Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 listopada 2025 12:54
  • Data zakończenia: 13 listopada 2025 13:54

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Tensometr.
B. Termistor.
C. Warystor.
D. Gaussotron.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 2

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. pneumatycznego przekaźnika czasowego z opóźnionym włączeniem.
B. wyspy zaworowej.
C. reduktora z manometrem.
D. pneumatycznego przekaźnika czasowego z opóźnionym wyłączeniem.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź, czyli pneumatyczny przekaźnik czasowy z opóźnionym wyłączeniem, jest poprawna, ponieważ rysunek ilustruje charakterystyczne elementy tego urządzenia. Przekaźniki czasowe zastosowane w automatyce pneumatycznej są kluczowe w procesach, gdzie precyzyjne zarządzanie czasem jest niezbędne. Na rysunku widoczny jest zbiornik powietrza, który gromadzi medium robocze, oraz zawór sterujący, który reguluje przepływ powietrza do elementów wykonawczych. Zastosowanie przekaźnika czasowego pozwala na opóźnienie działania (wyłączenie) systemu, co jest niezwykle ważne w sytuacjach, gdy należy zapewnić bezpieczeństwo lub zminimalizować ryzyko uszkodzenia urządzeń. Przykładem zastosowania takiego przekaźnika może być automatyzacja linii produkcyjnych, gdzie precyzyjne harmonogramy operacyjne są kluczowe dla utrzymania efektywności. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór odpowiednich komponentów oraz ich odpowiednie skonfigurowanie są niezwykle istotne dla zapewnienia niezawodności i efektywności systemów pneumatycznych.

Pytanie 3

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
B. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
C. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
D. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 4

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. nadmierny hałas generowany przez pracujące urządzenia
B. odłamki rozrywanych maszyn
C. przenoszenie wibracji na pracownika
D. iskra prowadząca do pożaru lub wybuchu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 5

Na zamieszczonym rysunku przedstawiono schemat czujnika

Ilustracja do pytania
A. magnetycznego.
B. optycznego.
C. indukcyjnego.
D. pojemnościowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik optyczny, który przedstawiono na schemacie, jest jednym z kluczowych elementów wykorzystywanych w nowoczesnych systemach automatyki oraz technologii detekcji. Jego działanie opiera się na emisji i detekcji światła, co czyni go niezwykle efektywnym narzędziem do pomiarów i detekcji. Schemat z diodą LED oraz fototranzystorem jest typowy dla czujników optycznych, które znajdują zastosowanie w różnych branżach, takich jak przemysł motoryzacyjny, automatyka przemysłowa czy systemy bezpieczeństwa. Przykłady zastosowania obejmują detekcję obecności obiektów, zliczanie przedmiotów na taśmach produkcyjnych oraz pomiar odległości. Warto zwrócić uwagę na standardy branżowe, takie jak IEC 60947, które definiują wymagania dotyczące bezpieczeństwa i niezawodności czujników. Współczesne czujniki optyczne charakteryzują się dużą precyzją oraz szybką reakcją, co czyni je niezastąpionymi w aplikacjach wymagających wysokiej dokładności.

Pytanie 6

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Spawanie
B. Zgrzewanie
C. Nitowanie
D. Klejenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 7

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. OR
B. AND
C. NOR
D. NAND

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Blok przedstawiony na rysunku realizuje funkcję logiczną AND, co można łatwo zauważyć po symbolu "&" umieszczonym wewnątrz bloku. Funkcja AND jest jedną z podstawowych funkcji logicznych stosowanych w elektronice cyfrowej oraz programowaniu. Działa na zasadzie, że jej wyjście będzie miało wartość prawda (1) tylko wtedy, gdy wszystkie podłączone wejścia mają wartość prawda (1). W praktyce funkcja ta jest często wykorzystywana w układach cyfrowych, takich jak bramki logiczne, gdzie umożliwia realizację złożonych operacji działania systemu. Na przykład, w systemach alarmowych, sygnał alarmowy może być aktywowany tylko wtedy, gdy wszystkie czujniki wykryją intruza. Warto zaznaczyć, że zgodnie z normami IEEE i innymi standardami branżowymi, użycie funkcji AND jest kluczowe w budowie niezawodnych układów logicznych, co czyni tę wiedzę niezwykle ważną w kontekście inżynierii elektronicznej.

Pytanie 8

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Sondy
B. Chwytaka
C. Silnika
D. Regulatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 9

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. śniegową oznaczoną BC
B. pianową oznaczoną AF
C. proszkową oznaczoną ABC/E
D. proszkową oznaczoną ABC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 10

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Miesięczny demontaż oraz montaż pomp
B. Regularna wymiana rozdzielacza
C. Regularna wymiana filtrów
D. Codzienna wymiana oleju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 11

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. megaomomierzem
B. laboratoryjnym mostkiem Thomsona
C. technicznym mostkiem Thomsona
D. omomierzem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiary rezystancji izolacji instalacji elektrycznej wykonuje się za pomocą megaomomierza, który jest specjalistycznym urządzeniem zaprojektowanym do oceny stanu izolacji. Megaomomierze działają na zasadzie generowania wysokiego napięcia, co pozwala na dokładne zmierzenie rezystancji izolacyjnej. Zgodnie z normami PN-EN 61557, pomiar rezystancji izolacji jest kluczowym elementem w ocenie bezpieczeństwa instalacji elektrycznych. W praktyce, podczas regularnych kontroli, technicy zalecają wykonywanie takich pomiarów co najmniej raz na rok, aby zminimalizować ryzyko awarii spowodowanych uszkodzeniem izolacji. Pomiary te są szczególnie istotne w obiektach przemysłowych, gdzie występują różne czynniki zewnętrzne mogące wpływać na stan izolacji, takie jak wilgoć, zanieczyszczenia czy zmiany temperatury. W przypadku stwierdzenia niskiej rezystancji, może to wskazywać na degradację materiału izolacyjnego, co wymaga podjęcia działań naprawczych.

Pytanie 12

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia
A. Czyszczenie zaworu zwrotnego.
B. Wymiana filtra ssącego.
C. Kontrola stanu oleju.
D. Wymiana paska klinowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 13

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. wielkości
B. kolejności montażu
C. poziomu złożoności
D. kształtu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 14

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 10,0 V
C. 7,5 V
D. 4,5 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 15

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Stal szybkotnącą
B. Brąz
C. Mosiądz
D. Żeliwo szare

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 16

Filtr o charakterystyce pasmowo-zaporowej

A. przepuszcza sygnały o niskich częstotliwościach.
B. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
C. tłumi sygnały o niskich częstotliwościach.
D. przepuszcza sygnały w zakresie określonego pasma częstotliwości.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtr pasmowo-zaporowy to urządzenie elektroniczne, które ma na celu tłumienie sygnałów o częstotliwościach znajdujących się w określonym pasmie, co czyni go niezwykle przydatnym w różnych zastosowaniach inżynieryjnych. Działa on na zasadzie eliminacji zakłóceń, które mogą wpływać na jakość sygnału w systemach komunikacyjnych, audio oraz telewizyjnych. Przykładami zastosowania filtrów pasmowo-zaporowych są systemy audio, gdzie eliminuje się szumy z zakresu częstotliwości, które nie są potrzebne dla jakości dźwięku, oraz w telekomunikacji, gdzie pozwala to na poprawę jakości odbioru sygnałów bez zakłóceń. W kontekście standardów branżowych, filtry pasmowo-zaporowe są zgodne z normami ITU (Międzynarodowa Unia Telekomunikacyjna) i IEEE, co zapewnia ich efektywność oraz kompatybilność w różnych systemach. Warto także pamiętać, że konstrukcja tych filtrów może być zrealizowana zarówno w technologii analogowej, jak i cyfrowej, co zwiększa ich wszechstronność w nowoczesnych aplikacjach.

Pytanie 17

Aby zdemontować stycznik zamocowany na szynie, należy wykonać czynności w odpowiedniej kolejności:

A. odkręcić przewody, zdjąć stycznik z szyny, odłączyć napięcie
B. odłączyć napięcie, zdjąć stycznik z szyny, odkręcić przewody
C. odłączyć napięcie, odkręcić przewody, zdjąć stycznik z szyny
D. zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź, która wskazuje na odłączenie napięcia, odkręcenie przewodów, a następnie odpięcie stycznika z szyny, jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Pierwszym krokiem powinno być zawsze odłączenie zasilania. To kluczowe, aby uniknąć porażenia prądem oraz zapobiec uszkodzeniu sprzętu. Po odłączeniu zasilania można bezpiecznie przystąpić do odkręcania przewodów, co minimalizuje ryzyko zwarcia. Na końcu, po bezpiecznym odłączeniu przewodów, można zdemontować stycznik z szyny. Taki porządek działań jest zgodny z zaleceniami norm międzynarodowych, takich jak IEC 60204-1, które podkreślają znaczenie bezpieczeństwa podczas prac elektrycznych. Wiedza na temat prawidłowego demontażu urządzeń elektrycznych jest nie tylko istotna dla zapewnienia bezpieczeństwa, ale również dla efektywności i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 18

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 3
B. 2
C. 1
D. 4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar mocy czynnej w układach trójfazowych metodą Arona wymaga zastosowania dwóch watomierzy. Ta metoda polega na pomiarze mocy czynnej w trzechfazowym obwodzie z równocześnie pracującymi watomierzami, co pozwala na obliczenie wartości mocy czynnej w całym układzie. Dwa watomierze są w stanie uchwycić różnice w obciążeniu oraz fazach, co jest kluczowe dla uzyskania dokładnych wyników. Na przykład, w układzie z równym obciążeniem gwiazdowym, watomierze łączy się w sposób pozwalający na zmierzenie mocy dwóch faz, a moc trzeciej fazy oblicza się jako różnicę od wartości całkowitej. Użycie dwóch przyrządów jest zgodne z normą IEC 60051, która mówi o technikach pomiarowych w systemach elektroenergetycznych. Dzięki tej metodzie można precyzyjnie ocenić efektywność energetyczną instalacji oraz zidentyfikować potencjalne straty energii, co jest istotne w kontekście zarządzania energią i optymalizacji wydajności w systemach przemysłowych.

Pytanie 19

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. przekładnik prądowy
B. transformator bezpieczeństwa
C. przekładnik napięciowy
D. transformator do zmiany liczby faz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekładnik prądowy jest urządzeniem zaprojektowanym do pomiaru prądu w obwodach elektrycznych, które działa w stanie zbliżonym do zwarcia. Jego głównym zadaniem jest proporcjonalne przekształcanie prądu wysokiego napięcia na prąd niskiego napięcia, umożliwiając tym samym bezpieczne podłączenie przyrządów pomiarowych, takich jak amperomierze, do obwodów. W praktyce, przekładniki prądowe są szeroko stosowane w systemach energetycznych, w tym w stacjach transformatorowych oraz rozdzielniach elektrycznych. Dzięki nim można monitorować i analizować prądy robocze oraz przeciążeniowe, co jest niezbędne do zapewnienia bezpieczeństwa i niezawodności pracy instalacji elektrycznych. W kontekście norm branżowych, przekładniki prądowe muszą spełniać określone standardy, takie jak normy IEC 60044, co zapewnia ich wysoką jakość i niezawodność w trudnych warunkach pracy. Użycie przekładników prądowych w systemach automatyki przemysłowej pozwala na dokładne monitorowanie parametrów energii, co jest kluczowe dla optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacji.

Pytanie 20

Na rysunku przedstawiono przekładnię o zębach

Ilustracja do pytania
A. daszkowych.
B. śrubowych.
C. prostych.
D. łukowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "łukowych" jest prawidłowa, ponieważ zęby łukowe charakteryzują się zakrzywionym kształtem, co zapewnia ich lepszą współpracę i przenoszenie obciążeń. Przekładnie zębate z zębami łukowymi są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających cichej i precyzyjnej pracy, takich jak w przekładniach samochodowych, gdzie redukcja hałasu i drgań jest kluczowa dla komfortu użytkowania. W porównaniu do zębów prostych, zęby łukowe oferują znacznie lepsze właściwości eksploatacyjne, w tym zwiększoną trwałość oraz mniejsze zużycie. W praktyce, takie przekładnie są stosowane w wielu mechanizmach, od maszyn przemysłowych po urządzenia codziennego użytku, spełniając normy branżowe i dobre praktyki inżynieryjne, które zalecają stosowanie zębów łukowych w sytuacjach, gdzie liczy się wydajność i niezawodność.

Pytanie 21

Do kategorii chemicznych źródeł energii elektrycznej można zaliczyć ogniwa galwaniczne oraz

A. elementy termoelektryczne
B. prądnice synchroniczne
C. akumulatory kwasowe
D. ogniwa fotowoltaiczne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Akumulatory kwasowe to jeden z typów ogniw chemicznych, które przekształcają energię chemiczną w energię elektryczną. Działają na zasadzie reakcji chemicznych zachodzących pomiędzy elektrodami i elektrolitem, w tym przypadku kwasem siarkowym. Te ogniwa są powszechnie stosowane w różnych zastosowaniach, takich jak zasilanie pojazdów (akumulatory samochodowe), systemy zasilania awaryjnego oraz w energii odnawialnej, gdzie magazynują energię z paneli słonecznych lub turbin wiatrowych. W kontekście standardów branżowych, akumulatory kwasowe muszą spełniać określone normy dotyczące bezpieczeństwa i wydajności, takie jak normy ISO oraz IEC. Przykładowo, w zastosowaniach motoryzacyjnych akumulatory muszą być zdolne do dostarczenia dużych prądów rozruchowych, co jest krytyczne dla działania silnika. W związku z tym, akumulatory kwasowe są nie tylko kluczowym elementem nowoczesnych systemów energetycznych, ale także wymagają regularnej konserwacji i monitorowania, aby zapewnić ich długoterminową niezawodność.

Pytanie 22

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Stabilizatory.
B. Generatory.
C. Flip-flopy.
D. Prostowniki.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 23

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Sworzniowe
B. Wciskowe
C. Nitowane
D. Wpustowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 24

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Graniczne
B. Jednostronne
C. Nominalne
D. Rzeczywiste

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Graniczne' jest prawidłowa, ponieważ wymiary graniczne definiują dopuszczalne zakresy odchyleń od wymiarów nominalnych, które są kluczowe w inżynierii mechanicznej. Wymiary te określają maksymalne i minimalne wartości, w ramach których element mechaniczny może być wykonany, aby zapewnić jego funkcjonalność i interoperacyjność z innymi komponentami. Przykładowo, w produkcji wałów, wymiary graniczne pozwalają na określenie, jak blisko rzeczywiste wymiary mogą być do wartości nominalnych, a jednocześnie nie wpłyną na działanie maszyny. W praktyce, normy takie jak ISO 286 określają zasady tolerancji wymiarowych, co jest niezbędne do zapewnienia odpowiedniej jakości i wymienności części. Wiedza na temat wymiarów granicznych jest kluczowa, ponieważ niewłaściwe ich zdefiniowanie może prowadzić do wadliwego działania całego układu mechanicznego lub nawet do jego awarii. Dlatego inżynierowie muszą dokładnie analizować te parametry podczas projektowania i produkcji.

Pytanie 25

Wyłącznik silnikowy może zadziałać na skutek

A. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
B. użycia stałego napięcia w obwodzie sterowania silnika
C. braku jednej fazy zasilającej silnik
D. uruchomienia silnika przy niewielkim obciążeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 26

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. watomierz
B. woltomierz
C. amperomierz
D. omomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 27

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. natężenia przepływu medium roboczego do siłownika
B. efektywności siłownika
C. wydajności siłownika
D. powierzchni roboczej tłoka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość tłoczyska siłownika hydraulicznego jest odwrotnie proporcjonalna do powierzchni czynnej tłoka, co wynika z podstawowych zasad hydrauliki. W przypadku siłowników hydraulicznych, prędkość tłoczyska (v) obliczana jest na podstawie natężenia przepływu (Q) oraz powierzchni tłoka (A) według wzoru v = Q/A. Gdy powierzchnia tłoka wzrasta, prędkość tłoczyska maleje dla stałego natężenia przepływu, co ilustruje odwrotną proporcjonalność. Praktycznie oznacza to, że w aplikacjach, gdzie wymagane jest szybkie ruch tłoczyska, projektanci siłowników często stosują mniejsze średnice tłoków, aby zwiększyć prędkość przy zachowaniu odpowiedniego ciśnienia. Dobrą praktyką w branży jest także uwzględnianie tego związku podczas doboru siłowników do konkretnych zastosowań, co wpływa na efektywność całego systemu hydraulicznego. Również w kontekście oszczędności energii, dobór odpowiedniej powierzchni tłoka pozwala na optymalizację pracy układu hydraulicznego.

Pytanie 28

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 160 N
B. 140 N
C. 150 N
D. 130 N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 29

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Triaki oraz diaki
B. Diody
C. Triaki
D. Diody i tyrystory

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 30

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
B. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
C. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
D. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ parametry zaworu pneumatycznego rozdzielającego rzeczywiście odnoszą się do jego konstrukcji i specyfikacji. 'Gl/8' wskazuje na przyłącze walcowe, co jest standardowym typem przyłącza w wielu zastosowaniach przemysłowych, pozwalającym na łatwe podłączenie do systemu pneumatycznego. '550 Nl/min' określa nominalny przepływ powietrza, co jest kluczowym parametrem przy doborze zaworu do systemu; oznacza to, że zawór jest w stanie przepuścić 550 litrów powietrza na minutę przy nominalnych warunkach. '12 V AC' oznacza napięcie cewki zaworu, wskazując, że jest to napięcie zmienne, co jest typowe dla wielu aplikacji w automatyce, gdzie zasilanie zmienne jest powszechnie stosowane. '3 VA' to moc pozorna cewki, co jest istotnym parametrem przy doborze odpowiednich elementów do zasilania zaworu. Znajomość tych parametrów pozwala na prawidłowy dobór i eksploatację zaworów pneumatycznych, co jest niezbędne dla efektywności systemów automatyki przemysłowej. Przykładem zastosowania może być automatyzacja procesów produkcyjnych, gdzie precyzyjnie dobrane zawory zapewniają optymalną pracę siłowników pneumatycznych oraz efektywność energetyczną całego systemu.

Pytanie 31

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Podłączyć prądnicę na krótko do pracy silnikowej
B. Zwiększyć opór w obwodzie wzbudzenia
C. Odwrócić kierunek prędkości obrotowej na przeciwny
D. Zmienić sposób podłączenia w obwodzie wzbudzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 32

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Lutownica z końcówką 'minifala'
B. Rozlutownica
C. Lutownica na gorące powietrze z dyszą w kształcie 7x7
D. Stacja lutownicza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 33

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania
A. Falownika.
B. Sterownika PLC.
C. Czujnika optycznego.
D. Silnika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 34

Tensomer foliowy powinien być zamocowany do podłoża

A. klejem
B. śrubą
C. nitem
D. zszywką

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 35

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Optycznego
B. Pojemnościowego
C. Indukcyjnego
D. Rezystancyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 36

Przedstawiony symbol graficzny jest oznaczeniem czujnika

Ilustracja do pytania
A. magnetycznego.
B. pojemnościowego.
C. optycznego.
D. indukcyjnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, co widzisz na obrazku, to symbol czujnika magnetycznego. Jest on naprawdę ważny w różnych systemach automatyki i monitorowania. Jak to wygląda? No, ma magnes, co zazwyczaj pokazane jest przez prostokąt z oznaczeniami N (północny) i S (południowy). Czujniki te działają dzięki wykrywaniu zmian w polu magnetycznym. To sprawia, że są mega praktyczne w takich rzeczach jak detekcja pozycji czy systemy zabezpieczeń. Przykładem ich użycia mogą być czujniki w drzwiach i oknach, które informują, czy są otwarte czy zamknięte. W branżowych standardach, takich jak ISO 9001, mówi się o tym, jak ważna jest niezawodność detekcji. Dlatego te czujniki są naprawdę dobrze odbierane, bo są trwałe i łatwe w obsłudze.

Pytanie 37

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. zbliża się do linii punktu rosy
B. nie zmienia się w stosunku do linii punktu rosy
C. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
D. oddala się od linii punktu rosy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost ciśnienia w zbiorniku sprężarki powoduje, że powietrze staje się bardziej sprężone. Przy stałej wilgotności i temperaturze, wilgotność względna powietrza wzrasta, co oznacza, że stan pary wodnej w powietrzu zbliża się do linii punktu rosy. Linia punktu rosy jest granicą, przy której para wodna zaczyna kondensować w ciecz. W praktyce, im wyższe ciśnienie, tym więcej pary wodnej może być obecne w powietrzu, co prowadzi do podwyższenia ciśnienia cząstkowego pary wodnej. W zastosowaniach przemysłowych, kontrola ciśnienia i wilgotności powietrza jest kluczowa, zwłaszcza w procesach, w których może wystąpić kondensacja, jak w systemach pneumatycznych czy podczas przechowywania materiałów wrażliwych na wilgoć. Przykładowo, w przemyśle spożywczym lub farmaceutycznym, monitoring tych parametrów zapewnia, że procesy technologiczne przebiegają zgodnie z normami jakości, co z kolei wpływa na trwałość oraz bezpieczeństwo produktów końcowych.

Pytanie 38

Który z wymienionych symptomów wskazuje na zanieczyszczenie hydraulicznego filtra?

A. Wzrost ciśnienia oleju za filtrem
B. Spadek temperatury oleju za filtrem
C. Wzrost ciśnienia oleju przed filtrem
D. Spadek temperatury oleju przed filtrem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost ciśnienia oleju przed filtrem hydraulicznych jest kluczowym wskaźnikiem, który może świadczyć o zanieczyszczeniu filtra. W przypadku, gdy filtr hydrauliczny jest zablokowany z powodu nagromadzenia zanieczyszczeń, olej nie może swobodnie przepływać przez filtr, co prowadzi do wzrostu ciśnienia na wejściu. Jest to zjawisko często obserwowane w systemach hydraulicznych, w których regularnie monitoruje się ciśnienie. Przykładem może być system hydrauliczny w maszynach budowlanych, gdzie zanieczyszczenia w filtrze mogą prowadzić do awarii układu. Dlatego ważne jest, aby regularnie sprawdzać ciśnienie oleju przed filtrem i podejmować odpowiednie kroki, gdy ciśnienie przekracza ustalone normy. Zgodnie z dobrymi praktykami branżowymi, zaleca się również regularną wymianę filtrów hydraulicznych oraz przeprowadzanie konserwacji, co pozwala na utrzymanie efektywności systemu i minimalizowanie ryzyka poważnych uszkodzeń.

Pytanie 39

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. odgromnik
B. termistor
C. wyłącznik silnikowy
D. przekaźnik termiczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik silnikowy to urządzenie zabezpieczające, które chroni silniki przed zwarciem oraz przeciążeniem. Jego działanie opiera się na wykrywaniu prądów, które przekraczają ustalone wartości graniczne, co może prowadzić do uszkodzenia silnika. W przypadku wykrycia przeciążenia, wyłącznik silnikowy automatycznie odcina zasilanie, co zapobiega przegrzaniu i potencjalnym uszkodzeniom mechanicznym. W praktycznych zastosowaniach wyłączniki silnikowe stosowane są w różnych aplikacjach, od przemysłowych do budowlanych, zapewniając bezpieczeństwo operacyjne. Zgodnie z normami IEC 60947-4-1, instalacja wyłączników silnikowych powinna być zgodna z zasadami ochrony przeciwporażeniowej oraz zabezpieczeń przed skutkami zwarć. Oprócz zabezpieczenia przed przeciążeniem, wiele modeli wyłączników silnikowych wyposażonych jest w dodatkowe funkcje, takie jak serwisowe wskaźniki błędów, które informują użytkowników o awariach, co zwiększa bezpieczeństwo i efektywność operacyjną.

Pytanie 40

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. SAW
B. MAG
C. MIG
D. TIG

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda spawania MAG (Metal Active Gas) wykorzystuje gaz chemicznie aktywny, najczęściej w postaci mieszanki argonu z dwutlenkiem węgla lub innymi gazami, co pozwala na uzyskanie wysokiej jakości spoiny. W przeciwieństwie do MIG (Metal Inert Gas), gdzie stosuje się gazy obojętne, takie jak argon, w MAG aktywne gazy wpływają na proces spawania, co przyczynia się do lepszego wtopienia materiału oraz zwiększenia odporności na niepożądane zjawiska, takie jak utlenianie. Przykładem zastosowania technologii MAG jest spawanie wszelkiego rodzaju konstrukcji stalowych, takich jak ramy budynków, kontenery i elementy maszyn. Dobre praktyki w tej metodzie obejmują dobór odpowiednich parametrów spawania, jak prędkość, napięcie i natężenie prądu, co jest zgodne z normami EN ISO 4063. Dzięki temu proces staje się bardziej efektywny i kontrolowany, co jest niezwykle ważne w przemyśle metalowym.