Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 13:37
  • Data zakończenia: 19 grudnia 2025 13:59

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Medium, w którym przesyłany sygnał nie jest narażony na wpływ zakłóceń elektromagnetycznych, to

A. fale radiowe
B. kabel koncentryczny
C. kabel typu skrętka
D. światłowód
Światłowód jest medium transmisyjnym, które charakteryzuje się wysoką odpornością na zakłócenia elektromagnetyczne. Działa na zasadzie przesyłania sygnału świetlnego przez włókna szklane lub plastikowe, co sprawia, że sygnał nie jest narażony na wpływy elektromagnetyczne, które mogą zakłócać jego jakość. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne zakłócenia, np. w pobliżu urządzeń elektronicznych czy w przemyśle. Dzięki temu, światłowody znalazły szerokie zastosowanie w telekomunikacji, sieciach komputerowych oraz systemach monitoringu. Warto też wspomnieć, że w porównaniu do tradycyjnych kabli miedzianych, światłowody oferują znacznie większą przepustowość oraz dłuższy zasięg transmisji bez utraty jakości sygnału. Standardy takie jak ITU-T G.652 określają wymagania dotyczące światłowodów wykorzystywanych w telekomunikacji.

Pytanie 2

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. CNAME
B. A
C. MX
D. AAAA
Rekord AAAA to prawdziwy must-have w DNS, bo pozwala na zamienianie nazw domen na adresy IPv6. To coś innego niż rekord A, który działa tylko z IPv4. Rekord AAAA jest zaprojektowany na długie adresy IPv6, które mają osiem grup po cztery znaki szesnastkowe. Dlaczego to takie ważne? Liczba dostępnych adresów IPv4 się kończy, więc musimy przejść na IPv6. Na przykład, kiedy jakaś firma zakłada nową stronę www obsługującą ruch z IPv6, musi dodać odpowiedni rekord AAAA. Dzięki temu przeglądarki mogą znaleźć ich stronę. Po dodaniu tego rekordu, dobrze jest przetestować, czy wszystko działa, używając narzędzi jak dig czy nslookup. I jeszcze jedno – hadoby dobrze mieć i rekord A, i AAAA, żeby użytkownicy mogą korzystać z obu rodzajów adresów, czyli zarówno IPv4, jak i IPv6.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Punkty abonenckie są rozmieszczone w równych odstępach, do nawiązania połączenia z najbliższym punktem wymagane jest 4 m kabla, a z najdalszym - 22 m. Koszt zakupu 1 m kabla wynosi 1 zł. Jaką kwotę trzeba przeznaczyć na zakup kabla UTP do połączenia 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym?

A. 80 zł
B. 440 zł
C. 260 zł
D. 130 zł
Odpowiedzi takie jak 130 zł czy 440 zł wynikają raczej z niezrozumienia, jak to wszystko policzyć. Gdy mówisz, że 130 zł to pomijasz, że odległości do gniazd są różne. Myślenie, że wszystkie gniazda są w tej samej odległości, to błąd. Na przykład, średnia długość kabla to nie wszystko, bo każda odległość może być zupełnie inna i to może całkowicie zmienić koszty. Z kolei odpowiedź 440 zł, to chyba wynika z myślenia, że każde gniazdo musi mieć maksymalną długość kabla, co też jest mało prawdopodobne. W rzeczywistości, część gniazd jest bliżej i potrzebuje mniej kabla, więc koszty są niższe. W projektach instalacyjnych często jest tak, że ludzie przesadzają z zabezpieczeniem, przez co kupują więcej materiałów niż potrzebują. Zamiast tego, warto dokładnie pomierzyć i przeanalizować, co jest gdzie, żeby zmniejszyć wydatki. Opracowanie schematu instalacji to naprawdę dobra praktyka, bo ułatwia później wszystko zaplanować.

Pytanie 5

Który z protokołów nie jest wykorzystywany do ustawiania wirtualnej sieci prywatnej?

A. SNMP
B. L2TP
C. SSTP
D. PPTP
Wybór PPTP, L2TP lub SSTP jako protokołów do konfiguracji wirtualnej sieci prywatnej może wynikać z powszechnego przekonania, że wszystkie te protokoły mają podobne zastosowania. PPTP (Point-to-Point Tunneling Protocol) jest jednym z najstarszych protokołów VPN, który wykorzystuje tunelowanie do zabezpieczania połączeń. Mimo że jest łatwy w konfiguracji, jego bezpieczeństwo w przeszłości było kwestionowane, co sprawiło, że rzadko zaleca się go w nowoczesnych implementacjach. L2TP (Layer 2 Tunneling Protocol) to kolejny protokół, który, chociaż używany do tunelowania, często jest łączony z IPsec w celu zapewnienia lepszego bezpieczeństwa. SSTP (Secure Socket Tunneling Protocol) to protokół, który wykorzystuje SSL do szyfrowania tuneli, co czyni go bardziej nowoczesnym i bezpiecznym rozwiązaniem. Wybierając którykolwiek z tych protokołów do konfiguracji VPN, można osiągnąć różne poziomy bezpieczeństwa i wydajności w zależności od wymagań danej organizacji. Kluczowe jest zrozumienie, że SNMP nie jest przeznaczony do tego celu, a jego funkcjonalność koncentruje się na zarządzaniu, a nie na tworzeniu bezpiecznych połączeń. Błędne przypisanie SNMP do roli protokołu VPN może prowadzić do nieefektywnej konfiguracji sieci oraz potencjalnych luk w zabezpieczeniach, co w konsekwencji może zagrażać integralności i poufności danych przesyłanych w sieci.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić kanał radiowy
B. zmienić sposób szyfrowania z WEP na WPA
C. skonfigurować filtrowanie adresów MAC
D. zmienić hasło
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 8

Jakie kanały powinno się wybrać dla trzech sieci WLAN 2,4 GHz, aby zredukować ich wzajemne zakłócenia?

A. 2, 5,7
B. 1,3,12
C. 1,6,11
D. 3, 6, 12
Wybór kanałów 1, 6 i 11 dla trzech sieci WLAN 2,4 GHz jest optymalnym rozwiązaniem, ponieważ te kanały są jedynymi, które są od siebie wystarczająco oddalone, aby zminimalizować zakłócenia. W paśmie 2,4 GHz, które jest ograniczone do 14 kanałów, tylko te trzy kanały nie nachodzą na siebie, co pozwala na skuteczną separację sygnałów. Przykładowo, jeśli używamy kanału 1, to jego widmo interferencyjne kończy się w okolicach 2,412 GHz, co nie koliduje z sygnałami z kanału 6 (2,437 GHz) i 11 (2,462 GHz). W praktyce, zastosowanie tych kanałów w bliskim sąsiedztwie, na przykład w biurze z trzema punktami dostępowymi, zapewnia nieprzerwaną komunikację dla użytkowników i redukcję zakłóceń. Warto również pamiętać, że zgodnie z zaleceniami IEEE 802.11, stosowanie tych trzech kanałów w konfiguracji nie tylko poprawia jakość sygnału, ale także zwiększa przepustowość sieci, co jest szczególnie ważne w środowiskach o dużej gęstości użytkowników.

Pytanie 9

W jakiej usłudze serwera możliwe jest ustawienie parametru TTL?

A. HTTP
B. FTP
C. DHCP
D. DNS
Wybór odpowiedzi związanej z DHCP, FTP lub HTTP wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowań tych protokołów. DHCP (Dynamic Host Configuration Protocol) jest używany do automatycznego przydzielania adresów IP urządzeniom w sieci lokalnej. Chociaż DHCP odgrywa kluczową rolę w konfiguracji sieci, nie ma on związku z TTL, który dotyczy głównie przechowywania informacji o adresach w systemie DNS. FTP (File Transfer Protocol) jest protokołem służącym do przesyłania plików między komputerami w sieci, a jego mechanizm działania nie obejmuje żadnego zarządzania czasem przechowywania danych, co sprawia, że nie jest on właściwym kontekstem do analizy TTL. Z kolei HTTP (Hypertext Transfer Protocol) to protokół odpowiedzialny za przesyłanie danych w Internecie, szczególnie dla stron WWW i zasobów sieciowych, ale również nie dotyczy bezpośrednio TTL. Wybierając jedną z tych opcji, można łatwo wpaść w błąd, myśląc, że parametry związane z czasem przechowywania danych są dostępne w każdym z protokołów. Każdy z wymienionych protokołów ma swoje konkretne funkcje i zastosowania, które nie obejmują zarządzania pamięcią podręczną w kontekście DNS. Zrozumienie, które protokoły są odpowiedzialne za jakie aspekty komunikacji sieciowej, jest kluczowe dla poprawnego zarządzania infrastrukturą IT oraz dla unikania typowych błędów w konfiguracji usług sieciowych.

Pytanie 10

Jakie urządzenie pozwala na podłączenie drukarki bez karty sieciowej do sieci lokalnej komputerów?

A. Serwer wydruku
B. Koncentrator
C. Punkt dostępu
D. Regenerator
Serwer wydruku to specjalistyczne urządzenie, które umożliwia podłączenie drukarek nieposiadających wbudowanej karty sieciowej do lokalnej sieci komputerowej. Działa on jako pomost pomiędzy drukarką a siecią, zatem umożliwia użytkownikom zdalne drukowanie z różnych urządzeń w tej samej sieci. Użytkownik podłącza drukarkę do serwera wydruku za pomocą interfejsu USB lub równoległego, a następnie serwer łączy się z siecią lokalną. Zastosowanie serwera wydruku jest szczególnie przydatne w biurach oraz środowiskach, gdzie wiele osób korzysta z jednej drukarki. W praktyce, standardowe serwery wydruku, takie jak te oparte na protokole TCP/IP, umożliwiają również zarządzanie zadaniami drukowania oraz monitorowanie stanu drukarki, co jest zgodne z dobrymi praktykami w obszarze zarządzania zasobami drukującymi.

Pytanie 11

Która z par: protokół – odpowiednia warstwa, w której funkcjonuje dany protokół, jest właściwie zestawiona zgodnie z modelem TCP/IP?

A. RARP – warstwa transportowa
B. DNS - warstwa aplikacji
C. ICMP - warstwa Internetu
D. DHCP – warstwa dostępu do sieci
Wybór opcji RARP – warstwa transportowa jest niepoprawny, ponieważ RARP (Reverse Address Resolution Protocol) działa w warstwie łącza danych, a nie transportowej modelu TCP/IP. RARP służy do mapowania adresów sprzętowych (MAC) na adresy IP, co jest istotne w sytuacjach, gdy urządzenia nie mają przypisanego adresu IP, a muszą uzyskać go na podstawie swojego adresu MAC. Umieszczanie RARP w warstwie transportowej wskazuje na fundamentalne nieporozumienie dotyczące funkcji warstw modelu TCP/IP. Warstwa transportowa jest odpowiedzialna za przesyłanie danych między aplikacjami działającymi na różnych hostach i obejmuje protokoły takie jak TCP i UDP. W przypadku DNS (Domain Name System), który działa w warstwie aplikacji, jego główną funkcją jest zamiana nazw domenowych na adresy IP, co pozwala na łatwiejsze korzystanie z zasobów internetowych. DHCP (Dynamic Host Configuration Protocol) również działa w warstwie aplikacji, a nie w warstwie dostępu do sieci, i jest używany do dynamicznego przydzielania adresów IP oraz innych informacji konfiguracyjnych hostom w sieci. Typowe błędy w zrozumieniu modelu TCP/IP często wynikają z mylenia ról poszczególnych protokołów oraz ich powiązań z odpowiednimi warstwami, co może prowadzić do nieefektywnego projektowania sieci oraz problemów z jej zarządzaniem.

Pytanie 12

Zarządzanie uprawnieniami oraz zdolnościami użytkowników i komputerów w sieci z systemem Windows serwerowym zapewniają

A. listy dostępu
B. ustawienia przydziałów
C. zasady grupy
D. zasady zabezpieczeń
Zasady grupy to mechanizm stosowany w systemach operacyjnych Windows, który umożliwia centralne zarządzanie uprawnieniami i dostępem do zasobów sieciowych. Dzięki zasadom grupy administratorzy mogą definiować, które ustawienia dotyczące bezpieczeństwa, konfiguracji systemów i dostępów do aplikacji oraz zasobów mają być stosowane w obrębie całej organizacji. Przykładem zastosowania zasad grupy jest możliwość wymuszenia polityki haseł, która określa minimalną długość haseł oraz wymagania dotyczące ich złożoności. W praktyce, zasady grupy mogą być przypisywane do jednostek organizacyjnych, co pozwala na elastyczne i dostosowane do potrzeb zarządzanie uprawnieniami. Wspierają one również dobre praktyki branżowe, takie jak zasada najmniejszych uprawnień, co oznacza, że użytkownicy oraz komputery mają dostęp tylko do tych zasobów, które są niezbędne do wykonywania ich zadań. Efektywne wykorzystanie zasad grupy przyczynia się do zwiększenia bezpieczeństwa sieci oraz uproszczenia zarządzania tymi ustawieniami.

Pytanie 13

Który ze standardów opisuje strukturę fizyczną oraz parametry kabli światłowodowych używanych w sieciach komputerowych?

A. RFC 1918
B. IEEE 802.11
C. IEEE 802.3af
D. ISO/IEC 11801
ISO/IEC 11801 to fundamentalny, międzynarodowy standard, który precyzyjnie określa wymagania dotyczące okablowania strukturalnego w budynkach i kampusach, w tym parametry techniczne oraz sposób budowy kabli światłowodowych. W praktyce oznacza to, że instalując sieć – czy to w biurze, czy w szkole, czy nawet w nowoczesnej hali produkcyjnej – trzeba sięgać po wytyczne tego standardu, by zapewnić odpowiednią jakość i kompatybilność komponentów. ISO/IEC 11801 definiuje klasy transmisji, rodzaje włókien, minimalne parametry tłumienia i wymagania dotyczące złącz czy sposobu prowadzenia przewodów światłowodowych. To bardzo przydatne, bo daje gwarancję, że sieć będzie działać niezawodnie i zgodnie z oczekiwaniami – nie tylko dziś, ale też za kilka lat, kiedy pojawi się potrzeba rozbudowy lub modernizacji. Moim zdaniem, w codziennej pracy technika sieciowego to właśnie do tego standardu sięga się najczęściej, zwłaszcza przy projektowaniu czy odbiorach nowych instalacji światłowodowych. Przy okazji warto wspomnieć, że ISO/IEC 11801 obejmuje również okablowanie miedziane, ale dla światłowodów jest wręcz nieocenionym źródłem wiedzy o dobrych praktykach i wymaganiach branżowych.

Pytanie 14

Która z warstw modelu ISO/OSI określa protokół IP (Internet Protocol)?

A. Warstwa transportowa
B. Warstwa danych łącza
C. Warstwa fizyczna
D. Warstwa sieci
Warstwa sieci w modelu ISO/OSI jest kluczowa dla działania Internetu, ponieważ to tutaj definiowane są protokoły odpowiedzialne za adresowanie oraz przesyłanie danych pomiędzy różnymi sieciami. Protokół IP (Internet Protocol) działa na tej warstwie i ma za zadanie dostarczać dane pomiędzy hostami w sieci, niezależnie od fizycznych połączeń. Przykładem praktycznym zastosowania IP jest routing, gdzie routery wykorzystują adresy IP do określenia najlepszej trasy dla przesyłanych pakietów. Standardy takie jak IPv4 i IPv6, będące wersjami protokołu IP, są fundamentalne w zapewnieniu komunikacji w sieci. Zrozumienie warstwy sieci i działania protokołu IP jest kluczowe dla specjalistów zajmujących się sieciami, ponieważ umożliwia projektowanie i zarządzanie złożonymi architekturami sieciowymi, zapewniającą efektywną wymianę danych.

Pytanie 15

Oblicz koszt brutto materiałów niezbędnych do połączenia w sieć, w topologii gwiazdy, 3 komputerów wyposażonych w karty sieciowe, wykorzystując przewody o długości 2 m. Ceny materiałów podano w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu „skrętka"1 zł za 1 metr
A. 252 zł
B. 89 zł
C. 249 zł
D. 92 zł
Aby obliczyć koszt brutto materiałów do stworzenia sieci w topologii gwiazdy dla trzech komputerów, kluczowe jest zrozumienie, jakie elementy są potrzebne do prawidłowego połączenia. W tym przypadku, do połączenia komputerów niezbędne są: przełącznik, przewody o długości 2 m oraz wtyki RJ-45. Koszt przełącznika jest stały, a koszt przewodów i wtyków można obliczyć na podstawie ich liczby. Każdy komputer wymaga jednego przewodu, co w przypadku trzech komputerów oznacza 3 przewody, czyli 6 m w sumie. Do tego dodajemy koszt przełącznika i wtyków. Po zsumowaniu wszystkich kosztów dochodzimy do kwoty 92 zł, która jest poprawna. Warto pamiętać, że w praktyce, przy projektowaniu sieci, właściwy dobór sprzętu i materiałów ma ogromne znaczenie dla wydajności i stabilności sieci. Wytyczne branżowe zalecają, aby przy budowie sieci lokalnych zwracać uwagę na jakość komponentów oraz ich zgodność z obowiązującymi standardami, co może zapobiec problemom z komunikacją i stabilnością w przyszłości.

Pytanie 16

Jakie jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz 26-bitową maską?

A. 192.168.35.0
B. 192.168.35.255
C. 192.168.35.63
D. 192.168.35.192
Adres rozgłoszeniowy (broadcast) dla danej sieci to adres, który umożliwia wysyłanie pakietów do wszystkich urządzeń w tej sieci. Aby obliczyć adres rozgłoszeniowy, należy znać adres IP hosta oraz maskę podsieci. W przypadku adresu IP 192.168.35.202 z 26-bitową maską (255.255.255.192), maska ta dzieli adres na część sieciową i część hosta. W tym przypadku, maska 26-bitowa oznacza, że ostatnie 6 bitów jest przeznaczone dla hostów. Mamy zakres adresów od 192.168.35.192 do 192.168.35.255. Adres rozgłoszeniowy to ostatni adres w danym zakresie, co w tym przypadku wynosi 192.168.35.255. Przydatność tego adresu jest szczególnie istotna w sieciach lokalnych, gdzie urządzenia mogą komunikować się ze sobą w sposób grupowy, co jest zrealizowane właśnie poprzez użycie adresu rozgłoszeniowego. Przykładem zastosowania adresu rozgłoszeniowego może być wysyłanie aktualizacji oprogramowania do wszystkich komputerów w sieci jednocześnie, co znacznie ułatwia zarządzanie i oszczędza czas.

Pytanie 17

Zrzut ekranowy przedstawia wynik wykonania w systemie z rodziny Windows Server polecenia

Server:  livebox.home
Address:  192.168.1.1

Non-authoritative answer:
dns2.tpsa.pl    AAAA IPv6 address = 2a01:1700:3:ffff::9822
dns2.tpsa.pl    internet address = 194.204.152.34
A. ping
B. nslookup
C. whois
D. tracert
Odpowiedź 'nslookup' jest poprawna, ponieważ polecenie to służy do wykonywania zapytań do systemu DNS, co jest kluczowe w zarządzaniu sieciami komputerowymi. Zrzut ekranu pokazuje wyniki, które zawierają zarówno adres IPv4, jak i IPv6 dla domeny dns2.tpsa.pl. W praktyce, nslookup jest używane do diagnozowania problemów z DNS, umożliwiając administratorom sieci weryfikację, czy dany rekord DNS jest prawidłowo skonfigurowany i dostępny. Przykładem zastosowania nslookup może być sytuacja, gdy użytkownik napotyka problemy z dostępem do określonej strony internetowej – wówczas administrator może użyć tego polecenia, aby sprawdzić, czy DNS poprawnie tłumaczy nazwę domeny na adres IP. Co więcej, nslookup pozwala na testowanie różnych serwerów DNS, co jest zgodne z dobrymi praktykami w zakresie zarządzania ruchem sieciowym i zapewnienia wysokiej dostępności usług. Warto również zaznaczyć, że narzędzie to jest częścią standardowego zestawu narzędzi administratora systemu i znacznie ułatwia pracę w środowisku sieciowym.

Pytanie 18

Jaką rolę odgrywa usługa proxy?

A. firewalla.
B. serwera z usługami katalogowymi.
C. pośrednika sieciowego.
D. serwera e-mail.
Proxy to taka usługa, która działa jak pośrednik między użytkownikiem a serwerem. Dzięki niemu możemy mieć większe bezpieczeństwo i prywatność, bo ukrywa nasz adres IP i daje dostęp do treści, które mogą być zablokowane w danym regionie. Na przykład, gdy firma korzysta z proxy, może kontrolować, co pracownicy oglądają w internecie, a także monitorować ruch sieciowy i blokować nieodpowiednie strony. Proxy działa też jak bufor, dzięki czemu często odwiedzane strony ładują się szybciej, bo mniej czasu schodzi na ich pobieranie. Warto wiedzieć, że korzystanie z proxy to standard w branży, który pomaga zapewnić bezpieczeństwo i wydajność w zarządzaniu siecią, co potwierdzają różne organizacje, jak Internet Engineering Task Force (IETF).

Pytanie 19

Jak brzmi pełny adres do logowania na serwer FTP o nazwie http://ftp.nazwa.pl?

A. http://ftp.nazwa.pl/
B. ftp://ftp.nazwa.pl/
C. http:\ftp.nazwa.pl/
D. ftp:\ftp.nazwa.pl/
W analizie niepoprawnych odpowiedzi na pytanie dotyczące adresu logowania do serwera FTP, można zauważyć kilka kluczowych błędów. W pierwszej z błędnych opcji zastosowano nieprawidłowy format adresu, używając podwójnego ukośnika w wersji ftp:\ftp.nazwa.pl. Ukośnik w adresie URL powinien być skierowany w prawo (/) w przypadku protokołu FTP, a nie w lewo. To nieporozumienie może wynikać z mylenia składni adresów URL z innymi konwencjami w systemach operacyjnych, gdzie czasami stosuje się odwrotne ukośniki jako separator. Kolejna niepoprawna odpowiedź używa protokołu HTTP zamiast FTP. HTTP jest protokołem przystosowanym do przesyłania stron internetowych, a nie plików, co może prowadzić do błędnego zrozumienia, jak działają różne protokoły sieciowe. Zastosowanie HTTP w kontekście FTP niczego nie zmienia w samej funkcjonalności serwera i prowadzi do nieporozumień w zakresie zarządzania plikami. Na zakończenie, inny błąd w identyfikacji adresu występuje w postaci użycia niepoprawnego separatora w formie http:\ftp.nazwa.pl. Tego rodzaju nieścisłości mogą być wynikiem nieznajomości podstawowych zasad budowy adresów URL oraz ich zastosowania w kontekście różnych protokołów. W praktyce, zrozumienie różnic między tymi protokołami oraz zasad ich konstruowania jest kluczowe dla efektywnego korzystania z sieci oraz rozwiązywania problemów związanych z połączeniami. Zachęcamy do zgłębiania tematu protokołów sieciowych oraz ich konfiguracji, co może znacząco poprawić umiejętności w zakresie zarządzania serwerami i przesyłania danych.

Pytanie 20

Jakiego protokołu dotyczy port 443 TCP, który został otwarty w zaporze sieciowej?

A. SMTP
B. NNTP
C. DNS
D. HTTPS
Odpowiedź 'HTTPS' jest poprawna, ponieważ port 443 jest standardowym portem używanym przez protokół HTTPS (Hypertext Transfer Protocol Secure). HTTPS jest rozszerzeniem protokołu HTTP, które wykorzystuje SSL/TLS do szyfrowania danych przesyłanych pomiędzy serwerem a klientem. Dzięki temu, komunikacja jest zabezpieczona przed podsłuchiwaniem i manipulacją. W praktyce, gdy przeglądasz strony internetowe, które zaczynają się od 'https://', twoje połączenie wykorzystuje port 443. Ponadto, w kontekście dobrych praktyk branżowych, stosowanie HTTPS stało się standardem, zwłaszcza w przypadku stron wymagających przesyłania poufnych informacji, takich jak dane logowania czy dane osobowe. Warto także zauważyć, że wyszukiwarki internetowe, takie jak Google, preferują strony zabezpieczone HTTPS, co wpływa na pozycjonowanie w wynikach wyszukiwania.

Pytanie 21

Jaki jest skrócony zapis maski sieci, której adres w zapisie dziesiętnym to 255.255.254.0?

A. /23
B. /22
C. /25
D. /24
Zapis skrócony maski sieci 255.255.254.0 to /23, co oznacza, że w pierwszych 23 bitach znajduje się informacja o sieci, a pozostałe 9 bitów jest przeznaczone na identyfikację hostów. W zapisie dziesiętnym maska 255.255.254.0 ma postać binarną 11111111.11111111.11111110.00000000, co potwierdza, że pierwsze 23 bity są jedynkami, a pozostałe bity zerami. Ta maska pozwala na adresowanie 512 adresów IP w danej podsieci, co jest przydatne w większych środowiskach sieciowych, gdzie liczba hostów może być znacząca, na przykład w biurach czy na uczelniach. Dzięki zapisie skróconemu łatwiej jest administracyjnie zarządzać adresami IP, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii sieciowej. Zrozumienie, jak funkcjonują maski sieciowe, pozwala na efektywne projektowanie sieci oraz optymalizację wykorzystania dostępnych zasobów adresowych.

Pytanie 22

Użytkownik, którego profil jest tworzony przez administratora systemu i przechowywany na serwerze, ma możliwość logowania na każdym komputerze w sieci oraz modyfikacji ustawień. Jak nazywa się ten profil?

A. profil tymczasowy
B. profil mobilny
C. profil lokalny
D. profil obowiązkowy
Profil mobilny to rodzaj profilu użytkownika, który jest przechowywany na serwerze i pozwala na logowanie się na różnych urządzeniach w sieci. Taki profil jest szczególnie przydatny w środowiskach, gdzie użytkownicy potrzebują dostępu do tych samych ustawień i danych niezależnie od miejsca, w którym się znajdują. Dzięki temu rozwiązaniu, konfiguracja osobista użytkownika, takie jak preferencje systemowe, tapety, czy zainstalowane aplikacje, są synchronizowane i dostępne na każdym komputerze w sieci. W praktyce, profil mobilny wspiera użytkowników w pracy zdalnej i w biurze, co jest zgodne z obecnymi trendami umożliwiającymi elastyczność pracy. Dobrą praktyką w organizacjach IT jest wdrażanie profili mobilnych, co zwiększa bezpieczeństwo i umożliwia lepsze zarządzanie danymi. Na przykład, w przypadku awarii lokalnego sprzętu, użytkownicy mogą szybko przełączyć się na inny komputer bez utraty swoich ustawień. Tego typu rozwiązania są często stosowane w środowiskach z systemami operacyjnymi Windows, gdzie korzysta się z Active Directory do zarządzania profilami mobilnymi.

Pytanie 23

Jak wiele punktów rozdzielczych, według normy PN-EN 50174, powinno być umiejscowionych w budynku o trzech kondygnacjach, przy założeniu, że powierzchnia każdej z kondygnacji wynosi około 800 m²?

A. 3
B. 1
C. 4
D. 2
Zgodnie z normą PN-EN 50174, która reguluje wymagania dotyczące planowania i instalacji systemów telekomunikacyjnych w budynkach, liczba punktów rozdzielczych w obiekcie zależy od kilku kluczowych czynników, takich jak powierzchnia kondygnacji oraz ilość kondygnacji. W przypadku 3-kondygnacyjnego budynku o powierzchni każdej kondygnacji wynoszącej około 800 m², norma wskazuje na konieczność zainstalowania trzech punktów rozdzielczych. Każdy punkt rozdzielczy powinien być strategicznie rozmieszczony, aby maksymalizować efektywność sieci telekomunikacyjnej oraz zapewnić łatwy dostęp do infrastruktury. Praktyczne zastosowanie tej zasady sprawdza się w obiektach o dużej powierzchni użytkowej, gdzie odpowiednia liczba punktów rozdzielczych ułatwia zarządzanie siecią, a także minimalizuje ryzyko awarii. Zastosowanie normy PN-EN 50174 w projektowaniu sieci telekomunikacyjnych jest istotne dla zapewnienia nieprzerwanego dostępu do usług, co jest kluczowe w obiektach komercyjnych oraz publicznych.

Pytanie 24

Moduł SFP, który jest wymienny i zgodny z normami, odgrywa jaką rolę w urządzeniach sieciowych?

A. zasilania rezerwowego
B. interfejsu do diagnostyki
C. dodatkowej pamięci operacyjnej
D. konwertera mediów
Moduł SFP nie ma nic wspólnego z zasilaniem awaryjnym. Ta funkcja należy do systemów UPS (Uninterruptible Power Supply), które ratują sytuację, gdy prąd znika. Co do pamięci RAM, to też niedobrze myślisz. SFP nie służy do zwiększania pamięci w urządzeniach, jego zadanie to tylko konwersja sygnałów. Ludzie czasami mylą SFP z czymś, co ma podnieść wydajność pamięci, a to jest zupełnie inne zagadnienie. Interfejs diagnostyczny też nie wchodzi w grę dla modułu SFP. One nie są zaprojektowane jako narzędzia do analizy, tylko do fizycznego łączenia w sieci. Częstym błędem jest mylenie funkcji fizycznych komponentów z ich rolą w zarządzaniu i diagnostyce. Taki sposób myślenia może prowadzić do złego zarządzania siecią i wyboru złych komponentów, co później źle wpływa na wydajność i niezawodność całego systemu.

Pytanie 25

Jaki jest prefiks lokalnego adresu dla łącza (Link-Local Address) w IPv6?

A. fe80/10
B. fc00/7
C. ff00/8
D. fec0/10
Odpowiedź 'fe80/10' jest poprawna, ponieważ jest to prefiks przydzielony adresom lokalnym łącza (Link-Local Addresses) w protokole IPv6. Adresy te są używane do komunikacji w sieciach lokalnych i nie są routowalne w Internecie. Prefiks 'fe80' oznacza, że adresy te mają zakres od 'fe80::' do 'febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff'. Adresy lokalne łącza są automatycznie przypisywane do interfejsów sieciowych, co umożliwia urządzeniom w tej samej sieci lokalnej komunikację bez konieczności konfiguracji serwera DHCP. Przykład zastosowania to komunikacja między urządzeniami w domowej sieci lokalnej, gdzie urządzenia mogą wykrywać się nawzajem i przesyłać dane bez dodatkowej konfiguracji. W kontekście standardów, adresy te są zgodne z dokumentem RFC 4862, który definiuje zasady dotyczące autokonfiguracji adresów IPv6.

Pytanie 26

Wskaź na prawidłowe przyporządkowanie usługi warstwy aplikacji z domyślnym numerem portu, na którym działa.

A. IMAP – 8080
B. DNS – 53
C. DHCP – 161
D. SMTP – 80
Odpowiedzi 'SMTP – 80', 'IMAP – 8080' i 'DHCP – 161' mają sporo błędów, jeśli chodzi o przypisanie usług do portów. SMTP, czyli Simple Mail Transfer Protocol, odpowiada za przesyłanie e-maili i działa na porcie 25, a nie 80, bo ten port jest zarezerwowany dla HTTP. To może być problematyczne, bo jak źle przypiszesz port, to e-maile mogą nie działać. IMAP, czyli Internet Message Access Protocol, używa portu 143, nie 8080, który jest raczej dla alternatywnego HTTP. A jeśli chodzi o DHCP, to ten protokół działa na porcie 67 dla serwerów i 68 dla klientów, a nie 161, który należy do SNMP. Źle przypisane porty mogą naprawdę skomplikować komunikację w sieci. Wiedza o tym, jakie porty do jakich protokołów pasują, jest super ważna, żeby dobrze zarządzać sieciami i dbać o ich bezpieczeństwo.

Pytanie 27

Podczas realizacji projektu sieci LAN zastosowano medium transmisyjne w standardzie Ethernet 1000Base-T. Która z poniższych informacji jest poprawna?

A. Standard ten umożliwia transmisję w trybie full-duplex przy maksymalnym zasięgu 100 metrów
B. Standard ten pozwala na transmisję w trybie half-duplex przy maksymalnym zasięgu 1000 metrów
C. To standard sieci optycznych, którego maksymalny zasięg wynosi 1000 metrów
D. Jest to standard sieci optycznych działających na wielomodowych światłowodach
Standard Ethernet 1000Base-T, znany również jako Gigabit Ethernet, jest jednym z najpopularniejszych standardów transmisji w sieciach lokalnych. Umożliwia on przesył danych z prędkością 1000 Mbps (1 Gbps) przy użyciu standardowych kabli miedzianych typu skrętka (Cat 5e lub wyższej). Ważnym aspektem tego standardu jest to, że obsługuje on transmisję typu full-duplex, co oznacza, że dane mogą być jednocześnie wysyłane i odbierane, co podwaja efektywną przepustowość kanału. Maksymalny zasięg tego medium wynosi 100 metrów, co czyni go idealnym rozwiązaniem dla typowych zastosowań w biurach i małych instalacjach sieciowych. Przykładowo, w biurze z wieloma komputerami można zainstalować sieć 1000Base-T, aby zapewnić wysoką prędkość przesyłu danych między urządzeniami, co jest kluczowe przy przesyłaniu dużych plików czy korzystaniu z aplikacji wymagających dużej szerokości pasma. Warto również zaznaczyć, że standard ten jest zgodny z istniejącymi infrastrukturami Ethernet, co ułatwia migrację z wolniejszych standardów, takich jak 100Base-TX. "

Pytanie 28

Standardowa sekwencja przetwarzania zasad grupowych w systemie Windows jest następująca:

A. jednostka organizacyjna – domena – lokacja – lokalny komputer
B. domena – lokacja – jednostka organizacyjna – lokalny komputer
C. lokacja – domena – jednostka organizacyjna – lokalny komputer
D. lokalny komputer – lokacja – domena – jednostka organizacyjna
Wszystkie inne przedstawione odpowiedzi nie uwzględniają właściwej hierarchii przetwarzania zasad grupy w systemie Windows, co może prowadzić do poważnych konsekwencji w zarządzaniu politykami bezpieczeństwa i konfiguracją. Niepoprawne odpowiedzi sugerują, że zasady grupy są przetwarzane w odwrotnej kolejności lub w sposób, który nie odzwierciedla rzeczywistości funkcjonowania systemu. Przykładowo, sugerowanie, że domena lub jednostka organizacyjna mają pierwszeństwo nad zasadami lokalnymi jest fundamentalnym błędem, ponieważ użytkownicy mogą skonfigurować lokalne zasady, które są specyficzne dla danego urządzenia, co powinno być zawsze priorytetem. Taki błąd myślowy prowadzi do sytuacji, w której lokalne wymagania bezpieczeństwa mogą zostać zignorowane na rzecz zasady, która nie jest już zgodna z aktualnymi potrzebami użytkownika. Inny typowy błąd dotyczy mylenia lokacji z jednostkami organizacyjnymi, co może skutkować nieprawidłową aplikacją zasad w sieciach złożonych z wielu lokalizacji. Te nieporozumienia mogą prowadzić do nieefektywnego zarządzania zasobami IT, zwiększając ryzyko wystąpienia incydentów bezpieczeństwa i złożoności w zarządzaniu systemami. Właściwe zrozumienie hierarchii i kolejności przetwarzania zasad grupy jest kluczowe dla skutecznego administrowania infrastrukturą IT oraz zapewnienia zgodności z politykami organizacji.

Pytanie 29

Które polecenie systemu Windows zostało zastosowane do sprawdzenia połączenia z serwerem DNS?

1<1 ms<1 ms<1 mslivebox.home [192.168.1.1]
244 ms38 ms33 mswro-bng1.tpnet.pl [80.50.118.234]
334 ms39 ms33 mswro-r2.tpnet.pl [80.50.119.233]
433 ms33 ms33 ms212.244.172.106
533 ms33 ms32 msdns2.tpsa.pl [194.204.152.34]
Trace complete.
A. nslookup
B. ping
C. tracert
D. route
Wybór niepoprawnej odpowiedzi na pytanie o polecenie do sprawdzenia połączenia z serwerem DNS może wynikać z braku znajomości podstawowych narzędzi diagnostycznych w systemie Windows. Odpowiedzi takie jak 'ping', 'nslookup' czy 'route' mają swoje specyficzne zastosowania, które mogą być mylone z funkcją 'tracert', ale nie są zamienne. 'Ping' służy do sprawdzania dostępności hosta za pomocą pakietów ICMP Echo Request, co informuje nas jedynie o tym, czy dany host jest osiągalny, ale nie pokazuje drogi, jaką pakiet przebył. 'Nslookup' to narzędzie do uzyskiwania informacji o adresach IP oraz rekordach DNS, a nie do śledzenia trasy pakietów. Z kolei 'route' służy do wyświetlania i modyfikacji tablic routingu w systemie operacyjnym. Wybór któregokolwiek z tych poleceń sugeruje niepełne zrozumienie ich przeznaczenia oraz sposobów, w jakie mogą być wykorzystywane w diagnostyce sieci. Dlatego ważne jest, aby przed przystąpieniem do rozwiązywania problemów z siecią zrozumieć różnice między tymi narzędziami oraz ich odpowiednie zastosowanie zgodnie z najlepszymi praktykami w dziedzinie IT.

Pytanie 30

Simple Mail Transfer Protocol to protokół odpowiedzialny za

A. obsługę odległego terminala w architekturze klient-serwer
B. zarządzanie grupami multicastowymi w sieciach opartych na protokole IP
C. przekazywanie poczty elektronicznej w Internecie
D. synchronizację czasu pomiędzy komputerami
Simple Mail Transfer Protocol (SMTP) to standardowy protokół komunikacyjny wykorzystywany do przesyłania poczty elektronicznej w Internecie. Został opracowany w latach 80. XX wieku i od tego czasu stał się jednym z kluczowych elementów infrastruktury komunikacyjnej w sieci. Protokół ten działa na zasadzie klient-serwer, gdzie klient (np. program pocztowy) wysyła wiadomości do serwera pocztowego, który następnie przekazuje je do odpowiednich serwerów odbiorców. Jednym z głównych zastosowań SMTP jest umożliwienie przesyłania wiadomości między różnymi domenami. W praktyce, większość systemów e-mailowych, takich jak Gmail czy Outlook, korzysta z SMTP do obsługi wysyłania wiadomości e-mail. Protokół ten również obsługuje różne metody autoryzacji, co zwiększa bezpieczeństwo przesyłania wiadomości. Warto również zauważyć, że SMTP współpracuje z innymi protokołami, takimi jak IMAP czy POP3, które są używane do odbierania e-maili. Zrozumienie SMTP jest niezbędne dla osób zajmujących się administracją systemami e-mailowymi oraz dla specjalistów IT, którzy chcą zapewnić efektywną komunikację w organizacjach.

Pytanie 31

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 108 Mb/s
B. 11 Mb/s
C. 150 Mb/s
D. 54 Mb/s
Odpowiedź 54 Mb/s to strzał w dziesiątkę. Standard 802.11g, który wszedł w życie w 2003 roku, właśnie taką prędkość oferuje. To spory postęp w porównaniu do wcześniejszego 802.11b, które radziło sobie tylko z 11 Mb/s. Prędkość 54 Mb/s osiąga się dzięki technologii OFDM, która lepiej wykorzystuje pasmo. W praktyce, ten standard jest naprawdę przydatny w domowych sieciach i małych biurach, gdzie szybkość i stabilność są ważne, na przykład do oglądania filmów czy grania online. Co ciekawe, 802.11g współpracuje też z urządzeniami 802.11b, co ułatwia korzystanie ze starszych sprzętów w nowych sieciach. Z mojej perspektywy, warto jednak pamiętać, że realna prędkość może być niższa z powodu różnych zakłóceń, odległości od routera i liczby podłączonych urządzeń.

Pytanie 32

Który komponent serwera w formacie rack można wymienić bez potrzeby demontażu górnej pokrywy?

A. Dysk twardy
B. Chip procesora
C. Moduł RAM
D. Karta sieciowa
Dysk twardy to naprawdę ważny element w serwerach rackowych. Fajnie, że można go wymienić bez zrzucania całej obudowy, bo to olbrzymia wygoda, szczególnie kiedy trzeba szybko zareagować na jakieś awarie. Wiele nowoczesnych serwerów ma systemy hot-swappable, co znaczy, że te dyski można wymieniać bez wyłączania serwera. Wyobraź sobie, że w momencie awarii, administrator może w mgnieniu oka podmienić dysk i w ten sposób zminimalizować przestoje. To wszystko ma sens, bo SaS i SATA dają taką możliwość, a to zgodne z najlepszymi praktykami w branży. Z mojego doświadczenia, umiejętność szybkiej wymiany dysków naprawdę pomaga w efektywnym zarządzaniu infrastrukturą IT.

Pytanie 33

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 4.
B. 3.
C. 1.
D. 2.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 34

Na serwerze Windows udostępniono folder C:\dane w sieci, nadając wszystkim użytkownikom prawa do odczytu i modyfikacji. Użytkownik pracujący na stacji roboczej może przeglądać zawartość tego folderu, lecz nie jest w stanie zapisać w nim swoich plików. Co może być przyczyną tej sytuacji?

A. Zablokowane konto użytkownika na serwerze
B. Brak uprawnień do modyfikacji w ustawieniach udostępniania folderu na serwerze
C. Brak uprawnień do zmiany w zabezpieczeniach folderu na serwerze
D. Zablokowane konto użytkownika na stacji roboczej
Analizując inne możliwe przyczyny problemu, warto zauważyć, że brak uprawnień do zmiany w udostępnianiu folderu na serwerze nie powinien być przyczyną problemów z zapisem, pod warunkiem, że uprawnienia NTFS są skonfigurowane poprawnie. W rzeczywistości, jeśli uprawnienia udostępniania są przyznane, użytkownicy powinni mieć możliwość zapisywania plików, o ile mają odpowiednie uprawnienia NTFS. Ponadto, zablokowane konto użytkownika na stacji roboczej nie powinno wpływać na możliwość zapisu w folderze udostępnionym na serwerze, ponieważ sytuacja ta odnosi się do lokalnego dostępu do systemu, a nie do zasobów sieciowych. Z kolei zablokowanie konta użytkownika na serwerze również nie jest bezpośrednią przyczyną problemu, ponieważ powiązanie konta serwera z dostępem do folderu udostępnionego jest istotne tylko w kontekście autoryzacji. W praktyce, typowym błędem w rozumieniu tej sytuacji jest mylenie poziomów uprawnień oraz zakładanie, że jeden typ uprawnień automatycznie wystarcza bez sprawdzenia ustawień NTFS. Ważne jest, aby administratorzy systemów pamiętali, że skuteczne zarządzanie dostępem do zasobów wymaga zrozumienia zarówno uprawnień udostępniania, jak i NTFS, a także regularnego monitorowania i audytowania tych ustawień, co jest kluczowe dla bezpieczeństwa danych w organizacji.

Pytanie 35

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
B. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
C. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
D. umożliwiająca zdalne połączenie z urządzeniem
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem protokołu UDP?

A. Fizycznej
B. Sieciowej
C. Transportowej
D. Łącza danych
Odpowiedź wskazująca na warstwę transportową modelu ISO/OSI jest prawidłowa, ponieważ to właśnie na tym poziomie odbywa się segmentowanie danych oraz zarządzanie komunikacją pomiędzy aplikacjami na różnych urządzeniach. Warstwa transportowa, według standardu ISO/OSI, odpowiada za zapewnienie właściwej komunikacji niezależnie od rodzaju transportu – zarówno w trybie połączeniowym, jak w przypadku protokołu TCP, jak i w trybie bezpołączeniowym przy użyciu protokołu UDP. TCP zapewnia niezawodność przesyłania danych, co jest kluczowe w aplikacjach wymagających pełnej integralności, takich jak przesyłanie plików czy HTTP. Z kolei UDP, działający bez nawiązywania połączenia, jest wykorzystywany w scenariuszach, gdzie szybkość jest istotniejsza niż niezawodność, jak w przypadku strumieniowania wideo lub gier online. W praktyce, zrozumienie różnicy pomiędzy tymi protokołami jest kluczowe dla projektowania systemów sieciowych, co stanowi fundament skutecznej architektury komunikacyjnej.

Pytanie 38

Sieć o adresie IP 172.16.224.0/20 została podzielona na cztery podsieci z maską 22-bitową. Który z poniższych adresów nie należy do żadnej z tych podsieci?

A. 172.16.236.0
B. 172.16.228.0
C. 172.16.240.0
D. 172.16.232.0
Adres 172.16.240.0 nie jest adresem jednej z podsieci stworzonych z sieci 172.16.224.0/20. Przy podziale na cztery podsieci z maską /22, każda z podsieci ma 1024 adresy (2^(32-22)), co daje 1022 dostępne adresy hostów. Pierwsza podsieć zaczyna się od 172.16.224.0 i kończy na 172.16.227.255, druga od 172.16.228.0 do 172.16.231.255, trzecia od 172.16.232.0 do 172.16.235.255, a czwarta od 172.16.236.0 do 172.16.239.255. Adres 172.16.240.0 wykracza poza zakres ostatniej podsieci. Zrozumienie podziału sieci IP w kontekście CIDR (Classless Inter-Domain Routing) jest kluczowe dla efektywnego zarządzania adresami IP w dużych środowiskach sieciowych. W praktyce, narzędzia takie jak kalkulatory CIDR ułatwiają obliczenia i wizualizację podsieci, co jest nieocenione w codziennych zadaniach administratorów sieci.

Pytanie 39

Aby użytkownicy sieci lokalnej mogli przeglądać strony WWW przez protokoły HTTP i HTTPS, zapora sieciowa powinna pozwalać na ruch na portach

A. 80 i 434
B. 90 i 434
C. 90 i 443
D. 80 i 443
Odpowiedź 80 i 443 jest prawidłowa, ponieważ port 80 jest standardowym portem używanym do komunikacji w protokole HTTP, natomiast port 443 jest przeznaczony dla protokołu HTTPS, który zapewnia szyfrowanie danych przesyłanych w sieci. Umożliwiając przepuszczanie ruchu na tych portach, zapora sieciowa pozwala użytkownikom sieci lokalnej na bezpieczne przeglądanie stron internetowych. Przykładem może być środowisko biurowe, w którym pracownicy korzystają z przeglądarek internetowych do dostępu do zasobów online, takich jak platformy chmurowe czy portale informacyjne. W kontekście najlepszych praktyk, wiele organizacji stosuje zasady bezpieczeństwa, które obejmują zezwolenie na ruch tylko na tych portach, aby zminimalizować ryzyko ataków oraz nieautoryzowanego dostępu do sieci. Dodatkowo, stosowanie HTTPS na portach 443 jest zalecane przez organizacje takie jak Internet Engineering Task Force (IETF), co przyczynia się do lepszego zabezpieczenia danych użytkowników.

Pytanie 40

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. filtrację adresów MAC
B. firewall
C. bardziej zaawansowane szyfrowanie
D. strefę o ograniczonym dostępie
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.