0 pobiera znamionowy prąd o wartości 20 A. Pojemność kondensatora wynosi 1 mF. Którą z wymienionych diod można zastosować w miejsce uszkodzonej?

Ilustracja do pytania
A. D22-20R-02
B. D22-10R-02
C. D22-20R-04
D. D22-10R-04
Stosowanie diod o niewłaściwych parametrach może prowadzić do poważnych problemów w działaniu układów elektronicznych. Odpowiedzi, które nie spełniają wymagań dotyczących napięcia wstecznego lub prądu znamionowego, mogą w warunkach rzeczywistych prowadzić do ich uszkodzenia. Na przykład, dioda D22-10R-02 ma maksymalne napięcie wsteczne, które jest zbyt niskie, ponieważ nie osiąga wymaganego progu 325 V. Użycie takiej diody w układzie zasilającym 230 V może prowadzić do sytuacji, w której dioda nie wytrzyma napięcia, co skutkuje jej zniszczeniem i potencjalnym uszkodzeniem całego układu. Podobnie, dioda D22-10R-04, mimo że ma odpowiednie napięcie wsteczne, ma zaledwie 10 A prądu znamionowego, co jest niewystarczające w odniesieniu do 20 A pobieranego przez odbiornik. W kontekście przekształtników AC-DC, dążenie do zastosowania komponentów o wyższych parametrach niż podstawa jest kluczowe. Wiele osób nie zdaje sobie sprawy, że błędny dobór diod może prowadzić do nieprzewidywalnych awarii, które są nie tylko kosztowne, ale też czasochłonne w naprawie. Warto przypomnieć, że w elektronice, w szczególności przy projektowaniu zasilaczy, kluczowe jest stosowanie się do dobrych praktyk inżynieryjnych, które podkreślają znaczenie odpowiedniego doboru elementów dla zapewnienia stabilności i bezpieczeństwa działania układu.

Pytanie 4

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 500 mA
B. 30 mA
C. 100 mA
D. 1 000 mA
Wybór wyłącznika różnicowoprądowego o prądzie różnicowym 100 mA, 500 mA lub 1 000 mA jest niewłaściwy w kontekście ochrony przed porażeniem prądem elektrycznym w obwodach gniazd wtyczkowych. Wyłączniki o wyższych wartościach prądu różnicowego są przeznaczone głównie do ochrony obwodów przed pożarem spowodowanym prądami upływowymi, a nie do natychmiastowej ochrony osób. Wyłącznik o prądzie różnicowym 100 mA może być stosowany w obwodach, gdzie ochrona przed porażeniem nie jest kluczowa, jak w przypadku dedykowanych obwodów zasilających urządzenia przemysłowe, w których ryzyko kontaktu z człowiekiem jest ograniczone. Prąd różnicowy 500 mA i 1 000 mA to wartości, które są zbyt wysokie dla skutecznej ochrony ludzi, co może prowadzić do tragicznych konsekwencji w przypadku wystąpienia porażenia elektrycznego. Użytkownicy często mylą te wartości, sądząc, że im wyższy prąd różnicowy, tym lepsza ochrona, co jest błędnym rozumowaniem. W rzeczywistości, niższe wartości prądu różnicowego, takie jak 30 mA, są kluczowe dla zapewnienia szybkiej reakcji w sytuacjach zagrożenia życia i zdrowia. Ochrona przed porażeniem powinna być zawsze priorytetem w projektowaniu instalacji elektrycznych, co jest zgodne z normami i najlepszymi praktykami w branży.

Pytanie 5

Który z wymienionych pomiarów można wykonać miernikiem przedstawionym na rysunku?

Ilustracja do pytania
A. Odległość.
B. Temperaturę.
C. Natężenie oświetlenia.
D. Prędkość obrotową.
Miernik przedstawiony na rysunku to cyfrowy prędkościomierz obrotowy, znany również jako tachometr. Jego głównym celem jest pomiar prędkości obrotowej różnych elementów maszyn, co jest kluczowe w wielu branżach, takich jak przemysł motoryzacyjny, lotniczy czy produkcyjny. Przy pomocy tego urządzenia można szybko i dokładnie określić, w jakim tempie obracają się wały silników czy inne wirniki. Przykładem zastosowania są testy wydajności silników, gdzie monitorowanie prędkości obrotowej jest kluczowe dla oceny ich pracy i efektywności. Dodatkowo, tachometry są wykorzystywane w konserwacji maszyn, pozwalając na wykrywanie usterek poprzez analizę nieprawidłowości w prędkości obrotowej, co jest istotne dla zapewnienia bezpieczeństwa operacji. Warto również zauważyć, że urządzenia te są zgodne z normami ISO, które określają standardy w pomiarach prędkości obrotowej.

Pytanie 6

W obwodzie gniazd jednofazowych zabezpieczonym wyłącznikiem nadprądowym CLS6 B20, zmierzona impedancja pętli zwarcia ZL-N wynosi 0,1 Ω. Na podstawie zamieszczonej tabeli dobierz najmniejszy prąd znamionowy poprzedzającego wyłącznik zabezpieczenia topikowego tak, aby była zachowana selektywność zadziałania zabezpieczeń.

Ilustracja do pytania
A. 63 A
B. 50 A
C. 35 A
D. 80 A
Wybór prądu znamionowego 50 A, 35 A lub 80 A dla zabezpieczenia topikowego w kontekście selektywności zadziałania zabezpieczeń nie jest prawidłowy, ponieważ każdy z tych wyborów nie spełnia kryteriów wymaganych do zapewnienia optymalnej ochrony obwodów. W przypadku prądu 50 A, zabezpieczenie topikowe będzie miało zbyt niski prąd znamionowy w porównaniu do prądu zwarcia, co może prowadzić do zadziałania obu zabezpieczeń, zamiast jedynie wyłącznika nadprądowego. To zjawisko nazywane jest brakiem selektywności, co skutkuje zbędnym wyłączeniem zasilania w większej części instalacji. Wybór 35 A również jest niewłaściwy, ponieważ zabezpieczenie to nie zadziała w sytuacji wystąpienia zwarcia, jeśli prąd zwarcia przekroczy jego wartość, co prowadzi do niebezpiecznej sytuacji, gdy inne obwody mogą pozostać zasilane, co jest sprzeczne z zasadami bezpieczeństwa. Z kolei wybór 80 A jest całkowicie pomyłkowy, ponieważ zabezpieczenie topikowe może nie zareagować w odpowiednim czasie, narażając instalację na uszkodzenia spowodowane przeciążeniem lub zwarciem. Zgodnie z zasadami ochrony i normami, takimi jak PN-EN 60947-2, kluczowe jest, aby dobrać prąd znamionowy zabezpieczeń w taki sposób, aby zapewnić odpowiednie reakcje w sytuacjach awaryjnych, co nie jest spełnione w przypadku tych trzech odpowiedzi.

Pytanie 7

Który z przedstawionych przyrządów jest przeznaczony do wykrywania nadmiernie trących ruchomych elementów maszyn elektrycznych podczas ich pracy?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 3.
C. Przyrząd 2.
D. Przyrząd 1.
Wybór pozostałych przyrządów jako narzędzi do wykrywania nadmiernego tarcia w ruchomych elementach maszyn elektrycznych jest niezgodny z zasadniczymi funkcjami, jakie pełnią te urządzenia. Multimetry, na przykład, są przeznaczone do pomiaru wielkości elektrycznych takich jak napięcie, prąd i rezystancja, co w kontekście tarcia nie ma zastosowania. Użytkownicy mogą mylnie zakładać, że pomiar parametrów elektrycznych może być wystarczający do oceny stanu elementów mechanicznych, co jest błędne, ponieważ tarcie i generowanie ciepła są procesami mechaniczno-fizycznymi, a nie elektrycznymi. Niezrozumienie różnicy pomiędzy tymi kategoriami przyrządów może prowadzić do niewłaściwej diagnostyki, co skutkuje nieprawidłowymi decyzjami dotyczącymi konserwacji i eksploatacji maszyn. W praktyce, ignorowanie metody detekcji termograficznej może prowadzić do poważnych awarii, a tym samym do wyższych kosztów związanych z naprawami oraz przestojami w produkcji. Dlatego kluczowym elementem skutecznego zarządzania urządzeniami jest umiejętność doboru odpowiednich przyrządów w zależności od rodzaju problemu, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej oraz utrzymania ruchu.

Pytanie 8

Jaki parametr silnika elektrycznego można zmierzyć mostkiem tensometrycznym, którego schemat ideowy zamieszczono na rysunku?

Ilustracja do pytania
A. Prędkość obrotową.
B. Położenie kątowe wału.
C. Moment obrotowy.
D. Temperaturę uzwojeń.
Zrozumienie, jakie parametry można mierzyć w silnikach elektrycznych, jest kluczowe dla skutecznej obsługi i diagnostyki tych urządzeń. Wybór takich parametrów, jak temperatura uzwojeń, prędkość obrotowa czy położenie kątowe wału, może wydawać się intuicyjny, jednak nie są one bezpośrednio mierzone za pomocą mostków tensometrycznych. Temperatura uzwojeń jest zazwyczaj monitorowana za pomocą termistorów lub czujników temperatury, które są w stanie dokładnie rejestrować zmiany temperatury w czasie rzeczywistym. Prędkość obrotowa jest natomiast mierzona za pomocą enkoderów lub tachometrów, które dostarczają precyzyjnych informacji o ilości obrotów wału w jednostce czasu. W przypadku położenia kątowego wału, stosuje się różne czujniki, takie jak potencjometry lub czujniki Halla. Te urządzenia działają na zupełnie innych zasadach fizycznych niż mostek tensometryczny, który jest zaprojektowany do pomiaru deformacji. Często zdarzają się błędy myślowe, gdzie użytkownicy mylą różne metody pomiarowe i ich zastosowanie, co może prowadzić do niewłaściwych wniosków. Zrozumienie specyfiki każdego z tych czujników oraz ich odpowiednich zastosowań w kontekście pomiarów silników elektrycznych ma kluczowe znaczenie dla skutecznej diagnostyki oraz optymalizacji ich pracy.

Pytanie 9

Który z poniższych sposobów łączenia uzwojeń transformatora zapewnia jednoczesne zasilanie wszystkich faz?

A. Układ równoległy
B. Układ szeregowy
C. Układ gwiazda-trójkąt
D. Układ trójkąt-gwiazda
Układ trójkąt-gwiazda, choć podobny do układu gwiazda-trójkąt, działa na odwrót – uzwojenie pierwotne jest połączone w trójkąt, a wtórne w gwiazdę. Taki układ nie jest typowo stosowany do jednoczesnego zasilania wszystkich faz, ponieważ ma inne zastosowania, takie jak redukcja prądu rozruchowego w silnikach trójfazowych. Układ równoległy odnosi się do połączenia równoległego, które nie jest stosowane w przypadku uzwojeń transformatorów trójfazowych. Transformator działa na zasadzie indukcji elektromagnetycznej, a nie przepływu prądu jak w połączeniu równoległym, co czyni tę koncepcję nieodpowiednią. Układ szeregowy odnosi się do połączenia szeregowego, które również nie jest stosowane w transformatorach trójfazowych do zasilania wszystkich faz jednocześnie. W szeregowych połączeniach uzwojeń, napięcie się sumuje, co jest przydatne w innych kontekstach, ale nie w przypadku zasilania trójfazowego. Typowym błędem jest myślenie, że wszystkie te układy mogą być stosowane zamiennie w transformatorach, co nie jest prawdą. Każdy z nich ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez zrozumienia ich funkcji oraz wpływu na działanie całego systemu zasilającego.

Pytanie 10

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Pojawienia się przepięcia.
B. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
C. Podwyższenia częstotliwości ponad wartość nominalną.
D. Nadkompensacji sieci.
Samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej z generatora synchronicznego zadziała w momencie zwiększenia mocy pobieranej ponad wartość mocy wytwarzanej. W sytuacji, gdy zapotrzebowanie na moc przekracza moc generowaną przez system, dochodzi do spadku częstotliwości w sieci. Generator synchroniczny, aby dostosować się do nowego obciążenia, może zredukować częstotliwość obrotową, co w efekcie może prowadzić do zwiększenia mocy generowanej przez jednostki w systemie. W praktyce, aby przeciwdziałać tym zmianom, stosuje się mechanizmy automatycznego odciążenia, które w odpowiedzi na wzrost poboru mocy, aktywują rezerwy mocy dostępne w sieci. Przykładem zastosowania SCO może być sytuacja w sieci rozdzielczej, gdzie nagły wzrost poboru mocy przez dużego odbiorcę wymaga natychmiastowej reakcji generatorów w celu utrzymania stabilności systemu. Standardy takie jak NERC i IEC podkreślają znaczenie takich mechanizmów w zapewnieniu niezawodności i stabilności systemów elektroenergetycznych.

Pytanie 11

Na rysunku przedstawiono uszkodzenie wykryte w puszce podczas oględzin instalacji elektrycznej budynku mieszkalnego. Jaka mogła być przyczyna takiego uszkodzenia?

Ilustracja do pytania
A. Uszkodzony wyłącznik RCD.
B. Poluzowane połączenia przewodów w puszce.
C. Przerwa w przewodzie neutralno-ochronnym od strony zasilania.
D. Zbyt duża rezystancja uziemienia ochronnego budynku.
Odpowiedź "Poluzowane połączenia przewodów w puszce" jest prawidłowa, ponieważ na zdjęciu widać wyraźne oznaki przepalenia przewodów, co jest typowym skutkiem nieprawidłowych połączeń elektrycznych. Poluzowane połączenia mogą prowadzić do pojawienia się łuków elektrycznych, które generują wysoką temperaturę, co skutkuje uszkodzeniem izolacji przewodów. W praktyce, zapewnienie solidnych połączeń elektrycznych jest kluczowe dla bezpieczeństwa instalacji. Normy takie jak PN-IEC 60364 podkreślają znaczenie odpowiedniej jakości połączeń w instalacjach elektrycznych. Warto również zwrócić uwagę na regularne przeglądy i konserwację instalacji, co pozwoli na wczesne wykrywanie problemów związanych z poluzowaniem połączeń. Właściwe techniki montażu oraz użycie odpowiednich narzędzi i materiałów mogą również znacznie zredukować ryzyko wystąpienia tego typu uszkodzeń.

Pytanie 12

Jakie powinno być maksymalne wskazanie amperomierza do pomiaru natężenia prądu w instalacji zasilanej napięciem 230/400 V o częstotliwości 50 Hz, zasilanej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, n = 70%, cosφ = 0,96?

A. 4A
B. 1A
C. 3A
D. 2A
Wybór niewłaściwego zakresu pomiarowego amperomierza może prowadzić do poważnych błędów w pomiarach oraz potencjalnych uszkodzeń sprzętu. Na przykład, zbyt niski zakres pomiarowy, jak 1A czy 2A, nie uwzględnia rzeczywistego natężenia prądu, które może przekroczyć te wartości, zwłaszcza w przypadku rozruchu silnika, gdzie prąd może być znacznie wyższy niż nominalny. Takie podejście jest niebezpieczne, ponieważ może prowadzić do uszkodzeń amperomierza lub podzespołów instalacji. Dodatkowo, nie uwzględniając współczynnika mocy, można błędnie ocenić rzeczywiste natężenie prądu, co również wpływa na dokładność pomiaru. Przy pomiarach w instalacjach elektrycznych ważne jest również przestrzeganie dobrych praktyk, takich jak stosowanie urządzeń o odpowiednich parametrach technicznych oraz zapewnienie marginesu bezpieczeństwa, co jest kluczowe dla ochrony zarówno urządzeń, jak i osób pracujących w pobliżu instalacji. Wybór amperomierza powinien być zatem oparty na rzetelnych obliczeniach oraz analizie wszystkich czynników wpływających na obciążenie instalacji.

Pytanie 13

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
B. spadek prędkości obrotowej silnika
C. wzrost prędkości obrotowej silnika
D. unieruchomienie silnika
Utrata częstotliwości napięcia zasilania podczas pracy silnika indukcyjnego nie prowadzi do zwiększenia prędkości obrotowej silnika. Wręcz przeciwnie, częstotliwość zasilania jest jednym z kluczowych parametrów wpływających na prędkość obrotową. W przypadku zmniejszenia częstotliwości można zaobserwować spadek prędkości obrotowej silnika, co jest zgodne z podstawowymi zasadami elektrotechniki. Niekiedy można mylnie sądzić, że zmniejszenie częstotliwości może doprowadzić do zatrzymania silnika, jednakże silniki indukcyjne mają możliwość pracy w zakresie zmniejszonej prędkości, co może skutkować ich przegrzewaniem, a w ekstremalnych przypadkach może prowadzić do uszkodzenia, ale nie do natychmiastowego zatrzymania. Stwierdzenie, że prędkość obrotowa pozostaje na tym samym poziomie, jest również wprowadzeniem w błąd, ponieważ zmiana częstotliwości w końcu wpływa na dynamikę ruchu. W praktyce, zrozumienie tego zjawiska jest kluczowe dla efektywnego wykorzystania silników w aplikacjach przemysłowych, gdzie precyzyjna kontrola nad prędkością jest niezbędna dla zapewnienia prawidłowego działania maszyn i procesów.

Pytanie 14

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L2
B. Przewód N
C. Przewód L3
D. Przewód L1
W instalacjach trójfazowych przewody oznaczone jako L1, L2 i L3 pełnią rolę przewodów fazowych. Każdy z nich dostarcza prąd przemienny o przesunięciu fazowym 120 stopni względem pozostałych, co pozwala na efektywne wykorzystanie mocy elektrycznej. Przewody te są podstawowymi elementami w systemach trójfazowych, które są powszechnie stosowane ze względu na ich zdolność do przenoszenia większych mocy i lepszej stabilności w porównaniu do systemów jednofazowych. Często błędnie zakłada się, że przewód neutralny również pełni funkcję fazową, co nie jest prawdą. Przewody fazowe L1, L2 i L3 są odpowiedzialne za dostarczanie energii do odbiorników, podczas gdy przewód neutralny służy do zamykania obwodu i wyrównywania potencjałów. Błędne myślenie polega na traktowaniu wszystkich przewodów w instalacjach trójfazowych jako fazowych, co może prowadzić do nieporozumień i błędów w projektowaniu i konserwacji systemów. Zrozumienie odmiennych funkcji tych przewodów pozwala na bardziej efektywne i bezpieczne zarządzanie instalacjami elektrycznymi, co jest kluczowe dla techników zajmujących się eksploatacją urządzeń elektrycznych. Wiedza ta jest niezbędna dla prawidłowego projektowania, montażu i utrzymania instalacji, co w konsekwencji minimalizuje ryzyko awarii i zwiększa bezpieczeństwo użytkowania.

Pytanie 15

Którego z przedstawionych na rysunkach aparatów należy użyć do zabezpieczenia silnika trójfazowego przed zanikiem fazy, asymetrią napięć i niewłaściwą kolejnością faz?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybierając odpowiedzi A, C lub D, można być narażonym na poważne błędy w koncepcji zabezpieczeń silników trójfazowych. Urządzenia przedstawione na tych rysunkach nie są przekaźnikami kontroli faz, co oznacza, że nie spełniają kluczowej funkcji monitorowania kolejności faz oraz asymetrii napięć. Na przykład aparat A może być przekaźnikiem ogólnym, który nie ma odpowiednich funkcji zabezpieczających. Często mylnie sądzą, że prostsze urządzenia pomiarowe mogą wystarczyć do ochrony silników przed skomplikowanymi problemami związanymi z zasilaniem trójfazowym. To podejście jest niebezpieczne, ponieważ może prowadzić do sytuacji, w których silnik będzie narażony na niekorzystne warunki pracy, co w konsekwencji może skutkować kosztownymi naprawami lub całkowitą wymianą sprzętu. Zrozumienie, jakie konkretne funkcje powinno mieć urządzenie ochronne, jest kluczowe dla zapewnienia odpowiedniego poziomu bezpieczeństwa. Często występującym błędem jest również lekceważenie aspektu monitorowania asymetrii napięć, co w praktyce może prowadzić do obniżonej wydajności oraz skrócenia żywotności silnika. Prawidłowe dobieranie elementów zabezpieczeń powinno opierać się na analizie ryzyka i znajomości parametrów technicznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 16

Aby przeprowadzić pomiar rezystancji metodą techniczną, należy przygotować

A. amperomierz i woltomierz
B. mostek Thomsona
C. omomierz oraz woltomierz
D. mostek Wheatstone'a
Istnieją różne metody pomiaru rezystancji, jednak nie wszystkie z nich są odpowiednie do pomiarów technicznych w tym kontekście. Wykorzystanie mostka Wheatstone'a do pomiaru rezystancji jest jedną z popularnych metod, ale nie jest to podejście, które wykorzystuje amperomierz i woltomierz bezpośrednio. Mostek Wheatstone'a działa na zasadzie porównywania nieznanej rezystancji z rezystancjami znanymi, co wymaga bardziej złożonego układu, w którym zbalansowanie mostka jest kluczowe. Dodatkowo, mostek Thomsona, chociaż również używany do pomiaru rezystancji, jest bardziej skomplikowany i odnosi się do sytuacji, w których występują dodatkowe czynniki wpływające na pomiar, takie jak temperatura. Z kolei omomierz to urządzenie elektroniczne, które mierzy rezystancję i robi to automatycznie, ale w kontekście pytania o metodę techniczną, pomiar za pomocą omomierza nie odzwierciedla zasady Ohma w sposób bezpośredni, ponieważ nie uwzględnia pomiaru napięcia i natężenia prądu. Często pojawiają się mylne interpretacje, które prowadzą do przekonania, że inne urządzenia mogą zastąpić amperomierz i woltomierz. Kluczowe jest zrozumienie, że podstawowym warunkiem prawidłowego pomiaru rezystancji jest zastosowanie metody, która opiera się na bezpośrednich pomiarach napięcia i natężenia prądu, co umożliwia dokładne obliczenie rezystancji zgodnie z zasadą Ohma.

Pytanie 17

Na rysunku przedstawiono tabliczkę zaciskową typowego silnika trójfazowego z uzwojeniami stojana połączonymi w gwiazdę. Które pary zacisków po zdjęciu metalowego zwieracza należy ze sobą zewrzeć, aby uzwojenia silnika zostały skojarzone w trójkąt?

Ilustracja do pytania
A. 1-5, 2-4, 3-6
B. 1-4, 2-5, 3-6
C. 1-6, 2-4, 3-5
D. 1-5, 2-6, 3-4
Poprawna odpowiedź to '1-4, 2-5, 3-6'. Zmiana połączenia uzwojeń silnika z konfiguracji w gwiazdę na trójkąt jest kluczowym działaniem, które wpływa na parametry pracy silnika, takie jak moment obrotowy i obciążalność. W przypadku połączenia w trójkąt, końce uzwojeń są połączone w taki sposób, że każdy z uzwojeń jest bezpośrednio zasilany z trzech faz. W praktyce, takie połączenie pozwala na osiągnięcie pełnej mocy silnika przy wyższych prądach, co jest szczególnie istotne w aplikacjach wymagających dużych momentów obrotowych na początku pracy. Standardowe podejście w takich instalacjach to zawsze upewnienie się, że odpowiednie oznaczenia zacisków są zgodne z dokumentacją producenta. Warto również pamiętać, że niewłaściwe połączenie uzwojeń może prowadzić do uszkodzenia silnika oraz obniżenia jego efektywności energetycznej. Dlatego też, w przypadku jakichkolwiek wątpliwości, zawsze należy konsultować się z odpowiednimi normami i wytycznymi branżowymi.

Pytanie 18

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających wzrośnie.
B. Moc wydobywana w piecu zmaleje 1,5 raza.
C. Moc wydobywana w piecu wzrośnie 1,5 raza.
D. Spadek napięcia na przewodach zasilających zmniejszy się.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 19

Na wyjściu układu zasilacza przedstawionego na schemacie zaobserwowano przebieg napięcia pokazany na rysunku. Oznacza to, że

Ilustracja do pytania
A. dioda jest sprawna, a uszkodzony jest kondensator.
B. układ pracuje prawidłowo.
C. uszkodzona jest dioda, a kondensator jest sprawny.
D. uszkodzona jest dioda i kondensator.
W analizowanym przypadku, błędne odpowiedzi sugerują nieprawidłowe interpretacje działania układu zasilacza. W pierwszym przypadku stwierdzono uszkodzenie diody i sprawność kondensatora, co jest niezgodne z obserwowanym przebiegiem napięcia, który pokazuje, że dioda działa poprawnie, a kondensator jest odpowiedzialny za pulsacje. Kolejna koncepcja zakłada, że zarówno dioda, jak i kondensator są uszkodzone. Taki wniosek prowadzi do błędnych założeń, ponieważ jeśli dioda byłaby uszkodzona, prąd nie przepływałby w ogóle, a przebieg napięcia byłby znacznie bardziej chaotyczny. W przypadku trzeciej opcji, twierdzenie, że układ pracuje prawidłowo, jest mylące, gdyż pulsujące napięcie wskazuje na problemy z kondensatorem. Uszkodzenie kondensatora skutkuje wzrostem tętnień, co nie jest akceptowalne w standardach dotyczących stabilności zasilania w urządzeniach elektronicznych. Typowe błędy myślowe obejmują ignorowanie kluczowej roli kondensatora w procesie filtrowania oraz niewłaściwe przypisanie funkcji diody. Zrozumienie tych podstawowych zasad działania układów zasilających jest niezbędne do poprawnej diagnostyki i konserwacji sprzętu elektronicznego.

Pytanie 20

Jakie mogą być powody częstego wypalania się żarówki w żyrandolu?

A. Luźne połączenie oprawy z instalacją
B. Uszkodzenie przewodu ochronnego
C. Niewłaściwie dobrane zabezpieczenie przeciążeniowe
D. Zainstalowanie żarówki o niewystarczającej mocy
Obluzowane podłączenie oprawy do instalacji jest jedną z najczęstszych przyczyn przepalania się żarówek w żyrandolach. Taki stan rzeczy prowadzi do niestabilnego kontaktu elektrycznego, co z kolei generuje dodatkowe ciepło w miejscu połączenia. W przypadku oprawy, która nie jest dobrze zamocowana, może dochodzić do przerywania obwodu, co skutkuje nieprzewidywalnymi skokami napięcia. Te skoki mogą prowadzić do szybkiego zużycia żarówki, a w skrajnych przypadkach mogą też stwarzać zagrożenie pożarowe. Dlatego ważne jest, aby regularnie sprawdzać stan połączeń elektrycznych oraz dbać o ich odpowiednie dokręcenie. Dobrą praktyką jest też korzystanie z usług wykwalifikowanego elektryka przy instalacji i konserwacji oświetlenia, co zapewni bezpieczeństwo i długowieczność komponentów. Kiedy mamy do czynienia z luźnym połączeniem, warto również rozważyć zastosowanie odpowiednich złączy elektrycznych, które zapewnią lepszą stabilność. Przy projektowaniu oświetlenia należy również brać pod uwagę obciążenie elektryczne oraz maksymalne wartości prądów dla używanych komponentów, zgodnie z aktualnymi normami i standardami branżowymi.

Pytanie 21

Podczas eksploatacji trójfazowego silnika indukcyjnego, który był obciążony momentem znamionowym, doszło do nagłego spadku prędkości obrotowej silnika, a jednocześnie zwiększyła się głośność jego pracy. Najbardziej prawdopodobną przyczyną tego zjawiska jest

A. zadziałanie wyłącznika różnicowoprądowego
B. zanik napięcia w jednej fazie
C. wzrost częstotliwości napięcia sieci
D. zadziałanie zabezpieczenia termicznego
Zadziałanie zabezpieczenia termicznego nie jest przyczyną nagłego zmniejszenia prędkości obrotowej silnika w opisywanej sytuacji. Zabezpieczenia termiczne działają w oparciu o temperaturę uzwojeń silnika; ich zadaniem jest ochrona silnika przed przegrzaniem spowodowanym nadmiernym prądem, co może być wynikiem długotrwałego przeciążenia. W momencie, gdy zabezpieczenie termiczne zadziała, silnik zostaje wyłączony, co nie prowadzi do stopniowego zmniejszenia prędkości, a do całkowitego zatrzymania. Zadziałanie wyłącznika różnicowoprądowego również nie odpowiada opisanej sytuacji, ponieważ jego głównym zadaniem jest ochrona przed porażeniem prądem elektrycznym, a nie przed spadkiem prędkości. Wzrost częstotliwości napięcia sieci, chociaż może wpłynąć na prędkość obrotową silnika, nie jest przyczyną nagłego zwiększenia hałasu. Silniki indukcyjne działałyby w takim przypadku na wyższych obrotach, a nie spowalniałyby. Typowe błędy myślowe, które prowadzą do tych błędnych wniosków, zakładają, że wszelkie nieprawidłowości w pracy silnika są wynikiem problemów z zabezpieczeniami, co nie jest zawsze prawdą. Kluczowe jest zrozumienie, że zanik fazy ma najbardziej bezpośredni wpływ na moment obrotowy i stabilność pracy silnika.

Pytanie 22

Na rysunku 1 przedstawiono schemat prostownika trójpulsowego w układzie podstawowym, na rysunku 2 przebiegi czasowe napięć fazowych zasilających ten prostownik oraz przebieg napięcia na obciążeniu rezystancyjnym Ud. Jaką modyfikację wprowadzono do układu prostownika, aby uzyskać kształt napięcia wyprostowanego Ud jak na rysunku?

Ilustracja do pytania
A. Szeregowo z obciążeniem R dołączono kondensator o dużej pojemności.
B. Równolegle z obciążeniem R dołączono kondensator o dużej pojemności.
C. Równolegle z obciążeniem R dołączono dławik o dużej indukcyjności.
D. Szeregowo z obciążeniem R dołączono dławik o dużej indukcyjności.
Dołączenie elementów takich jak dławiki czy kondensatory w niewłaściwy sposób może prowadzić do niepożądanych efektów w układzie prostownika. Na przykład, wprowadzenie dławika o dużej indukcyjności równolegle z obciążeniem R może rzeczywiście powodować pewne wygładzanie, jednak nie jest to najefektywniejsza metoda. Dławik ogranicza zmiany prądu, co może prowadzić do sytuacji, w której napięcie wyjściowe pozostaje niestabilne w chwilach zapotrzebowania na większe wartości prądu. Ostatecznie, może to prowadzić do nieefektywnej pracy obciążenia oraz zwiększonego ryzyka uszkodzeń, ponieważ niejasności w przepływie prądu mogą skutkować zarówno przesterowaniem, jak i podniesieniem wartości napięcia powyżej tolerancji urządzeń. Równoległe dołączenie kondensatora o dużej pojemności zamiast dławika jest bardziej uzasadnione, ponieważ kondensator nie tylko magazynuje energię, ale również dostarcza ją w chwilach wzmożonego zapotrzebowania, zapewniając stabilność. Przykładowo, w systemach zasilania, gdzie wymagana jest wysoka jakość energii, standardy takie jak IEC 61000-3-2 wskazują na konieczność stosowania odpowiednich rozwiązań, które zapewniają wygładzenie przebiegów napięciowych, a kondensatory są kluczowym elementem w wielu takich układach.

Pytanie 23

Aby zweryfikować poprawność funkcjonowania wyłączników różnicowoprądowych, zmierzono ich różnicowe prądy zadziałania i wyniki umieszczono w poniższej tabeli. Który z wyłączników spełnia kryterium prądu zadziałania IA = (0,5÷1,00) IN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania I&Dₑₗₜₐ;
P302 25-10-AC30 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P302 25-10-AC
B. P202 25-30-AC
C. P304 40-100-AC
D. P304 40-30-AC
Wybór innego wyłącznika niż P202 25-30-AC może wynikać z kilku powszechnych nieporozumień dotyczących specyfikacji prądów zadziałania wyłączników różnicowoprądowych. Na przykład, wybór wyłącznika P304 40-100-AC, który może wydawać się atrakcyjny ze względu na jego wysoką wartość znamionową, jest błędny, ponieważ jego prąd zadziałania wykracza poza wymagany zakres. Niezrozumienie tego aspektu często prowadzi do przekonania, że większa wartość znamionowa prądu to lepsza jakość zabezpieczenia, co jest mylnym podejściem. Również decyzja o wyborze P302 25-10-AC może wynikać z braku uwagi na zakres prądu zadziałania, gdyż jego wartość 10 mA jest zbyt niska w kontekście wymagań wskazanych w pytaniu. Kluczowe jest zrozumienie, że wyłączniki różnicowoprądowe muszą być precyzyjnie dobrane do wymogów ochrony, co gwarantuje ich prawidłowe działanie. Stosowanie nieodpowiednich wyłączników może prowadzić do niewystarczającej ochrony przed porażeniem prądem, co jest sprzeczne z zasadami bezpieczeństwa obowiązującymi w instalacjach elektrycznych, a także z normami bezpieczeństwa, takimi jak PN-EN 61008. Dlatego ważne jest, aby przy wyborze wyłącznika różnicowoprądowego koncentrować się na jego parametrach zadziałania, a nie tylko na wartościach znamionowych, które mogą być mylące.

Pytanie 24

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-2 gTr
B. WT/NH DC
C. WT/NH aM
D. WT-00 gF
Wybór niewłaściwej wkładki topikowej do zabezpieczenia silnika indukcyjnego może prowadzić do poważnych konsekwencji, zarówno dla samego urządzenia, jak i dla całego systemu zasilania. Na przykład wkładka WT-2 gTr, przeznaczona do zastosowań ogólnych, nie jest w stanie skutecznie zabezpieczyć silnika przed prądami rozruchowymi, które są znacznie wyższe niż nominalne. Prąd rozruchowy silnika indukcyjnego może przekraczać jego normalną wartość roboczą w sposób drastyczny, co w przypadku użycia wkładki gTr może skutkować jej zadziałaniem w nieodpowiednich momentach, prowadząc do niepotrzebnych przerw w pracy. Z kolei wkładka WT/NH DC jest przystosowana do pracy w obwodach prądu stałego, co jest nieodpowiednie w przypadku silników indukcyjnych zasilanych prądem zmiennym. Użycie tej wkładki w takim zastosowaniu może prowadzić do niewłaściwego działania zabezpieczenia, co zwiększa ryzyko uszkodzenia silnika. Natomiast wkładka WT-00 gF jest przeznaczona do ochrony przed przeciążeniem i nie zapewnia wymaganej zdolności do przerwania prądu, co czyni ją nieodpowiednią do zabezpieczenia silników przed zwarciami. Wnioskując, kluczowym aspektem przy wyborze odpowiedniej wkładki jest zrozumienie specyfiki zastosowania oraz działania urządzeń, co niestety często bywa pomijane, prowadząc do wyboru niewłaściwych rozwiązań zabezpieczających w praktyce.

Pytanie 25

Aby ograniczyć prąd płynący w obwodzie zasilania silnika indukcyjnego pierścieniowego podczas rozruchu, co należy zrobić?

A. zwiększyć obciążenie na wale
B. zmienić kolejność faz w stojanie
C. dostosować rozrusznik obwodu wirnika
D. przetoczyć pierścienie ślizgowe wirnika
Dopasowanie rozrusznika obwodu wirnika jest kluczowym działaniem mającym na celu zmniejszenie prądu rozruchowego silnika indukcyjnego pierścieniowego. W momencie uruchamiania silnika indukcyjnego, zwłaszcza w przypadku silników o dużej mocy, prąd rozruchowy może być kilkukrotnie większy od prądu nominalnego. Użycie rozrusznika, który ogranicza ten prąd, umożliwia płynne rozpoczęcie pracy silnika oraz zabezpiecza pozostałe elementy obwodu przed uszkodzeniem. Przykładem takiego rozrusznika jest rozrusznik z opornikami, który na początku wprowadza oporność do obwodu wirnika, a następnie stopniowo ją zmniejsza, co pozwala na kontrolowanie momentu obrotowego i prądu. W praktyce, prawidłowe dopasowanie rozrusznika do parametrów silnika i obciążenia ma kluczowe znaczenie dla efektywności energetycznej oraz długowieczności urządzenia, co jest zgodne z najlepszymi praktykami w branży. Warto również zwrócić uwagę na normy ustanowione przez organizacje takie jak IEC, które wskazują na znaczenie odpowiednich systemów rozruchowych w przemyśle.

Pytanie 26

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 5,0 s
B. 0,2 s
C. 0,1 s
D. 0,4 s
Maksymalny czas samoczynnego wyłączenia zasilania w przypadku uszkodzenia w obwodach odbiorczych o prądzie znamionowym I < 32 A w układzie sieciowym TN jednofazowym przy napięciu 230 V wynosi 0,4 s. Zgodnie z normą PN-EN 61140, czas wyłączenia zasilania w przypadku wystąpienia uszkodzenia izolacji jest kluczowy dla zapewnienia ochrony przeciwporażeniowej. W obwodach jednofazowych z prądem znamionowym niższym niż 32 A wymóg ten został określony jako 0,4 s, co ma na celu minimalizację ryzyka porażenia prądem w przypadku awarii. Przykładem zastosowania tej zasady może być instalacja elektryczna w domach mieszkalnych, gdzie zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), muszą działać w określonym czasie, by zapewnić bezpieczeństwo użytkowników. Długotrwałe wystawienie na działanie prądu może prowadzić do poważnych obrażeń, dlatego tak ważne jest przestrzeganie tych norm. W praktyce oznacza to, że w przypadku uszkodzenia urządzenia lub przewodów, odcięcie zasilania musi nastąpić w krótkim czasie, aby zminimalizować ryzyko dla użytkowników.

Pytanie 27

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 4,6 Ω
C. 2,3 Ω
D. 7,7 Ω
Wybór wartości impedancji pętli zwarcia wyższej niż 2,3 Ω w kontekście zapewnienia skutecznej ochrony przeciwporażeniowej jest nieprawidłowy z kilku powodów. Po pierwsze, każda wartość impedancji, która przekracza tę wartość, skutkuje niższym prądem zwarciowym, co wydłuża czas wyłączenia zasilania przez wyłącznik nadprądowy. Dla przykładu, przy impedancji 4,6 Ω prąd zwarciowy wynosi jedynie około 87 A, co może spowodować, że wyłącznik C10 nie zareaguje wystarczająco szybko, co zwiększa ryzyko porażenia. Ponadto, wartość 7,7 Ω oraz 8,0 Ω stawia instalację w strefie ryzyka, gdyż czas wyłączenia może przekroczyć bezpieczne limity określone w normach, co jest sprzeczne z zasadami ochrony elektrycznej. Wartości te są również niezgodne z zaleceniami wynikającymi z dyrektyw unijnych i krajowych przepisów prawa budowlanego, które nakładają obowiązek przeprowadzenia analizy ryzyka oraz projektowania instalacji zgodnie z zasadami bezpieczeństwa. W praktyce, projektanci i wykonawcy powinni zawsze dążyć do zminimalizowania impedancji pętli zwarcia, aby zapewnić maksymalną ochronę użytkowników. Nieprzestrzeganie tej zasady może prowadzić do poważnych konsekwencji, zarówno dla użytkowników, jak i dla samej instalacji elektrycznej.

Pytanie 28

Do wykonania WLZ w instalacji trójfazowej, jak na przedstawionej ilustracji, należy zastosować przewód typu

Ilustracja do pytania
A. LgY
B. YDY
C. UTP
D. YKY
Odpowiedź YKY jest prawidłowa, ponieważ przewód ten jest odpowiednio przystosowany do zastosowań w instalacjach trójfazowych, takich jak Wewnętrzna Linia Zasilająca (WLZ). Przewód YKY jest wykonany z miedzi, co zapewnia doskonałą przewodność elektryczną oraz wspiera zdolność do przenoszenia dużych prądów, co jest kluczowe w instalacjach o większym obciążeniu. Izolacja PVC, w jakiej jest wykonany, charakteryzuje się wysoką odpornością na działanie wilgoci oraz chemikaliów, co podnosi bezpieczeństwo i trwałość instalacji. Dodatkowo, YKY spełnia standardy norm EN 50525 oraz PN-EN 60228, co czyni go odpowiednim wyborem do wykorzystania w instalacjach, które wymagają pewnych parametrów technicznych. Na przykład, w przypadku budowy nowego obiektu przemysłowego, gdzie wymagana jest odpowiednia moc zasilająca, zastosowanie przewodu YKY zapewnia nie tylko zgodność z przepisami, ale także optymalne warunki pracy dla całej instalacji elektrycznej, co przyczynia się do jej wydajności i bezpieczeństwa.

Pytanie 29

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Woltomierz oraz omomierz
B. Amperomierz oraz watomierz
C. Woltomierz oraz watomierz
D. Amperomierz oraz woltomierz
Wybór mierników do oceny rezystancji uzwojeń transformatora jest istotny, a niewłaściwe zestawienia mogą prowadzić do błędnych wyników i ocen stanu urządzenia. Odpowiedzi, które sugerują użycie woltomierza i watomierza, są mylące, ponieważ watomierz mierzy moc, a nie rezystancję. W praktyce, moc oblicza się na podstawie napięcia i prądu, co jest niewłaściwym podejściem do bezpośredniego pomiaru rezystancji uzwojeń. Używanie amperomierza i watomierza również nie jest zasadne, ponieważ, chociaż amperomierz poprawnie mierzy prąd, watomierz nie dostarcza informacji na temat napięcia, które jest kluczowe w obliczeniach rezystancji. Natomiast zastosowanie woltomierza i omomierza nie jest efektywne ze względu na to, że omomierz jest zazwyczaj używany do pomiaru rezystancji w obwodach wyłączonych, podczas gdy w przypadku uzwojeń transformatora mówimy o rezystancji dynamicznej. Amperomierz i woltomierz są narzędziami, które pozwalają na pomiar parametrów pracy transformatora w działaniu, co jest niezbędne do oceny jego efektywności i stanu technicznego. Kluczowym błędem myślowym w rozważaniach nad tymi odpowiedziami jest zrozumienie różnicy między pomiarem rezystancji statycznej a dynamicznej, co w kontekście transformatora ma fundamentalne znaczenie dla analizy jego działania. Dlatego ważne jest, aby w procesie pomiarowym stosować odpowiednie urządzenia oraz metody zgodne z obowiązującymi normami branżowymi.

Pytanie 30

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Trzech
B. Czterech
C. Jednego
D. Dwóch
Wybór większej liczby pracowników, jak czterech, trzech czy dwóch, wskazuje na nieporozumienie dotyczące zasadności liczby osób wymaganych do wykonania prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV. Często przyjmuje się, że większa liczba osób zwiększa bezpieczeństwo, co jest mylnym wnioskiem. Z punktu widzenia norm bezpieczeństwa, takich jak PN-IEC 60364, kluczowe jest, aby osoba wykonująca prace była odpowiednio wykwalifikowana i przeszkolona, a nie koniecznie, aby do wykonania prostych zadań występowało wiele osób. Więcej pracowników może wprowadzać dodatkowe ryzyko, takie jak chaos operacyjny, czy trudności w komunikacji, co może prowadzić do nieefektywności i potencjalnie zwiększać ryzyko wypadków. W praktyce, w wielu sytuacjach, standardowe procedury operacyjne przewidują, że jedna osoba jest wystarczająca do wykonania prób i pomiarów, o ile posiada odpowiednie uprawnienia. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi to nadmierne skupienie na liczbie osób zamiast na ich kwalifikacjach oraz zrozumieniu specyfiki wykonywanych prac. Takie podejście może podważać efektywność działań i prowadzić do niepotrzebnych kosztów związanych z zatrudnieniem większej liczby pracowników.

Pytanie 31

Który z przedstawionych na rysunkach łączników zapewnia bezpieczne wyłączenie napięcia i stworzenie widocznej przerwy izolacyjnej podczas przeprowadzania prac konserwacyjnych instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Chociaż zaprezentowane odpowiedzi mogą wydawać się intuicyjne, każda z nich posiada swoje ograniczenia i nie spełnia warunków stawianych wyłącznikowi izolacyjnemu. Wyłącznik nadprądowy, będący przedstawicielem odpowiedzi A, ma na celu jedynie ochronę obwodu przed przeciążeniem lub zwarciem, ale nie gwarantuje widocznej przerwy izolacyjnej. Jego funkcjonalność opiera się na automatycznym wyłączeniu obwodu przy zbyt dużym prądzie, co nie jest wystarczające w kontekście bezpieczeństwa przy realizacji prac konserwacyjnych. W przypadku odpowiedzi C, wyłącznik różnicowoprądowy, jego głównym zadaniem jest ochrona ludzi przed porażeniem elektrycznym poprzez wykrywanie różnicy w prądzie między przewodami, co jest niewystarczające do zapewnienia całkowitego bezpieczeństwa przy pracach inspekcyjnych. Ostatecznie, wyłącznik silnikowy, wskazany w odpowiedzi D, służy do zarządzania silnikami elektrycznymi, a nie do zapewnienia separacji obwodu, co jest kluczowe w kontekście prac konserwacyjnych. Dlatego wszystkie te urządzenia, mimo że pełnią istotne funkcje w instalacjach elektrycznych, nie mogą być uznane za odpowiednie w sytuacjach wymagających wyraźnej przerwy izolacyjnej. Wybór niewłaściwego urządzenia może prowadzić do poważnych konsekwencji, w tym narażenia technika na ryzyko porażenia prądem.

Pytanie 32

Przewodem o jakim przekroju powinno się wykonać obwody gniazd wtyczkowych w instalacji mieszkaniowej podtynkowej?

A. 1,5 mm 2
B. 1 mm 2
C. 2,5 mm 2
D. 4 mm 2
Prawidłowy dobór przekroju 2,5 mm² dla obwodów gniazd wtyczkowych w instalacji mieszkaniowej podtynkowej wynika z przyjętych w branży norm i dobrych praktyk projektowych. W typowych instalacjach domowych obwody gniazdowe są zabezpieczane wyłącznikami nadprądowymi B16, czyli na prąd znamionowy 16 A. Dla takiego prądu obciążenia standardem jest właśnie przewód miedziany o przekroju 2,5 mm² ułożony pod tynkiem. Zapewnia on odpowiednią obciążalność długotrwałą, ograniczenie spadku napięcia oraz bezpieczeństwo cieplne przewodu. Przy obciążeniu rzędu kilku kilowatów (czajnik, pralka, zmywarka, odkurzacz, czasem kilka urządzeń jednocześnie) cieńszy przewód mógłby się nadmiernie nagrzewać, co w dłuższej perspektywie zwiększa ryzyko uszkodzenia izolacji, a nawet pożaru. Moim zdaniem warto to zapamiętać bardzo praktycznie: oświetlenie – 1,5 mm², gniazda – 2,5 mm², większe odbiorniki stałe (np. płyta indukcyjna) – jeszcze większe przekroje, dobierane z obliczeń. Dla gniazd nie chodzi tylko o sam prąd, ale też o długość linii i spadek napięcia. Normy i wytyczne (np. PN-HD 60364) wymagają, żeby spadek napięcia w obwodach końcowych był ograniczony, a większy przekrój przewodu pomaga ten warunek spełnić. W praktyce instalator, projektując obwód gniazd w mieszkaniu, przyjmuje przewód miedziany YDYp 3×2,5 mm² w tynku, zabezpieczony B16. To jest dziś taki „złoty standard” w budownictwie mieszkaniowym. Stosowanie mniejszego przekroju do gniazd zwykłego użytku uznaje się za niezgodne z zasadami sztuki instalatorskiej, a większego – zwykle nie ma sensu ekonomicznego i montażowego, chyba że z konkretnych powodów projektowych. W dobrze zrobionej instalacji przekrój 2,5 mm² daje rozsądny kompromis między bezpieczeństwem, trwałością i kosztem.

Pytanie 33

Na ilustracji przedstawiono tabliczkę zaciskową typowego silnika trójfazowego z uzwojeniami stojana połączonymi w gwiazdę. Które pary zacisków po zdjęciu metalowych zwieraczy należy ze sobą zewrzeć, aby uzwojenia silnika zostały skojarzone w trójkąt?

Ilustracja do pytania
A. 1-5, 2-6, 3-4
B. 1-4, 2-5, 3-6
C. 1-5, 2-4, 3-6
D. 1-6, 2-4, 3-5
Połączenie uzwojeń silnika trójfazowego w gwiazdę i trójkąt jest kluczowe dla dostosowania jego parametrów pracy do różnych warunków zasilania. W przypadku połączenia w trójkąt, zewrzeć należy zaciski 1-4, 2-5 oraz 3-6, co pozwala na efektywne wykorzystanie napięcia zasilania. Dlaczego ta kombinacja jest poprawna? Zaciski 1-4 łączą początek pierwszego uzwojenia z jego końcem, co umożliwia przepływ prądu przez to uzwojenie. Analogicznie, zaciski 2-5 i 3-6 pełnią tę samą funkcję dla drugiego i trzeciego uzwojenia. W praktyce, takie połączenie zwiększa moc silnika oraz jego moment obrotowy, co jest szczególnie istotne w aplikacjach wymagających wyższych obciążeń, np. w przemyśle ciężkim lub przy napędzie maszyn. Warto zauważyć, że zgodnie z normami IEC w przypadku silników elektrycznych, właściwe ustawienie uzwojeń jest kluczowe dla ich bezpieczeństwa i wydajności. Dobrze skonfigurowany silnik z połączeniem trójkątnym będzie pracował stabilnie i wydajnie, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej.

Pytanie 34

Na której z przedstawionych na rysunkach tablic bezpieczeństwa powinien znajdować się napis "Nie załączać – pracują ludzie"?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Tablica C jest poprawnym oznakowaniem, ponieważ jej symbol ostrzegawczy z piorunem na czerwonym tle z białym paskiem na dole wyraźnie wskazuje na zakaz działania. Zgodnie z przepisami BHP, takie oznaczenia są stosowane w miejscach, gdzie istnieje ryzyko wystąpienia niebezpieczeństwa dla osób znajdujących się w pobliżu. W przypadku, gdy w danym obszarze pracują ludzie, kluczowe jest, aby zapewnić im bezpieczeństwo poprzez wyraźne oznaczenie strefy, w której urządzenia nie powinny być załączane. Przykłady stosowania takich oznaczeń można znaleźć w halach produkcyjnych, gdzie operatorzy maszyn są zobowiązani do przestrzegania zasad bezpieczeństwa. Użycie odpowiednich symboli i kolorów nie tylko spełnia wymogi prawne, ale także przyczynia się do kultury bezpieczeństwa w miejscu pracy, co ma znaczenie na każdym etapie działalności przemysłowej. Dobre praktyki wskazują, że tablice ostrzegawcze powinny być łatwe do zauważenia i zrozumienia, co w przypadku tablicy C zostało spełnione.

Pytanie 35

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. intensywności pola magnetycznego
B. oporu uzwojeń stojana
C. oporu rdzenia stojana
D. okresu jego działania
Pomiar natężenia pola magnetycznego w silniku indukcyjnym, choć istotny w kontekście analizy działania silników elektrycznych, nie jest uważany za kluczowy element badań eksploatacyjnych. Zamiast tego, takie pomiary są często stosowane w bardziej zaawansowanych analizach, jak ocena efektywności energetycznej lub badania wydajności, a nie w rutynowej diagnostyce. Rezystancja rdzenia stojana, z drugiej strony, odnosi się do strat materiałowych, które są istotne, ale ich pomiar nie jest bezpośrednio związany z codziennym utrzymaniem silników. Czas pracy silnika może być używany jako wskaźnik eksploatacji, ale nie dostarcza bezpośrednich informacji o stanie technicznym silnika. W praktyce, pomiar rezystancji uzwojeń stojana jest bardziej miarodajny, gdyż wskazuje na kondycję uzwojeń i ich zdolność do przewodzenia prądu. Niezrozumienie znaczenia pomiarów rezystancji lub pomylenie ich z innymi parametrami może prowadzić do nieprawidłowych wniosków dotyczących stanu technicznego silnika, a tym samym do nieefektywnej konserwacji i zwiększenia ryzyka wystąpienia awarii.

Pytanie 36

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. gR 20A
B. gF 35A
C. aM 20A
D. aM 16A
Wybór odpowiedzi gR 20A, aM 16A oraz gF 35A jest nieodpowiedni z kilku kluczowych powodów, które dotyczą zarówno charakterystyki tych bezpieczników, jak i obliczeń prądów związanych z zabezpieczeniem silnika klatkowego. Bezpiecznik gR, który jest stosowany głównie w aplikacjach o charakterze ogólnym, nie jest przystosowany do obsługi dużych prądów rozruchowych, które mogą wystąpić w przypadku silników. W przypadku prądu rozruchowego wynoszącego 60 A, a tym bardziej maksymalnego prądu 180 A, zastosowanie bezpiecznika gR może prowadzić do jego częstego przepalania, co skutkuje przestojami w pracy maszyny. Z kolei bezpiecznik aM 16A, mimo że jest lepszy od gR, wciąż nie wytrzyma prądów rozruchowych, które przewyższają jego zdolności, co prowadzi do niewłaściwego działania zabezpieczenia. Natomiast, wybór gF 35A, mimo że teoretycznie mógłby wydawać się odpowiedni, jest nieodpowiedni ze względu na fakt, że gF to bezpieczniki o charakterystyce szybkiej, które nie tolerują dużych prądów rozruchowych, co może skutkować ich uszkodzeniem w krytycznych momentach rozruchu maszyny. Zrozumienie charakterystyki prądów rozruchowych i wyboru odpowiednich zabezpieczeń jest kluczowe w kontekście bezpieczeństwa i efektywności pracy instalacji elektrycznych, a także w zgodności z normami i najlepszymi praktykami w branży.

Pytanie 37

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonych jak na przedstawionym schemacie. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość
Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwojeniu V1 – V2
B. przerwie w uzwojeniu V1 – V2
C. przerwie w uzwojeniu W1 – W2
D. zwarciu międzyzwojowym w uzwojeniu U1 – U2
Podczas analizy wyników pomiarów rezystancji uzwojeń silnika trójfazowego, pewne nieporozumienia mogą prowadzić do błędnych wniosków, jak na przykład zamiast przerwy w uzwojeniu W1 – W2, sugerowanie zwarcia międzyzwojowego czy przerwy w innych uzwojeniach. Zrozumienie, że rezystancja między zaciskami U1 - V1 wynosi 15 Ω, co jest typową wartością dla sprawnych uzwojeń, jest kluczowe, ponieważ potwierdza prawidłowość połączenia. Wybór opcji związanej z zwarciem międzyzwojowym w uzwojeniu V1 – V2 jest również błędny, ponieważ nie występują żadne wskazania, które mogłyby sugerować takie uszkodzenie. Zjawisko zwarcia międzyzwojowego charakteryzuje się innymi parametrami elektrycznymi, takimi jak zwiększony pobór prądu czy nagrzewanie się uzwojeń, co nie znajduje odzwierciedlenia w przedstawionych wynikach. Kluczowe jest również zrozumienie różnicy pomiędzy przerwą a zwarciem, gdzie przerwa oznacza brak ciągłości obwodu, co potwierdzają pomiary rezystancji wskazujące na nieskończoność. Typowe błędy myślowe obejmują niewłaściwą interpretację wyników pomiarów oraz nieznajomość podstawowych zasad diagnostyki silników elektrycznych, co może prowadzić do nieefektywnej konserwacji i napraw. Właściwa diagnoza oparta na dokładnej analizie pomiarów jest kluczowa dla efektywności i niezawodności działania maszyn.

Pytanie 38

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
C. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane o niniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna, ponieważ wynika to z zasady działania transformatorów. W transformatorze jednofazowym, stosunek napięcia do liczby zwojów jest kluczowy dla jego właściwej funkcji. Uzwojenie pierwotne, które jest zasilane napięciem sieciowym (230 V), ma więcej zwojów niż uzwojenie wtórne, co pozwala na uzyskanie niższego napięcia wtórnego (14,6 V). Przykładowo, jeśli przyjmiemy, że uzwojenie wtórne ma 10 zwojów, to uzwojenie pierwotne powinno mieć co najmniej 157 zwojów, aby zachować odpowiedni stosunek napięcia. W praktyce, większa liczba zwojów w uzwojeniu pierwotnym przy jednoczesnym zachowaniu średnicy drutu pozwala na lepsze zarządzanie prądem i ciepłem, co jest kluczowe dla efektywności transformatora oraz jego bezawaryjnego działania. Dodatkowo, stosowanie odpowiednich norm, takich jak IEC 60076, zapewnia zgodność z międzynarodowymi standardami w zakresie projektowania i budowy transformatorów.

Pytanie 39

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. D.
B. B.
C. A.
D. C.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań prawnych dotyczących pomiarów w instalacjach elektrycznych. Niektórzy mogą mylnie uważać, że pomiary skuteczności ochrony przeciwporażeniowej powinny być przeprowadzane częściej niż co 5 lat, co nie znajduje potwierdzenia w przepisach Prawa budowlanego. Częstsze wykonywanie tych pomiarów nie tylko generuje niepotrzebne koszty, ale także może prowadzić do zjawiska przestymulowania, gdzie wykonawcy, skupiając się na nadmiarowych interwencjach, zaniedbują istotne aspekty konserwacji i nadzoru. Ponadto, nieprawidłowe przekonanie o rocznych pomiarach rezystancji izolacji często powoduje pominięcie bardziej kompleksowych analiz stanu technicznego instalacji. Kluczowym jest zrozumienie, że pomiary te mają na celu potwierdzenie, iż instalacja spełnia wymogi bezpieczeństwa przez dłuższy czas, a nie tylko w krótkich interwałach. Najlepsze praktyki w obszarze ochrony przeciwporażeniowej zalecają stosowanie okresowych przeglądów zgodnych z ustalonym harmonogramem, co pozwala na efektywne zarządzanie bezpieczeństwem elektrycznym. W związku z tym, ignorowanie wytycznych dotyczących interwałów pomiarowych prowadzi do niepełnego obrazu stanu instalacji i może narażać użytkowników na poważne ryzyko. Zrozumienie tych zasad jest kluczowe dla skutecznego zarządzania bezpieczeństwem w obiektach edukacyjnych.

Pytanie 40

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
C. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
Udzielenie odpowiedzi, w której odbiorniki pozostają włączone lub źródła światła są zamontowane, wskazuje na zrozumienie tematu, które nie uwzględnia podstawowych zasad bezpieczeństwa i dokładności pomiarów w instalacjach elektrycznych. Pozostawienie włączonych odbiorników może prowadzić do sytuacji, w której prąd płynie przez obwód, co z kolei może spowodować zwarcia lub inne niebezpieczeństwa. W kontekście pomiaru rezystancji izolacji istotne jest, aby wszystkie odbiorniki były odłączone, co zapobiega niespodziewanym skutkom ubocznym, a także minimalizuje ryzyko uszkodzenia cennych urządzeń elektronicznych. Wyposażenie w instalacje elektryczne powinno być zgodne z normami, które wymagają przeprowadzenia pomiarów w warunkach minimalizujących ryzyko. Zamontowane źródła światła mogą również zakłócić pomiary, ponieważ ich obwody mogą mieć różne charakterystyki oraz wpływ na wyniki rezystancji. Dlatego zasada, aby przed pomiarami izolacji usunąć wszystkie aktywne elementy z obwodu, jest nie tylko praktyką zalecaną, ale wręcz niezbędną do osiągnięcia wiarygodnych i bezpiecznych wyników.