Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 28 stycznia 2026 11:43
  • Data zakończenia: 28 stycznia 2026 12:03

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W przedstawionym na rysunku stabilizatorze wystąpiło zwarcie jednego z elementów. Wskaż, który podzespół uległ uszkodzeniu. Woltomierz prądu stałego wskazuje około 5 V.

Ilustracja do pytania
A. Dioda Dz
B. Układ μA7805
C. Kondensator C1
D. Kondensator C2
Analizując inne odpowiedzi, możemy zauważyć pewne nieporozumienia dotyczące funkcji i zachowania elementów w przedstawionym stabilizatorze napięcia. W przypadku kondensatorów C1 i C2, ich głównym zadaniem jest filtrowanie, co oznacza, że nie są one odpowiedzialne za regulację napięcia. Kondensatory działają jako akumulatory energii, a ich awaria zazwyczaj prowadzi do spadku wydajności systemu lub zakłóceń, ale nie wpływa bezpośrednio na poziom napięcia wyjściowego w taki sposób, jak sugeruje pytanie. Z kolei układ μA7805 pełni rolę stabilizatora napięcia i, jeśli woltomierz wskazuje 5 V, oznacza to, że jego działanie jest prawidłowe. Sądzenie, że którykolwiek z wymienionych kondensatorów lub układ sam w sobie mógłby być przyczyną zwarcia, jest błędne, ponieważ ich uszkodzenie nie spowodowałoby stabilizacji napięcia na tym poziomie. Zdarza się, że użytkownicy mylnie przypisują winę za awarię komponentów na podstawie objawów, nie biorąc pod uwagę, jak poszczególne elementy współdziałają w układzie. Kluczowe jest zrozumienie, że przy diagnozowaniu usterek ważne jest dokładne przeanalizowanie roli każdego z elementów oraz ich interakcji w całym systemie. Takie podejście pozwala na skuteczniejsze rozwiązywanie problemów oraz lepsze projektowanie obwodów elektronicznych.

Pytanie 2

Podczas pomiaru napięcia UCE spoczynkowego punktu pracy tranzystora m.cz. woltomierzem analogowym o podziałce 100 działek ustawionym na zakresie 0,3 V wskazówka wskazuje 80 działek. Ile wynosi wartość mierzonego napięcia?

Ilustracja do pytania
A. 60 mV
B. 180 mV
C. 240 mV
D. 120 mV
Wartość mierzonego napięcia U<sub>CE</sub> wynosi 240 mV, co możemy obliczyć na podstawie wskazania woltomierza. Woltomierz analogowy o podziałce 100 działek, ustawiony na zakres 0,3 V, wskazuje 80 działek. Aby obliczyć wartość napięcia, należy najpierw zrozumieć, że 80 działek stanowi 80% z pełnego zakresu 0,3 V. Zatem 0,3 V to 300 mV, a 80% z tej wartości to 0,8 x 300 mV = 240 mV. Tego typu pomiary są powszechnie stosowane w elektronice do oceny punktu pracy tranzystora. Znajomość właściwego pomiaru oraz prawidłowej interpretacji wskazań woltomierza jest kluczowa w projektowaniu oraz diagnozowaniu układów elektronicznych, zwłaszcza w aplikacjach audio czy automatyki. Użycie analogowych woltomierzy, mimo rozwoju technologii cyfrowej, wciąż znajduje zastosowanie w wielu obszarach, gdyż umożliwiają one szybkie i intuicyjne odczyty napięcia, a także mogą być pomocne w sytuacjach, gdzie cyfrowe urządzenia mogą zawodzić.

Pytanie 3

Na podstawie oscylogramów przedstawionych na rysunku można stwierdzić, że w badanym układzie prostowniczym

Ilustracja do pytania
A. nastąpiła przerwa w obwodzie D2, R, D4
B. nastąpiło zwarcie diody Dl i D3
C. nastąpiła przerwa w obwodzie Dl, R, D3
D. nastąpiło zwarcie diody D2 i D4
Zrozumienie działania układów prostowniczych wymaga głębszej analizy podstawowych koncepcji związanych z przewodnictwem diod oraz działania mostków Graetza. W przypadku odpowiedzi wskazujących na przerwy w obwodach D1, D3 lub na zwarcia między diodami D2 i D4, można zauważyć typowe błędy myślowe. W pierwszym przypadku, sugerowanie przerwy w D1 i D3, ignoruje fakt, że ich działanie jest jedynym źródłem przetwarzania napięcia w tym układzie. Bez przewodzenia tych diod, układ w ogóle nie mógłby generować napięcia wyjściowego, co jest sprzeczne z analizą oscylogramu. W odpowiedziach wskazujących na zwarcie diod, błędnie zakłada się, że obie diody mogłyby działać w pełni, podczas gdy w rzeczywistości, jeśli zachodziłoby zwarcie, oscylogram pokazywałby inną charakterystykę napięcia. Przedstawione oscylogramy jasno wskazują, że tylko jedna para diod przewodzi prąd, co nie może być wynikiem zwarcia, ale przerwy. Błędy te mogą wynikać z niepełnego zrozumienia cyklu pracy mostka Graetza i wpływu na to dynamiki prądowej w obwodzie prostowniczym. Zrozumienie poprawnego działania diod i ich interakcji w układach elektronicznych jest kluczowe dla prawidłowego funkcjonowania i diagnostyki takich systemów.

Pytanie 4

Na schemacie ideowym odbiornika superheterodynowego pracującego z modulacją AM blok 4 pełni funkcję:

Ilustracja do pytania
A. wzmacniacza pośredniej częstotliwości.
B. heterodyny.
C. wzmacniacza niskich częstotliwości.
D. mieszacza.
Zrozumienie działania odbiornika superheterodynowego wymaga znajomości funkcji poszczególnych bloków. Wybór wzmacniacza niskich częstotliwości jako odpowiedzi jest błędny, bo ten blok zajmuje się wzmocnieniem sygnałów audio, a nie pośrednich. W odbiorniku superheterodynowym wzmacniacz niskich częstotliwości działa na końcu toru sygnałowego, już po obróbce sygnału przez inne bloki. Jego rola jest zupełnie inna niż wzmacniacza pośredniej częstotliwości, który działa na wcześniejszym etapie. Heterodyna, która często jest mylona z wzmacniaczem IF, generuje sygnał o wyższej częstotliwości do mieszania z sygnałem odbieranym. Mieszacz, na którym również pojawiło się nieporozumienie, łączy dwa sygnały, ale ich nie wzmacnia. Takie błędne odpowiedzi zazwyczaj wynikają z niejasności terminologicznych i funkcji bloków w schemacie odbiornika. Warto zwrócić uwagę na hierarchię funkcji w torze sygnałowym oraz na różnice między wzmacniaczami i ich rolą w przetwarzaniu sygnałów radiowych.

Pytanie 5

Zawarte w tabeli dane techniczne dotyczą czujki

Typ czujkiNC
Dwa tory detekcjiPIR+MW
Wymiary obudowy65 x 138 x 58 mm
Zakres temperatur pracy-40°C...+55°C
Zalecana wysokość montażu2,4 m
Maksymalny pobór prądu20 mA
Zasięg działania15 m
A. zalania.
B. ruchu.
C. czadu.
D. akustycznej.
Czujki ruchu są kluczowymi elementami nowoczesnych systemów zabezpieczeń, a ich działanie opiera się na technologii detekcji PIR (pasywnej podczerwieni) oraz MW (mikrofali). W przedstawionej tabeli, informacja o "dwóch torach detekcji PIR+MW" jasno wskazuje, że czujka jest zaprojektowana do wykrywania ruchu. Technologia PIR jest odpowiedzialna za detekcję zmian w promieniowaniu podczerwonym, co jest skuteczne w monitorowaniu obiektów emitujących ciepło, takich jak ludzie. Z kolei technologia mikrofalowa pozwala na wykrywanie ruchu w większym zakresie, co zwiększa niezawodność czujnika. Praktyczne zastosowanie czujek ruchu znajduje się w systemach alarmowych, automatyce budynkowej oraz inteligentnych domach, gdzie mogą służyć do automatycznego włączenia oświetlenia lub alarmu, gdy wykryją obecność. Zastosowanie takich czujników jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i komfortu użytkowania, co czyni je niezbędnymi w nowoczesnych instalacjach.

Pytanie 6

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaki to rodzaj filtru?

Ilustracja do pytania
A. Górnoprzepustowy.
B. Pasmowo-zaporowy.
C. Pasmowo-przepustowy.
D. Dolnoprzepustowy.
Odpowiedź "Dolnoprzepustowy" jest poprawna, ponieważ na przedstawionym wykresie widać, że tłumienie sygnałów maleje przy niskich częstotliwościach, a wzrasta w miarę zwiększania częstotliwości. Filtry dolnoprzepustowe są powszechnie stosowane w różnych aplikacjach inżynieryjnych, szczególnie w audio i telekomunikacji, gdzie istotne jest eliminowanie wyższych częstotliwości, które mogą wprowadzać szumy lub zakłócenia do sygnału. Przykładem zastosowania filtru dolnoprzepustowego jest jego użycie w systemach audio, gdzie często stosuje się go do eliminacji szumów wysokoczęstotliwościowych, co pozwala na uzyskanie czystszej jakości dźwięku. W praktyce, dobór odpowiednich parametrów filtru dolnoprzepustowego, takich jak częstotliwość odcięcia, jest kluczowy dla zapewnienia optymalnej jakości sygnału. Dobrze zaprojektowany filtr dolnoprzepustowy może znacząco poprawić wydajność systemu, co jest zgodne z najlepszymi praktykami w inżynierii sygnałów.

Pytanie 7

W dokumentacji serwisowej kamery znajduje się informacja: "kamerę zasilać napięciem stałym U = 12 V /15 W". Który zasilacz pozwoli na jednoczesne działanie czterech takich kamer?

A. 12 V AC/ 4 A
B. 12 V DC/ 4 A
C. 12 V AC/ 6 A
D. 12 V DC/ 6 A
Zasilacz 12 V DC/ 6 A jest odpowiedni, ponieważ kamera wymaga napięcia 12 V i mocy 15 W. Aby obliczyć, ile prądu potrzebuje jedna kamera, można użyć wzoru: moc (W) = napięcie (V) x prąd (A). Przekształcając wzór, otrzymujemy prąd = moc / napięcie, co daje 15 W / 12 V = 1,25 A na kamerę. W przypadku czterech kamer, potrzebujemy 4 x 1,25 A = 5 A. Zasilacz 12 V DC/ 6 A dostarcza wystarczającą moc, ponieważ jego wydajność przewyższa wymogi energetyczne kamer. Dobrą praktyką jest zawsze wybierać zasilacz o nieco większej wydajności, aby zapewnić stabilną pracę urządzeń. Takie zasilacze są powszechnie stosowane w systemach monitoringu, gdzie wiele urządzeń wymaga zasilania z jednego źródła. Wybór odpowiedniego zasilacza jest kluczowy dla niezawodności i bezpieczeństwa systemu.

Pytanie 8

Jakiej pamięci usunięcie danych wymaga wykorzystania źródła promieniowania UV?

A. PROM
B. EEPROM
C. FLASH
D. EPROM
Wybór FLASH, EEPROM lub PROM jako odpowiedzi na to pytanie wskazuje na niepełne zrozumienie różnic pomiędzy tymi typami pamięci. FLASH to pamięć, która jest programowalna i kasowalna elektrycznie, co oznacza, że do usunięcia danych nie potrzebuje ona promieniowania ultrafioletowego. FLASH zdobyła popularność dzięki swojej elastyczności i szybkości, a także dzięki możliwości wielokrotnego zapisu bez użycia skomplikowanego procesu kasowania, jak w przypadku EPROM. EEPROM (Electrically Erasable Programmable Read-Only Memory) również pozwala na kasowanie i programowanie elektryczne, co czyni ją bardziej praktyczną w wielu zastosowaniach, gdzie wymagane jest częste aktualizowanie danych. PROM (Programmable Read-Only Memory) to pamięć, która jest jednorazowo programowalna, a po zapisaniu danych nie można ich zmienić ani usunąć. Nieprawidłowy wybór tych opcji może wynikać z mylnego przekonania, że wszystkie typy pamięci wymagają podobnych metod kasowania. Kluczowym błędem jest pomylenie metod kasowania: EPROM wymaga naświetlania, podczas gdy pozostałe typy pamięci wykorzystują procesy elektryczne. Dla inżynierów oraz techników zrozumienie tych różnic jest kluczowe w kontekście projektowania systemów, które wymagają odpowiednich rozwiązań pamięciowych, zgodnych z potrzebami aplikacji.

Pytanie 9

Urządzeniem realizującym zadania jest

A. czujnik
B. silnik elektryczny prądu stałego
C. przycisk monostabilny
D. fotorezystor
Fotorezystor to taki element, co ma różne funkcje w automatyce, ale nie jest urządzeniem wykonawczym. Działa na zasadzie zmiany rezystancji w zależności od światła, więc najczęściej spotkać go można w systemach pomiarowych, czy do automatycznego sterowania światłem, ale sam nic nie rusza. A ten przycisk monostabilny, to on zmienia stan układu, jak go naciśniesz, ale nie generuje ruchu ani nie przekształca energii – po prostu sygnalizuje co chcesz. Z kolei czujnik wykrywa zmiany w otoczeniu, na przykład temperaturę, ciśnienie czy ruch i zmienia to na sygnał elektryczny. I mimo że czujniki i przyciski są mega ważne w automatyce, to raczej pełnią rolę sensoryczną lub kontrolną, nie wykonawczą. Często ludzie mylą to i myślą, że czujniki mogą coś wykonać, a to nie tak. W praktyce, rozumienie różnicy tych komponentów jest kluczowe w projektowaniu i wdrażaniu systemów automatyki, co jest ważne w zarządzaniu procesami przemysłowymi.

Pytanie 10

W przedstawionym układzie D1 = D2, RC1 = RC2, RB1 = RB2, C1 = C2, T1 = T2. Po podłączeniu napięcia świeci światłem przerywanym wyłącznie dioda D . Może to oznaczać, że

Ilustracja do pytania
A. napięcie zasilania jest za małe.
B. dioda D2 jest zwarta.
C. napięcie zasilania jest za duże.
D. dioda D1 jest zwarta.
To, że jedna dioda świeci, a druga nie, mówi nam sporo o tym, co się dzieje w układzie. Kiedy mamy zwartą diodę D2, prąd idzie przez nią i nie dociera do D1, przez co ta druga nie świeci. To trochę jak w pracy zespołowej – jak jeden członek nie działa, cała grupa może mieć problem. Przy projektowaniu takich układów z LED-ami musimy pamiętać o rezystorach, żeby nie przeładować diod. Pamiętaj też, żeby zawsze sprawdzić swoje komponenty przed użyciem – to może uratować wiele problemów! W instalacjach oświetleniowych połączenie diod musi być zrobione z głową, inaczej może się zdarzyć, że będą świecić przerywanie albo w ogóle nie będą świecić. Monitorowanie zasilania też jest istotne, żeby nie przekroczyć wartości, które diody mogą wytrzymać. To ważna sprawa, aby wszystko działało tak, jak powinno.

Pytanie 11

Ile wynosi moc czynna wytwarzana w złączu elementu elektronicznego, jeżeli jego temperatura wynosi Tj=120°C, a otoczenia Tamb=20°C? Całkowita rezystancja termiczna od złącza poprzez obudowę do otoczenia jest równa ΣRt=50°C/W.

Ilustracja do pytania
A. 0,5 W
B. 2 W
C. 1 W
D. 10 W
Podczas oceny mocy czynnej wytwarzanej w złączu elementu elektronicznego, istotne jest zrozumienie, jak różnica temperatur oraz rezystancja termiczna wpływają na obliczenia energetyczne. Wiele osób może błędnie zakładać, że moc czynna może wynosić 10 W, 1 W lub 0,5 W, co jest wynikiem nieprawidłowego zrozumienia relacji między temperaturą a mocą. Na przykład, jeśli ktoś wybiera wyższą wartość mocy, może to wynikać z błędnego założenia, że większa różnica temperatur automatycznie przekłada się na wyższą moc. W rzeczywistości, aby uzyskać dokładne obliczenia, należy podzielić tę różnicę przez całkowitą rezystancję termiczną. Wybór 1 W lub 0,5 W również wskazuje na mylenie jednostek lub nieprawidłowe zastosowanie wzorów. Często zdarza się, że studenci nie uwzględniają całkowitej rezystancji termicznej, co prowadzi do zaniżonych wyników. Zrozumienie jak ciepło przepływa przez materiały oraz jak to wpływa na moc, jest kluczowe w inżynierii elektrycznej, zwłaszcza w kontekście chłodzenia i optymalizacji wydajności komponentów elektronicznych. Brak wiedzy na temat tych podstawowych zasad może prowadzić do poważnych błędów w projektowaniu, co w efekcie wpływa na niezawodność i efektywność systemów elektronicznych. W kontekście projektowania, warto pamiętać o normach i standardach dotyczących zarządzania ciepłem, które mają na celu zwiększenie bezpieczeństwa i wydajności urządzeń elektronicznych.

Pytanie 12

Schemat ideowy wzmacniacza w układzie OE ze stabilizacją spoczynkowego punktu pracy przedstawiono na rysunku

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź D jest poprawna, ponieważ schemat ideowy wzmacniacza w układzie OE (odwracający emiter) z rezystorem emiterowym RE jest fundamentalnym elementem w wielu aplikacjach elektronicznych. Rezystor ten pełni kluczową rolę w stabilizacji spoczynkowego punktu pracy wzmacniacza. Wprowadza ujemne sprzężenie zwrotne, co oznacza, że wszelkie zakłócenia prądu kolektora spowodowane zmianami temperatury czy parametrami tranzystora są kompensowane przez zmiany napięcia na RE. Przykładowo, gdy temperatura wzrasta, prąd kolektora rośnie, co powoduje wzrost napięcia na RE, a tym samym zmniejsza prąd w obwodzie, stabilizując go. Zastosowanie takiego układu jest powszechne w audio wzmacniaczach, gdzie stabilność i jakość sygnału są kluczowe dla osiągnięcia wysokiej wydajności. Ponadto, według standardów branżowych, praktyka ta jest zgodna z najlepszymi metodami projektowania, co zapewnia niezawodność działania wzmacniaczy w długim okresie użytkowania.

Pytanie 13

Jaką wartość ma liczba poziomów w dwunastobitowym przetworniku C/A?

A. 212-1
B. 212
C. 212-1
D. (2-1)12
Wszystkie odpowiedzi, które nie wskazują na 2^12, opierają się na błędnym zrozumieniu działania przetworników C/A. Liczba poziomów w przetworniku C/A jest obliczana na podstawie potęgi liczby 2, co wynika z tego, że każdy bit przetwornika może przyjmować dwie wartości: 0 lub 1. Dlatego dla dwunastu bitów mamy 2^12, a nie żadną inną kombinację. Opcje takie jak 2^12-1 mylą koncepcję, ponieważ sugerują, że poziomy są ograniczone do wartości mniejszych od maksymalnej, co jest istotne w kontekście niektórych zastosowań, jednak przy obliczaniu całkowitej liczby poziomów przetwornika C/A nie jest to właściwe podejście. Wartość (2-1)12 również jest niepoprawna, ponieważ nie odnosi się do liczby poziomów, a zrozumienie tej koncepcji jest kluczowe w projektowaniu systemów przetwarzania sygnałów. Typowym błędem jest myślenie, że liczba poziomów może być obliczona poprzez inne operacje matematyczne, co prowadzi do niewłaściwych wniosków. Ważne jest, aby zrozumieć podstawy działania przetworników C/A i ich znaczenie w praktycznych zastosowaniach technologicznych.

Pytanie 14

W jakim typie pamięci przechowywane są indywidualne preferencje użytkownika podczas programowania cyfrowego odbiornika satelitarnego z opcją nagrywania wybranego kanału telewizyjnego?

A. ROM
B. EPROM
C. RAM
D. EEPROM
Wybór innych rodzajów pamięci, takich jak RAM, EPROM czy ROM, jest nieprawidłowy z kilku kluczowych powodów. RAM (Random Access Memory) to pamięć ulotna, która przechowuje dane tylko podczas pracy urządzenia; po wyłączeniu zasilania wszystkie dane są tracone. To czyni ją całkowicie nieodpowiednią do przechowywania indywidualnych ustawień użytkownika, które muszą być zachowywane między sesjami użytkowania. Z drugiej strony, EPROM (Erasable Programmable Read-Only Memory) również nie jest idealnym rozwiązaniem, ponieważ wymaga specjalnych procedur do kasowania danych, zazwyczaj poprzez wystawienie na promieniowanie UV, co czyni ją mniej praktyczną i elastyczną w zastosowaniach, gdzie często zachodzi potrzeba modyfikacji zapisanych ustawień. ROM (Read-Only Memory) to pamięć tylko do odczytu, która jest programowana w momencie produkcji i nie może być modyfikowana w trakcie użytkowania, co naturalnie wyklucza ją z potencjalnych zastosowań, gdzie wymagana jest możliwość zapisywania oraz aktualizowania danych. Wybór niewłaściwego rodzaju pamięci może prowadzić do problemów z użytecznością urządzenia oraz ograniczeń w jego funkcjonalności. W każdym nowoczesnym rozwiązaniu technologicznym, które wymaga elastyczności i możliwości aktualizacji danych, stosowanie EEPROM jest najlepszą praktyką, szczególnie w kontekście zapisów użytkowników oraz personalizacji urządzeń.

Pytanie 15

Do wejścia Z2 centrali alarmowej podłączono czujkę ruchu typu NC (patrz rysunek). Który typ linii należy ustawić przy programowaniu danego wejścia?

Ilustracja do pytania
A. EOL
B. 3EOL/NC
C. 2EOL/NC
D. NC
Odpowiedź '2EOL/NC' jest prawidłowa, ponieważ czujka ruchu typu NC (Normally Closed) w stanie spoczynku zamyka obwód, co oznacza, że przepływ prądu jest możliwy tylko w określonym stanie. Ustawienie typu linii na 2EOL/NC pozwala na monitorowanie linii poprzez użycie dwóch rezystorów, które są odpowiednio podłączone na końcu obwodu. Dzięki temu, system alarmowy może wykrywać zarówno przerwy w obwodzie, jak i sytuacje zwarcia, co znacznie zwiększa bezpieczeństwo obiektu zabezpieczonego. Przykładem praktycznego zastosowania tego rodzaju konfiguracji jest instalowanie systemów alarmowych w obiektach, gdzie kluczowe jest stałe monitorowanie stanu czujników. Standardy branżowe zalecają użycie rezystorów EOL, aby zapewnić niezawodność i bezpieczeństwo w operacjach detekcji, a koncepcja 2EOL/NC jest szczególnie cenna w kontekście systemów, które muszą być odporne na fałszywe alarmy. Zrozumienie tego zagadnienia jest kluczowe dla właściwej konfiguracji systemów alarmowych, co z kolei przekłada się na ich efektywność w ochronie mienia.

Pytanie 16

Wartość pojemności przedstawionego na rysunku kondensatora wynosi

Ilustracja do pytania
A. 22 pF
B. 2,0 pF
C. 2,2 pF
D. 0,2 pF
Poprawna odpowiedź to 2,2 pF, co wynika z oznaczenia "2p2" na kondensatorze. W notacji elektronicznej, litera "p" odnosi się do jednostki piko, co oznacza jedną bilionową część farada, czyli 10^-12 farada. Oznaczenie to jest powszechnie stosowane w przemyśle elektronicznym do wskazywania pojemności kondensatorów. W praktyce, kondensatory o małych pojemnościach, takie jak 2,2 pF, są często używane w obwodach wysokoczęstotliwościowych, takich jak filtry RF czy obwody rezonansowe. Pojemności te są również kluczowe w konstrukcjach oscylatorów, gdzie precyzyjna wartość pojemności ma znaczenie dla stabilności częstotliwości. Zrozumienie oznaczeń oraz jednostek pojemności jest niezbędne dla inżynierów pracujących w dziedzinie elektroniki, zapewniając im zdolność do dokonania właściwego doboru komponentów w zależności od wymagań aplikacji. Dobrze jest również znać standardy dotyczące oznaczania kondensatorów, aby uniknąć pomyłek przy ich identyfikacji.

Pytanie 17

W jakim urządzeniu wykorzystuje się przetwornik cyfrowo-analogowy?

A. W magnetowidzie VHS
B. W odtwarzaczu CD
C. W generatorze RC
D. W mierniku cyfrowym
Zarówno magnetowid VHS, generator RC, jak i miernik cyfrowy nie wykorzystują przetworników cyfrowo-analogowych w sposób, w jaki jest to wymagane do konwersji sygnałów cyfrowych na analogowe. Magnetowid VHS jest urządzeniem analogowym, które rejestruje i odtwarza sygnał wideo w formacie analogowym. Jego działanie polega na wykorzystaniu taśmy magnetycznej, a proces zapisu i odczytu odbywa się w technologii, która nie wymaga przetwarzania sygnałów cyfrowych, przez co definicja przetwornika DAC jest w tym kontekście zbędna. Generator RC, z kolei, jest używany do generowania sygnałów analogowych, głównie sinusoidalnych, kwadratowych lub trójkątnych, ale nie przetwarza sygnałów cyfrowych. Jego zastosowanie jest związane z obwodami elektronicznymi, w których kluczowa jest kontrola częstotliwości i amplitudy sygnałów. Miernik cyfrowy, będący urządzeniem pomiarowym, przetwarza sygnały analogowe na cyfrowe, jednak nie wykonuje konwersji w odwrotnym kierunku; jego zadaniem jest pomiar różnych wielkości elektrycznych, takich jak napięcie czy prąd. Oznacza to, że typowe błędy myślowe mogą wynikać z nieodróżniania funkcji pomiędzy przetwarzaniem cyfrowo-analogowym a analogowo-cyfrowym, co prowadzi do mylnego wniosku o zastosowaniu DAC w tych urządzeniach.

Pytanie 18

Podane w tabeli parametry techniczne charakteryzują

Dane techniczne
Zaawansowany Dekoder MPEG H.264
Obsługa Full HD 1920x1089i, 1920x720p, 720x576p
Odtwarzanie MKV H.264 HD
Wejścia: RF In, USB
Wyjścia: HDMI, SCART, Coaxial, RF Out
Obsługa dysków twardych
Funkcja nagrywania z TV
Zakres częstotliwości VHF – H 174-230 MHz, UHF 470- 866 MHz
Poziom sygnału 78 dBM-20 dBm
Modulacja: QPSK, 16 QAM, 64 QAM
Obsługiwane formaty plików:
   ·   graficzne: BMP, JPG,
   ·   muzyczne: MP3, WMA, WAV,
   ·   video: MPEG1/2/4/ HD, XVID HD, AVI, VOB.
A. tuner DVB-S
B. tuner DVB-T
C. projektor DLP
D. odtwarzacz DVD
Poprawna odpowiedź to tuner DVB-T, ponieważ parametry techniczne przedstawione w tabeli wskazują na urządzenie zdolne do odbioru sygnału telewizyjnego w standardzie DVB-T, co jest naziemnym standardem transmisji telewizji cyfrowej. Tuner DVB-T obsługuje różne rozdzielczości obrazu oraz kodeki, takie jak MPEG H.264, co pozwala na wysoką jakość obrazu i dźwięku. Dodatkowo, funkcja nagrywania TV jest często wbudowana w nowoczesne tunery, co umożliwia użytkownikom nagrywanie programów telewizyjnych na zewnętrzne nośniki. Warto zaznaczyć, że zakres częstotliwości VH i UHF oraz zastosowanie modulacji QPSK i 16 QAM, 64 QAM są charakterystyczne dla technologii DVB-T. Tuner DVB-T jest również zgodny z europejskimi standardami nadawania, co zapewnia jego powszechne zastosowanie w krajach Unii Europejskiej. Takie urządzenie jest idealne dla osób korzystających z naziemnej telewizji cyfrowej, oferując dostęp do szerokiej gamy kanałów telewizyjnych bez potrzeby wykupu subskrypcji.

Pytanie 19

W dokumentacji technicznej multimetru stwierdzono, że potrafi on wyświetlać wyniki pomiarów w formacie trzy i pół cyfry. Jaką najwyższą liczbę jednostek jest w stanie pokazać ten multimetr?

A. 1999
B. 3999
C. 19999
D. 39999
Odpowiedź 1999 jest jak najbardziej trafna! Multimetry z oznaczeniem 'trzy i pół cyfry' mogą wyświetlać liczby do 1999. To oznaczenie oznacza, że pierwsza cyfra może być tylko 0 albo 1, a pozostałe mogą być od 0 do 9. Dlatego dostajemy zakres od 000 do 1999. Praktycznie oznacza to, że ten typ multimetru jest w stanie zmierzyć wartości do 2000 jednostek. Multimetry tego typu są super przydatne, szczególnie przy pomiarach napięcia, prądu i oporu. Są to sprzęty, które każdy, kto zaczyna przygodę z elektroniką, powinien mieć. Dobrze się sprawdzają też w różnych przemysłowych zastosowaniach, zwłaszcza przy konserwacji urządzeń elektronicznych. Warto z nich korzystać, bo są proste w obsłudze i dobrze pokazują wyniki.

Pytanie 20

W celu zwiększenia częstotliwości sygnału wyjściowego, przy zachowaniu współczynnika wypełnienia, należy zmniejszyć wartość

Ilustracja do pytania
A. kondensatora C
B. rezystora R2
C. kondensatora Cp
D. rezystora R1
Zrozumienie, dlaczego inne odpowiedzi są nieprawidłowe, wymaga analizy funkcji każdego z elementów w układzie 555. Warto zauważyć, że zmniejszenie wartości kondensatora Cp nie wpłynie na częstotliwość sygnału wyjściowego, ponieważ Cp nie jest bezpośrednio zaangażowany w ustalanie t1 i t2 w trybie astabilnym. W rzeczywistości Cp służy do filtracji i stabilizacji napięcia, a zmiany w jego wartościach mogą wpływać na szumy, ale nie na częstotliwość sygnału, co prowadzi do błędnych wniosków. Zmniejszenie rezystora R2 również nie zwiększy częstotliwości, ponieważ zmniejszenie R2 wydłuża czas t2, co skutkuje zmniejszeniem częstotliwości. Wiele osób myli zależności między wartościami rezystorów a częstotliwością, co prowadzi do nieporozumień. Z kolei obniżenie wartości rezystora R1 może wpłynąć na czas t1, ale w połączeniu z R2 zmiany w R1 mogą mieć nieprzewidywalny wpływ na całkowity czas cyklu pracy układu. W praktyce zrozumienie, jak każdy element oddziałuje ze sobą w układzie, jest kluczowe dla prawidłowego projektowania i regulacji układów elektronicznych, a umiejętność przewidywania skutków zmian wartości elementów pozwala unikać typowych błędów w inżynierii. W związku z tym, błędne odpowiedzi mogą wynikać z braku zrozumienia fundamentalnych zasad działania układów RC, co jest niezbędne dla efektywnego projektowania układów elektronicznych.

Pytanie 21

Na rysunku przedstawiono podstawowy schemat blokowy układu automatycznej regulacji. Znakiem X oznaczono

Ilustracja do pytania
A. wzmacniacz w. cz.
B. układ korekcyjny.
C. obwód wejściowy.
D. obiekt regulacji.
Wybór innych odpowiedzi wskazuje na pewne nieporozumienia dotyczące podstawowych elementów układów automatycznej regulacji. Układ korekcyjny, na przykład, to komponent odpowiedzialny za wprowadzanie zmian w działaniu obiektu regulacji na podstawie pomiarów jego wyjścia. Nie jest to jednak element, który sam w sobie jest regulowany, lecz raczej narzędzie stosowane do modyfikacji działania obiektu. W przypadku wzmacniacza w. cz. (wielkiej częstotliwości) raczej mówimy o technologii związanej z sygnałami, co nie jest tożsame z głównym zadaniem obiektu regulacji. Obwód wejściowy z kolei to część układu odpowiedzialna za przyjmowanie sygnałów z zewnątrz, ale nie definiuje samego obiektu regulacji. Typowych błędów myślowych w tym przypadku można doszukiwać się w pomieszaniu ról poszczególnych elementów układu. Kluczowe w procesie nauczania jest zrozumienie, że obiekt regulacji jest tym, co wymaga działania i kontroli, a nie korekcyjnym układem czy innymi elementami wspierającymi. Ważne jest, aby podczas analizy schematów blokowych pamiętać o funkcjach i zadaniach poszczególnych komponentów, co jest istotne nie tylko w teorii, ale także w praktycznych zastosowaniach inżynieryjnych. W projektowaniu systemów automatyki szczególnie istotne jest rozumienie, jak każdy z elementów współdziała ze sobą, aby zapewnić skuteczne i efektywne działanie całego układu.

Pytanie 22

Tranzystor pracuje w układzie wspólnego emitera. Podstawowym zadaniem zaznaczonego na rysunku kondensatora C w tym układzie jest

Ilustracja do pytania
A. odseparowanie składowej stałej napięcia wyjściowego.
B. ograniczenie od góry pasma przenoszenia układu.
C. minimalizacja wpływu tętnień napięcia zasilającego.
D. realizacja pętli ujemnego sprzężenia zwrotnego.
Trzeba przyznać, że zrozumienie, co robi kondensator w układzie wspólnego emitera, jest naprawdę ważne, jeśli chcesz dobrze projektować obwody. Mówić, że kondensator odpowiada za pętlę sprzężenia zwrotnego, to lekko się myli. Sprzężenie zwrotne w tym układzie robi się głównie za pomocą rezystorów, które wpływają na różne parametry wzmacniacza. No i jeszcze ta sprawa z tętnieniami napięcia zasilającego – kondensator C nie jest tu głównym aktorem. Tętnienia powinny być eliminowane raczej przez porządne filtrowanie na zasilaniu. Co do ograniczenia pasma przenoszenia, to też nie jest zadanie kondensatora, bo na to wpływają inne elementy, jak układ sprzężenia zwrotnego czy pojemności pasożytnicze. Często spotykam się z pomyłkami na ten temat, co wprowadza w błąd i może przeszkadzać w dobrym projektowaniu. Dlatego ważne jest, żeby zrozumieć, jak powinny działać kondensatory i jakie mają znaczenie w układach elektronicznych.

Pytanie 23

Jaka jest rezystancja wewnętrzna baterii AAA, jeśli jej napięcie w stanie jałowym wynosi U1=1,5 V, a pod obciążeniem prądem 100 mA U2=1,45 V?

A. 0,05 Ω
B. 0,50 Ω
C. 5,00 Ω
D. 50,0 Ω
Wartość rezystancji wewnętrznej baterii można obliczyć na podstawie różnicy napięcia w stanie jałowym i napięcia pod obciążeniem. W tym przypadku mamy napięcie w stanie jałowym U1 = 1,5 V oraz napięcie pod obciążeniem U2 = 1,45 V. Różnica ta wynosi ΔU = U1 - U2 = 0,05 V. Zastosowanie prawa Ohma pozwala na obliczenie rezystancji wewnętrznej (R) jako R = ΔU / I, gdzie I to prąd płynący przez obciążenie. W naszym przypadku prąd wynosi 100 mA, czyli 0,1 A. Zatem, R = 0,05 V / 0,1 A = 0,5 Ω. Taka rezystancja wewnętrzna wskazuje, że bateria jest w dobrym stanie, ponieważ niskie wartości rezystancji wewnętrznej są pożądane w akumulatorach, co przekłada się na ich efektywność i dłuższą żywotność. Niska rezystancja wewnętrzna minimalizuje straty energii i pozwala na efektywniejsze wykorzystanie energii zgromadzonej w baterii, co jest kluczowe w zastosowaniach wymagających wysokiej wydajności, takich jak urządzenia przenośne i systemy zasilania awaryjnego.

Pytanie 24

Na rysunkach pokazano schemat ideowy układu stabilizatora napięcia zawierającego dwie identyczne diody Zenera D1 i D2 oraz charakterystykę statyczną diod. Jaka jest wartość napięcia UAB, jeżeli przez diody płynie prąd wsteczny o wartości 40 mA?

Ilustracja do pytania
A. 1,4 V
B. 5 V
C. 4,4 V
D. 9,4 V
Wybierając inną wartość napięcia, pojawiają się istotne błędy w zrozumieniu działania diod Zenera. Dioda Zenera w trybie zaporowym działa jako regulator napięcia, a jej charakterystyka statyczna jasno wskazuje, w jakim zakresie prąd wsteczny wpływa na napięcie. W przypadku prądu wstecznego o wartości 40 mA, napięcie na diodzie Zenera nie może być niższe niż 4,7 V, ponieważ to jest minimalna wartość dla tego prądu na podstawie charakterystyki. Wybór wartości 4,4 V ignoruje zasadniczą cechę działania diod Zenera, a także może prowadzić do błędnych wniosków dotyczących projektowania układów. Napięcie 5 V również jest zbyt niskie, ponieważ nie odpowiada rzeczywistej charakterystyce diod przy podanym prądzie. Z kolei wartość 1,4 V jest całkowicie nieadekwatna, ponieważ dioda nie osiągnie stabilizacji tego napięcia w trybie Zenera przy prądzie 40 mA. Częstym błędem jest zakładanie, że napięcie na diodzie może być niższe, co prowadzi do nieefektywnego projektowania układów elektronicznych. Stabilizatory napięcia z diodami Zenera muszą być zaprojektowane z uwzględnieniem całego zakresu charakterystyki diod, aby zapewnić stabilność i niezawodność działania układu.

Pytanie 25

Transformator, którego uzwojenie pierwotne składa się z 500 zwojów, jest zasilany z sieci o napięciu 230 V. Urządzenie to ma dwa uzwojenia wtórne. Ile zwojów musi mieć każde z tych uzwojeń, aby osiągnąć napięcie 2 x 23 V na zaciskach wtórnych transformatora?

A. 50
B. 25
C. 250
D. 100
Odpowiedź 50 zwojów uzwojenia wtórnego jest poprawna, ponieważ transformator działa na zasadzie proporcjonalności między liczbą zwojów w uzwojeniu pierwotnym a napięciem na uzwojeniu wtórnym. Zastosowanie wzoru: U1/U2 = N1/N2, gdzie U1 to napięcie pierwotne, U2 to napięcie wtórne, N1 to liczba zwojów w uzwojeniu pierwotnym, a N2 to liczba zwojów w uzwojeniu wtórnym, pozwala nam obliczyć, ile zwojów potrzeba, aby uzyskać pożądane napięcie. W tym przypadku mamy U1 = 230 V, a ponieważ chcemy uzyskać 23 V na każdym z uzwojeń wtórnych, U2 = 23 V. Zatem, stosując wzór: 230 V / 23 V = 500 zwojów / N2, otrzymujemy N2 = 50. W praktyce, takie transformatory są używane w zasilaczach niskonapięciowych, gdzie wymagane jest obniżenie napięcia do wartości bezpiecznych dla urządzeń elektronicznych. Dzięki zrozumieniu tej zasady, inżynierowie mogą projektować układy zasilające z odpowiednimi parametrami elektrycznymi, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w aplikacjach przemysłowych oraz domowych.

Pytanie 26

LED  EQU 1.7
     LJMP START
     ORG 100H
START:
     CLR LED ; włącz
     MOV A,#10 ; ustaw w akumulatorze wartość 10
     LCALL DELAY_100MS ; zatrzymaj na czas 0,1×A [s]
     SETB LED ; wyłącz
     MOV A,  #10 ; ustaw w akumulatorze wartość 10
     LCALL DELAY_100MS ; zatrzymaj na czas 0,1×A [s]
     LJMP START ; wróć do START
Przedstawiona sekwencja programu realizuje zmianę stanu diody LED co
A. 0,1 s
B. 1 s
C. 0,01 s
D. 10 s
Wybór odpowiedzi sugerującej dłuższe interwały czasowe, takie jak 10 s, 0,1 s czy 0,01 s, nie uwzględnia kluczowych zasad związanych z percepcją użytkownika oraz funkcjonalnością diody LED w praktycznych zastosowaniach. Przy zmianie stanu co 10 s, użytkownik może nie zauważyć zmiany, co czyni tę odpowiedź nieefektywną w kontekście sygnalizacji. Typowo w projektach elektronicznych diody LED są wykorzystywane jako wskaźniki, które muszą być wystarczająco widoczne, aby użytkownicy mogli na bieżąco kontrolować stan urządzenia. W przypadku zbyt szybkich interwałów, jak 0,1 s czy 0,01 s, dioda LED może migać z taką częstotliwością, że ludzkie oko nie jest w stanie zarejestrować zmian. Efekt ten prowadzi do nieczytelności sygnalizacji, co może wprowadzać użytkownika w błąd i skutkować błędnymi interpretacjami stanu urządzenia. Dokładne oszacowanie czasu, w którym dioda LED zmienia stan, powinno brać pod uwagę ergonomię i komfort użytkowania. W praktyce, czas zmiany stanu powinien być zaprojektowany tak, aby nie tylko spełniał funkcję informacyjną, ale także był zgodny z zasadami efektywności energetycznej urządzeń elektronicznych. Dlatego kluczowe jest, aby dobierać czasy w sposób przemyślany, stosując się do standardów branżowych oraz dobrych praktyk inżynieryjnych w projektowaniu systemów sygnalizacyjnych.

Pytanie 27

Podczas podłączania czujki akustycznej typu NC do centrali alarmowej w układzie EOL, trzeba szeregowo z kontaktem alarmowym tej czujki podłączyć

A. rezystor
B. termistor
C. diodę
D. kondensator
Podłączenie rezystora szeregowo ze stykiem alarmowym czujki akustycznej typu NC (Normalnie Zamknięty) w konfiguracji EOL (End of Line) jest kluczowe dla zapewnienia właściwego działania systemu alarmowego. Rezystor pełni rolę elementu zabezpieczającego oraz sygnalizującego stan linii. W konfiguracji EOL, rezystor jest umieszczony na końcu obwodu, co pozwala na monitorowanie wartości rezystancji. W przypadku zwarcia, rezystancja liniowa spadnie, co aktywuje alarm. Natomiast w przypadku otwarcia linii, rezystancja wzrośnie, również inicjując sygnał alarmowy. Zastosowanie rezystora zgodnie z normami, takimi jak EN 50131, zapewnia większą niezawodność systemu alarmowego, a także minimalizuje ryzyko fałszywych alarmów. Przykładowo, w instalacjach monitorujących systemy zabezpieczeń, takich jak ochrona obiektów, poprawne użycie rezystora EOL jest standardem branżowym, który zwiększa efektywność i bezpieczeństwo systemu.

Pytanie 28

W urządzeniach do zdalnego sterowania wykorzystuje się diody do przesyłania danych

A. RGB
B. Zenera
C. mikrofalowe
D. IR
Dioda podczerwieni to mega ważny element w zdalnym sterowaniu. Działa tak, że emituje promieniowanie, którego ludzkie oko nie widzi, ale urządzenia potrafią to wykryć. Można to zobaczyć w pilotach do telewizorów czy audio, gdzie dioda IR wysyła sygnały w postaci impulsów świetlnych. Dzięki temu można wygodnie sterować różnymi sprzętami. Są różne standardy, jak RC5 czy NEC, które mówią, jak kodować te sygnały. Dobrze to widać na przykładzie pilota telewizyjnego, który sprawia, że korzystanie z telewizora jest o wiele prostsze i przyjemniejsze.

Pytanie 29

Jaka jest wartość prądu kolektora tranzystora Ic zmierzonego za pomocą amperomierza o klasie dokładności równej 0,5 i zakresie pomiarowym Iₙ=200 mA?

Ilustracja do pytania
A. (70±1) mA
B. (140±1) mA
C. (140±2) mA
D. (70±2) mA
Wiele osób może mieć trudności z poprawnym oszacowaniem wartości prądu kolektora tranzystora, co prowadzi do wyboru błędnych odpowiedzi. Przykładowo, odpowiedzi 70±1 mA oraz 70±2 mA są wynikiem nieprawidłowego zrozumienia zakresu pomiarowego amperomierza oraz klasy dokładności. Wartości te pochodzą z bezpośredniego odczytu wskazania przyrządu, bez uwzględnienia konieczności przeliczenia na wyższy zakres pomiarowy. To typowy błąd, który pojawia się, gdy użytkownicy nie zdają sobie sprawy, że zakres pomiarowy 200 mA oznacza, iż wskazanie 70 mA należy pomnożyć przez 2, aby uzyskać rzeczywistą wartość. Ponadto, niektóre odpowiedzi nie uwzględniają obliczenia błędu pomiarowego, co jest kluczowe dla rzetelności wyników w inżynierii. Warto pamiętać, że każdy pomiar obarczony jest błędem, a jego uwzględnienie jest niezbędne w analizach technicznych. Często zaniedbywana jest kluczowa zasada, by przed podjęciem decyzji o wyborze odpowiedzi na pytanie związane z pomiarami, przemyśleć i zweryfikować zarówno wyniki, jak i metody obliczeniowe. Zachęcam do dokładnego studiowania zasad działania przyrządów pomiarowych oraz technik analizy obwodów, co jest fundamentalne w pracy inżyniera elektryka.

Pytanie 30

Do podwajacza napięcia podłączono napięcie sinusoidalne u(t) o wartości skutecznej URMS = 10 V. Jaka będzie wartość maksymalna napięcia UX w tym układzie?

Ilustracja do pytania
A. Około 28 V
B. Około 20 V
C. Około 14 V
D. Około 40 V
Wybór innych wartości maksymalnych napięcia wskazuje na pewne nieporozumienia dotyczące zasad działania podwajacza napięcia oraz sposobu przeliczania wartości skutecznych na wartość szczytową. Często mylone są pojęcia napięcia skutecznego i szczytowego. Napięcie skuteczne to wartość, która odpowiada napięciu stałemu, które dostarcza tę samą moc do obciążenia, co napięcie przemienne. Przy napięciu sinusoidalnym wartość szczytowa jest wyższa niż wartość skuteczna - dla napięcia 10 V RMS wartość szczytowa wynosi około 14,14 V. Niektóre odpowiedzi sugerują, że napięcie na wyjściu podwajacza może wynosić 20 V, 40 V lub inne wartości, co może wynikać z błędnego założenia, że podwajacz działa inaczej lub że wartości są dodawane zamiast mnożone. To zrozumienie jest kluczowe w inżynierii elektrycznej, gdzie stosowanie podwajaczy napięcia jest powszechne w różnych aplikacjach, a błędne obliczenia mogą prowadzić do niewłaściwego doboru komponentów lub błędów w projektowaniu układów. Zrozumienie, jak przeliczać wartości napięć i jak działają podwajacze, jest niezbędne dla prawidłowego projektowania systemów zasilania i elektroniki użytkowej.

Pytanie 31

Wartość pojemności kondensatora przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 1 μF
B. 250 μF
C. 100 nF
D. 100 μF
Na przedstawionym zdjęciu widoczny jest kondensator z oznaczeniem „μ1K 250V”. Symbol ten określa zarówno pojemność, jak i parametry pracy elementu. Litera „μ” oznacza mikro (10⁻⁶), natomiast zapis „μ1” należy odczytać jako 0,1 μF, czyli 100 nanofaradów (nF). Litera „K” informuje o tolerancji wartości pojemności, w tym przypadku ±10%. Z kolei „250V” wskazuje maksymalne napięcie, przy którym kondensator może bezpiecznie pracować. Tego typu kondensatory są powszechnie stosowane w obwodach filtrujących, sprzęgających i odsprzęgających, gdzie wymagana jest stabilna pojemność i niewielkie straty energii. Często wykorzystuje się je w układach zasilających i elektronicznych urządzeniach pomiarowych. Odczytanie wartości wymaga znajomości oznaczeń stosowanych przez producentów, ponieważ zapis nie zawsze jest jednoznaczny. Poprawna interpretacja pozwala dobrać właściwy element do danego obwodu. Dlatego prawidłowa wartość pojemności kondensatora to 0,1 μF (100 nF).

Pytanie 32

Który element elektroniczny należy umieścić w przedstawionym układzie, aby otrzymać działający układ detektora obwiedniowego?

Ilustracja do pytania
A. Kondensator.
B. Diak.
C. Diodę.
D. Rezystor.
Umieszczanie diody w układzie detektora obwiedniowego, choć niezbędne dla prostowania sygnału, nie rozwiązuje problemu wygładzania napięcia, które jest kluczowe dla działania całego systemu. Dioda sama w sobie nie jest w stanie utrzymać stabilności napięcia wyjściowego, ponieważ jej zadaniem jest jedynie kierowanie przepływu prądu. Użycie rezystora, choć może być mylnie uznawane za praktyczne rozwiązanie, w rzeczywistości prowadzi do niepożądanych efektów. Rezystor służy do rozładowania kondensatora, ale jeśli kondensator w ogóle nie jest obecny, nie można osiągnąć oczekiwanego wygładzenia napięcia. To prowadzi do sytuacji, w której sygnał wyjściowy będzie mieć dużą amplitudę i zmienność, co negatywnie wpłynie na jakość sygnału. Z kolei zastosowanie diaku, który działa na zasadzie przewodzenia prądu przy osiągnięciu określonego napięcia, również nie jest właściwym rozwiązaniem w tym kontekście, gdyż nie wykonuje on funkcji wygładzania. Wszystkie te nieporozumienia mogą wynikać z niepełnego zrozumienia roli poszczególnych elementów w analogowych układach elektronicznych, a także z braku znajomości zasad projektowania układów detekcyjnych zgodnych z najlepszymi praktykami inżynieryjnymi. Właściwe zrozumienie funkcji kondensatora w tym układzie jest kluczowe dla efektywnego projektowania i implementacji urządzeń elektronicznych.

Pytanie 33

Dioda LED w zakresie długości fali 940 nm generuje promieniowanie elektromagnetyczne

A. podczerwone
B. zielone
C. żółte
D. ultrafioletowe
Odpowiedzi wskazujące na promieniowanie zielone, ultrafioletowe oraz żółte nie są poprawne z kilku istotnych powodów. Każda z tych długości fal znajduje się w zupełnie innym zakresie widma elektromagnetycznego. Promieniowanie zielone znajduje się w zakresie od 490 nm do 570 nm, co oznacza, że jest znacznie krótsze niż 940 nm. To przekłada się na fakt, że dioda LED nie może emitować zielonego światła w zakresie długości fali, który wymieniono w pytaniu. Z kolei promieniowanie ultrafioletowe, którego długość fal wynosi od 10 nm do 400 nm, jest również znacznie krótsze od 940 nm. Promieniowanie ultrafioletowe ma zastosowanie w technologii dezynfekcji, ale nie ma związku z diodami LED emitującymi na podczerwieni. Odpowiedź sugerująca promieniowanie żółte znajduje się w zakresie od 570 nm do 590 nm, co również nie ma związku z długością fali 940 nm. Wybór niewłaściwej odpowiedzi wynika często z braku zrozumienia, jak działa widmo elektromagnetyczne oraz jakie są właściwości różnych typów diod LED. W praktyce, każda z tych niewłaściwych odpowiedzi pomija fundamentalne zasady dotyczące zakresów promieniowania oraz ich zastosowań technologicznych, co jest kluczowe w kontekście inżynierii i optoelektroniki.

Pytanie 34

Poszczególnym paskom w kodzie kreskowym rezystora, którego wartość rezystancji zapisano jako R22, odpowiadają kolory

KolorCyfra/mnożnikTolerancja
brak-20%
srebrny-210%
złoty-15%
czarny0-
brązowy11%
czerwony22%
pomarańczowy3-
żółty4-
zielony50,5%
niebieski60,25%
fioletowy70,1%
szary8-
biały9-
Ilustracja do pytania
A. 1 - srebrny, 2 - srebrny, 3 - czerwony, 4 - złoty.
B. 1 - czerwony, 2 - czerwony, 3 - srebrny, 4 - złoty.
C. 1 - srebrny, 2 - czerwony, 3 - czerwony, 4 - złoty.
D. 1 - czerwony, 2 - srebrny, 3 - srebrny, 4 - złoty.
Odpowiedź, która wskazuje na kolory pasków jako 1 - czerwony, 2 - czerwony, 3 - srebrny, 4 - złoty, jest poprawna, ponieważ odzwierciedla ona zasady kodowania kolorów stosowanych w rezystorach. Wartość 'R22' wskazuje na rezystor o wartości 22 omów, co przekłada się na pierwszą cyfrę równą 2, a zatem kolor czerwony jest odpowiedni dla obu pierwszych pasków. Trzeci pasek oznacza mnożnik, a srebrny odpowiada mnożnikowi 1, co w tym przypadku oznacza, że nie ma dodatkowej potęgi, co jest zgodne z wartością 22. Złoty pasek na końcu oznacza tolerancję rezystora, która w standardach branżowych wynosi 5%. Zrozumienie tego systemu jest kluczowe nie tylko dla poprawnego identyfikowania wartości rezystorów, ale także dla zapewnienia właściwego działania obwodów elektronicznych, w których są wykorzystywane. W praktyce, umiejętność szybkiego odczytywania kodów kolorów pozwala inżynierom i technikom na skuteczne projektowanie i diagnozowanie układów, co przekłada się na oszczędności czasu oraz zwiększenie efektywności pracy.

Pytanie 35

Jakie są graniczne częstotliwości przenoszenia (dolna i górna) wzmacniacza napięciowego, którego charakterystykę amplitudową przedstawiono na rysunku?

Ilustracja do pytania
A. Dolna 40 Hz, górna 15 kHz
B. Dolna 40 Hz, górna 1,5 kHz
C. Dolna 400 Hz, górna 1,5 kHz
D. Dolna 400 Hz, górna 15k Hz
Wybór odpowiedzi, w której dolna graniczna częstotliwość wynosi 40 Hz, a górna 15 kHz, jest zgodny z charakterystyką amplitudową wzmacniacza napięciowego, co jest kluczowe dla zrozumienia jego działania w systemach audio. Graniczne częstotliwości przenoszenia wzmacniacza definiują zakres częstotliwości, w którym wzmacniacz efektywnie przetwarza sygnały. W praktyce, dolna graniczna częstotliwość 40 Hz jest typowa dla wzmacniaczy przeznaczonych do obsługi niskich tonów, co sprawia, że są one zdolne do reprodukcji basów w muzyce, podczas gdy górna graniczna częstotliwość 15 kHz zapewnia, że wzmacniacz może przetwarzać wysokie częstotliwości, co jest istotne dla klarowności wokali i instrumentów. Zgodnie z normami, wzmacniacze powinny mieć szeroki pasmo przenoszenia, aby móc wiernie odwzorować dźwięk. Dobrym przykładem zastosowania wzmacniaczy o takich granicznych częstotliwościach są systemy audio w kinie domowym oraz profesjonalne nagłośnienia, gdzie jakość dźwięku i zakres częstotliwości są kluczowe dla doświadczeń słuchowych.

Pytanie 36

W układzie wzmacniacza mocy kondensator C stosuje się w celu

Ilustracja do pytania
A. zmniejszenia częstotliwości sygnału wyjściowego.
B. zwiększenia częstotliwości sygnału wyjściowego.
C. dopasowania impedancji obciążenia.
D. separacji prądu polaryzacji wzmacniacza od wejścia sygnału.
Często w analizach układów wzmacniaczy mocy pojawia się mylne przekonanie, że kondensatory są wykorzystywane głównie do regulacji częstotliwości sygnału. Odpowiedzi, które sugerują zwiększenie lub zmniejszenie częstotliwości sygnału wyjściowego, nie uwzględniają podstawowych zasad działania kondensatorów. Kondensatory w układach wzmacniaczy nie mają wpływu na częstotliwość sygnału, lecz działają na zasadzie blokady składowej stałej. Wzmacniacz operacyjny, na przykład, może mieć różne układy, w których kondensatory są używane do filtrowania, ale ich funkcja nie polega na zmianie częstotliwości, a na eliminacji niepożądanych komponentów stałych. Innym typowym błędem jest mylenie roli kondensatora z funkcją dopasowania impedancji obciążenia. Chociaż dopasowanie impedancji jest istotnym aspektem w konstrukcji wzmacniaczy, kondensator nie jest bezpośrednio odpowiedzialny za ten proces. Zamiast tego, układy impedancyjne często stosują rezystory oraz transformatory. Warto również zauważyć, że kondensatory są projektowane zgodnie z różnymi standardami, takimi jak MIL-PRF-39014, które dotyczą ich zastosowania w systemach elektronicznych. Wnioskując, ważne jest, aby zrozumieć, że kondensatory pełnią rolę pasywnych elementów filtrujących, a ich funkcjonalność nie obejmuje regulacji częstotliwości sygnału wyjściowego.

Pytanie 37

Który typ pamięci nieulotnej w urządzeniach elektronicznych pozwala na aktualizację firmware bez konieczności użycia dedykowanego programatora?

A. FLASH ROM
B. OTP ROM
C. EPROM
D. EEPROM
Wybór EEPROM, OTP ROM lub EPROM jako odpowiedzi na pytanie o rodzaj pamięci stałej, która umożliwia aktualizację firmware bez specjalnego programatora, jest błędny z kilku powodów. EEPROM (ang. Electrically Erasable Programmable Read-Only Memory) pozwala na elektroniczne kasowanie i ponowny zapis danych, jednak proces ten jest bardziej czasochłonny niż w przypadku FLASH ROM. Ponadto, chociaż EEPROM można wykorzystać do przechowywania firmware, jego ograniczenia w zakresie liczby cykli zapisu i kasowania sprawiają, że nie jest idealnym rozwiązaniem dla często aktualizowanego oprogramowania. OTP ROM (ang. One-Time Programmable Read-Only Memory) to rodzaj pamięci, która można zaprogramować tylko raz. Po zapisaniu danych nie ma możliwości ich modyfikacji, co czyni tę pamięć zupełnie nieodpowiednią do aktualizacji firmware, gdyż jest ona zaprojektowana do jednorazowego użytku. EPROM (ang. Erasable Programmable Read-Only Memory) również wymaga specjalnego programatora do kasowania i zapisywania, co czyni go mniej praktycznym w kontekście aktualizacji. W praktyce wybór niewłaściwego rodzaju pamięci do aktualizacji firmware może prowadzić do problemów z utrzymaniem urządzeń, a także do zwiększonych kosztów związanych z koniecznością użycia specjalistycznego sprzętu. Zrozumienie różnic między tymi typami pamięci jest kluczowe dla skutecznego zarządzania aktualizacjami i zapewnienia bezpieczeństwa urządzeń elektronicznych.

Pytanie 38

Multimetr prezentuje wyniki pomiarów w formacie trzech i pół cyfry. Jaka jest dokładność pomiaru napięcia tego multimetru w zakresie do 20 V?

A. 100 uV
B. 100 mV
C. 1 mV
D. 10 mV
Odpowiedzi 1 mV, 100 mV oraz 100 uV są niepoprawne ze względu na błędne obliczenia związane z rozdzielczością pomiaru. W przypadku multimetru wyświetlającego wyniki w formacie trzy i pół cyfry, nie wystarczy jedynie podzielić maksymalną wartość zakresu przez jednostki, które można wyświetlić, aby uzyskać rozdzielczość pomiaru. Odpowiedź 1 mV sugeruje, że multimetr mógłby rozróżniać zmiany napięcia na poziomie 1 mV, co jest niezgodne z jego rzeczywistymi możliwościami w zakresie 20 V. Wartość 100 mV również nie uwzględnia pełnej skali pomiarowej i maksymalnej liczby wyświetlanych jednostek, a zatem nie powinna być uznawana za poprawną. Odpowiedź 100 uV wydaje się nierealistyczna w kontekście tego typu multimetru, ponieważ wymagałoby to znacznie większej precyzji, niż oferuje instrument z wyświetlaczem trzy i pół cyfrowym. Ważne jest, aby zrozumieć, że przy wyborze odpowiedniego zakresu pomiarowego, użytkownik powinien zawsze kierować się rozdzielczością urządzenia, co pozwala na skuteczniejszą interpretację wyników oraz unikanie błędnych wniosków. W praktyce stosowanie niewłaściwych wartości rozdzielczości może prowadzić do istotnych błędów w pomiarach oraz interpretacji danych, co jest krytyczne w aplikacjach wymagających dokładności.

Pytanie 39

Ilość stabilnych stanów przerzutnika bistabilnego wynosi

A. 2
B. 1
C. 3
D. 0
Przerzutnik bistabilny, czyli ten flip-flop, to całkiem ciekawy układ cyfrowy. Ma dwie stabilne wartości: 0 albo 1. To znaczy, że jest w stanie jednocześnie przechowywać jeden bit informacji. Można go spotkać w różnych miejscach, jak rejestry czy pamięci RAM, ale też w generatorach zegarów i układach sekwencyjnych. Właśnie to, że potrafi zmieniać swoje stany w odpowiedzi na sygnały wejściowe, sprawia, że mogą powstawać złożone układy logiczne, które są podstawą współczesnych komputerów. Różne standardy, jak TTL i CMOS, dają nam różne typy tych przerzutników, co otwiera drzwi do wielu zastosowań w elektronice cyfrowej. Moim zdaniem, to naprawdę interesujące jak te małe elementy potrafią mieć tak duże znaczenie w naszym codziennym życiu.

Pytanie 40

Przedstawione urządzenie, wchodzące w skład Systemów Sygnalizacji Włamania i Napadu, to czujka

Ilustracja do pytania
A. stłuczenia.
B. czadu.
C. zalania.
D. ruchu.
Czujka ruchu, widoczna na zdjęciu, jest kluczowym elementem w systemach sygnalizacji włamania i napadu, odpowiedzialnym za wykrywanie ruchu w monitorowanym obszarze. Jej działanie opiera się na technologii PIR (Passive Infrared), która reaguje na zmiany temperatury w otoczeniu, co pozwala na wykrywanie obecności osób. Czujki tego typu są często wykorzystywane w różnorodnych aplikacjach, od zabezpieczeń domów prywatnych po obiekty komercyjne, gdzie ich efektywność w wykrywaniu nieautoryzowanego ruchu jest nieoceniona. Zgodnie z najlepszymi praktykami branżowymi, czujki ruchu powinny być zainstalowane w miejscach o dużym ryzyku włamania, a ich rozmieszczenie powinno uwzględniać potencjalne strefy, z których intruzi mogą wejść do obiektu. Warto również pamiętać, że nowoczesne czujniki ruchu mogą być integrowane z systemami alarmowymi, co pozwala na automatyczne powiadomienia o nieautoryzowanym dostępie, zwiększając bezpieczeństwo obiektu. Właściwe ustawienie czułości czujnika oraz unikanie przeszkód w jego polu widzenia są kluczowe dla zapewnienia optymalnej wydajności.