Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 10:15
  • Data zakończenia: 17 grudnia 2025 10:39

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem jednej fazy z obudową.
B. zwarciem dwóch faz.
C. przerwą w jednej z faz.
D. błędną sekwencją faz.
Kiedy w jednej fazie jest przerwa, to zazwyczaj silnik w ogóle nie działa, a nie że zmienia kierunek obrotów. Zmiany w fazach nie wywołają odwrócenia kierunku, tylko silnik może chodzić słabiej lub wcale. A jak faza zetknie się z obudową, to już jest poważny problem, który może uszkodzić sam silnik i inne części. Z kolei zwarcie dwóch faz nie zmienia kierunku obrotów, ale może silnik mocno przeciążyć, co prowadzi do jego przegrzania i uszkodzenia. Ludzie często mylą przyczyny z objawami, co może prowadzić do błędnych wniosków. Kierunek obrotów silnika indukcyjnego to wypadkowa sekwencji zasilania faz, a nie jakieś inne problemy. Dlatego musisz przestrzegać zasad instalacji oraz zaleceń producentów, żeby uniknąć problemów z działaniem maszyn.

Pytanie 2

Ilustracja przedstawia proces

Ilustracja do pytania
A. spawania łukowego.
B. szlifowania.
C. cięcia plazmą.
D. zgrzewania.
Cięcie plazmą to zaawansowana technologia obróbcza, która wykorzystuje wysokotemperaturową plazmę do precyzyjnego cięcia metali. Na przedstawionej ilustracji dostrzegamy charakterystyczny wygląd procesu, gdzie jasna plazmowa wiązka koncentruje się na materiale, umożliwiając jego szybkie i dokładne przecięcie. Ta metoda jest szczególnie ceniona w przemyśle, gdzie wymagana jest wysoka jakość cięcia oraz minimalne zniekształcenie krawędzi. Cięcie plazmowe charakteryzuje się dużą prędkością pracy, co pozwala na oszczędność czasu podczas produkcji i obróbki. Technologia ta jest często wykorzystywana w maszynach CNC, co dodatkowo zwiększa jej precyzję i powtarzalność. Standardy branżowe, takie jak ISO 9013, opisują wymagania dotyczące jakości cięcia plazmowego, co czyni tę metodę nie tylko skuteczną, ale i zgodną z międzynarodowymi normami. Warto zaznaczyć, że cięcie plazmą znajduje zastosowanie w wielu branżach, od produkcji stalowej, przez przemysł motoryzacyjny, aż po konstrukcje budowlane.

Pytanie 3

Jaką odległość określa skok siłownika?

A. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
B. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
C. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
D. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
Skok siłownika definiuje odległość pomiędzy jego skrajnymi położeniami, czyli w stanie całkowitego wsunięcia oraz całkowitego wysunięcia tłoczyska. Ta definicja jest kluczowa dla zrozumienia funkcji siłowników, które znajdują zastosowanie w wielu dziedzinach inżynierii, takich jak automatyka, robotyka czy przemysł motoryzacyjny. Przykładem praktycznym mogą być siłowniki hydrauliczne używane w prasach czy systemach podnoszenia, gdzie precyzyjne określenie skoku jest niezbędne do zapewnienia prawidłowego działania maszyn. W standardach branżowych, takich jak ISO 6432, definiowane są parametry siłowników, w tym skok, co pozwala na ich odpowiednie dobieranie do konkretnych zastosowań. Zrozumienie tej koncepcji umożliwia inżynierom właściwe projektowanie systemów, a także przeprowadzanie skutecznych analiz działania urządzeń. W praktyce, znajomość skoku siłownika jest kluczowa przy planowaniu układów automatyzacji oraz w procesie konserwacji i diagnostyki urządzeń.

Pytanie 4

Zasilanie podsystemu hydraulicznego w urządzeniu mechatronicznym wykonane zostało zgodnie ze schematem przedstawionym na rysunku. Którą z wymienionych funkcji pełni element oznaczony cyfrą 1?

Ilustracja do pytania
A. Stabilizowanie ciśnienia cieczy hydraulicznej w całym układzie.
B. Schładzanie cieczy hydraulicznej wprowadzanej do układu.
C. Zabezpieczanie cieczy hydraulicznej przed zanieczyszczeniami pochodzącymi z otoczenia.
D. Zabezpieczanie przed nadmiernym zużywaniem elementów układu hydraulicznego.
Zabezpieczanie cieczy hydraulicznej przed zanieczyszczeniami to funkcja, która również odgrywa istotną rolę w układach hydraulicznych, jednak nie jest to główne zadanie elementu oznaczonego cyfrą 1. Filtr cieczy hydraulicznej nie jest jedynie elementem zabezpieczającym przed zanieczyszczeniami, ale również kluczowym komponentem chroniącym układ przed nadmiernym zużyciem spowodowanym tymi zanieczyszczeniami. Stabilizowanie ciśnienia cieczy hydraulicznej to kolejna funkcja, która jest realizowana przez różne komponenty układu, takie jak zawory regulacyjne, a nie przez filtr. Ponadto schładzanie cieczy hydraulicznej jest zadaniem, które przypisuje się elementom chłodzącym, a nie filtrom. Właściwe zrozumienie tych ról jest fundamentalne dla projektowania i eksploatacji układów hydraulicznych. Często mylone są funkcje elementów w układzie, co może prowadzić do błędnego doboru komponentów lub niewłaściwego użytkowania, co z kolei przekłada się na obniżenie efektywności i trwałości systemu. W praktyce należy zwrócić uwagę na integralne połączenie różnych elementów układu hydraulicznego, które współpracują, aby zapewnić optymalną wydajność, a ignorowanie funkcji filtrów może skutkować poważnymi konsekwencjami w dłuższej perspektywie.

Pytanie 5

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Zamiana prądu stałego na prąd przemienny.
B. Obniżanie napięcia sieciowego.
C. Zamiana prądu przemiennego na prąd stały.
D. Filtrowanie zakłóceń napięcia sieciowego.
Element przedstawiony na ilustracji to mostek prostowniczy, który odgrywa kluczową rolę w przetwarzaniu energii elektrycznej. Jego głównym zastosowaniem jest zamiana prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod ułożonych w taki sposób, aby umożliwić przepływ prądu w jednym kierunku, co prowadzi do wyprostowania sygnału. W praktyce, mostki prostownicze są szeroko stosowane w zasilaczach, które zasilają różne urządzenia elektroniczne. Na przykład, w komputerach czy telewizorach mostki prostownicze są niezbędne do konwersji napięcia z sieci energetycznej na odpowiednie wartości potrzebne do pracy podzespołów. Dzięki zastosowaniu mostka prostowniczego, można osiągnąć stabilne i niezawodne źródło prądu stałego, co jest zgodne z najlepszymi praktykami projektowania zasilaczy. Warto również wspomnieć, że mostki prostownicze wykorzystuje się w systemach fotowoltaicznych, gdzie energia słoneczna, generująca prąd stały, jest przetwarzana na prąd zmienny do użytku w domach lub wprowadzania do sieci energetycznej.

Pytanie 6

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i dużym prądzie
B. wysokim napięciu i dużym prądzie
C. wysokim napięciu i małym prądzie
D. niskim napięciu i małym prądzie
Spawanie metali za pomocą łuku elektrycznego to nie lada wyzwanie, ale jeśli dobrze dobierzesz parametry prądu, wszystko pójdzie gładko. Ważne jest, żeby ustawić niskie napięcie i dość wysoki prąd. Niskie napięcie zmniejsza ryzyko, że coś się przebije, a przy tym zapewnia stabilność łuku spawalniczego, co jest mega istotne. Wysoki prąd z kolei pozwala na topnienie materiałów, więc można uzyskać spoiny dobrej jakości. Jak wiesz, przy spawaniu MIG/MAG, TIG czy MMA, te zasady naprawdę obowiązują. Zgodnie z normami, takimi jak ISO 4063, odpowiednie ustawienia to klucz do trwałych i wytrzymałych spoin. Dzięki tym parametrom, tworzona złącza będą odporne na zmęczenie i różne uszkodzenia, co w przemyśle, np. przy budowie maszyn czy konstrukcjach stalowych, jest bardzo ważne.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jak należy nastawić amperomierz, aby zmierzyć prąd w układzie pokazanym na rysunku?

Ilustracja do pytania
A. DC, zakres 10 A
B. AC, zakres 10 A
C. DC, zakres 5 A
D. AC, zakres 5 A
Aby prawidłowo zmierzyć prąd w układzie zasilanym napięciem przemiennym, należy ustawić amperomierz na zakres AC, co oznacza, że mierzymy prąd przemienny. Wybór zakresu 10 A jest kluczowy, ponieważ prąd w gospodarstwach domowych często oscyluje w okolicy kilku amperów, a ustawienie z zapasem pozwala uniknąć uszkodzenia przyrządu. W praktyce, stosowanie amperomierzy do pomiaru prądu przemiennego jest powszechne w instalacjach elektrycznych, w tym w diagnostyce i konserwacji urządzeń. Ważne jest, aby przed pomiarem upewnić się, że amperomierz posiada odpowiednie oznaczenia oraz certyfikaty, które potwierdzają jego zdolność do pomiaru prądu przemiennego. Zrozumienie, jak prawidłowo ustawić przyrząd, jest nie tylko kwestą techniczną, ale także kluczowym elementem bezpieczeństwa, co jest szczególnie istotne w kontekście użytkowania urządzeń elektrycznych w naszych domach.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakiego typu złączem powinien być zakończony kabel, który należy zastosować do podłączenia modułu komunikacyjnego widocznego na fotografii?

Ilustracja do pytania
A. DE-9
B. USB
C. HDMI
D. RJ-45
Złącze RJ-45 jest standardowym złączem stosowanym w sieciach komputerowych, szczególnie w kontekście połączeń Ethernet. Na zdjęciu widać moduł komunikacyjny, który posiada porty typowe dla urządzeń sieciowych. RJ-45 składa się z 8 pinów, a jego konstrukcja pozwala na przesył danych z prędkością sięgającą 1 Gbps w przypadku standardu Ethernet 1000BASE-T. Użycie złącza RJ-45 pozwala na łatwe podłączanie urządzeń do sieci LAN, co jest kluczowe w budowaniu infrastruktury sieciowej w firmach czy domach. Przykładem zastosowania RJ-45 jest podłączanie komputerów, routerów czy switchów do lokalnej sieci. Warto również zaznaczyć, że RJ-45 jest zgodne z normami ISO/IEC 11801 oraz TIA/EIA-568, co czyni go standardem w branży. Zrozumienie znaczenia tego złącza w kontekście komunikacji sieciowej jest niezbędne dla każdej osoby zajmującej się technologią informacyjną.

Pytanie 12

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Nominalne
B. Jednostronne
C. Rzeczywiste
D. Graniczne
Odpowiedzi "Nominalne", "Rzeczywiste" oraz "Jednostronne" nie uwzględniają prawidłowych koncepcji odnoszących się do tolerancji wykonania elementów mechanicznych. Wymiar nominalny to teoretyczna wartość, która nie bierze pod uwagę ewentualnych błędów wykonawczych. W praktyce, stosowanie jedynie wymiarów nominalnych prowadziłoby do niezgodności w produkcie, gdyż nie zabezpieczałoby to elementów przed nieprawidłowościami w procesie ich wytwarzania. Z kolei wymiary rzeczywiste opisują rzeczywisty wymiar wykonanej części, który może się różnić od wymiaru nominalnego oraz są wynikiem procesów produkcyjnych, a ich analiza jest istotna na etapie kontroli jakości. Wymiar jednostronny z kolei odnosi się do systemu tolerancji, który definiuje jedynie jeden kierunek tolerancji, co w wielu zastosowaniach nie jest wystarczające, ponieważ nie uwzględnia błędów w innym kierunku, co może prowadzić do problemów z pasowaniem. Stosowanie takich koncepcji w projektowaniu elementów mechanicznych często prowadzi do niewłaściwego zrozumienia zasad tolerancji oraz ich wpływu na finalną jakość produktu. Kluczowe jest zrozumienie, że tolerancje graniczne są niezbędne dla zapewnienia, że części będą funkcjonować poprawnie razem w odpowiednich warunkach eksploatacyjnych.

Pytanie 13

Który z przedstawionych sposobów ułożenia przewodu hydraulicznego jest prawidłowy?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Dobra robota! Odpowiedź D to strzał w dziesiątkę, bo pokazuje, jak powinny być ułożone przewody hydrauliczne, żeby wszystko działało jak należy. Wiesz, jak to jest – jeśli zagięcia są za ostre, to przepływ cieczy się psuje i może być wtedy kłopot z uszkodzeniem przewodu. Z tego, co pamiętam, normy PN-EN mówią, żeby przewody kłaść tak, by ciecz mogła płynąć swobodnie, a to naprawdę wpływa na to, jak działa cały system. Im lepiej ułożone przewody, tym mniejsze ryzyko turbulencji, które mogą zniszczyć przewód i sprawić, że więcej energii będzie trzeba zużyć. W przemyśle maszynowym to mega ważne – tam dokładność w prowadzeniu przewodów ma ogromne znaczenie dla wydajności i bezpieczeństwa. Jak przewody są dobrze ułożone, to dłużej posłużą i rzadziej będą się psuć, a to w końcu pozwala zaoszczędzić kasę na naprawach.

Pytanie 14

Sprężarka przepracowała w ciągu 3 miesięcy 500 godzin od początku jej zainstalowania w systemie. Na podstawie tabeli czynności konserwacyjnych wskaż rodzaj pracy konserwacyjnej, którą należy wykonać, aby utrzymać właściwą sprawność urządzenia.

Tabela czynności konserwacyjnych
Rodzaje prac konserwacyjnychHarmonogram konserwacji
Godziny pracyCo najmniej
ZWYKŁE CZYNNOŚCI KONSERWACYJNEDwa razy w miesiącu
Odprowadzenie kondensatu50Raz w tygodniu
Czyszczenie wstępnego filtra powietrza500Raz w miesiącu
Sprawdzenie poziomu leju, uzupełnienie oleju500
Czyszczenie filtra oleju500
Sprawdzenie pasa transmisyjnego1000Raz w roku
Sprawdzenie zapchania i czyszczenie chłodnicy2000Raz w roku
Wymiana filtra powietrza4000Raz w roku
Wymiana filtra oleju4000Raz w roku
Wymiana filtra na wylocie oleju4000Raz w roku
Wymiana jednokierunkowego zaworu zlewowego4000Raz w roku
A. Wymiana filtra oleju.
B. Wymiana całego oleju.
C. Sprawdzenie pasa transmisyjnego.
D. Czyszczenie filtra oleju.
Czyszczenie filtra oleju to naprawdę ważna sprawa, jeśli chodzi o konserwację sprężarek. Powinno to być robione zgodnie z tym, co mówi producent i co jest uznawane za dobry standard w branży. Jak sprężarka ma za sobą 500 godzin pracy, to czyszczenie filtra ma na celu pozbycie się zanieczyszczeń i brudu, które mogą wpłynąć na jakość oleju. Utrzymanie filtra w czystości to dobra rzecz, bo to nie tylko poprawia wydajność silnika, ale też przedłuża jego trwałość, co jest zgodne z normami jakości. Gdybyśmy tego nie robili, sprężarka mogłaby się przegrzewać, a jej efektywność mogłaby spadać. Przykładem tego może być regularne serwisowanie sprzętu w fabrykach, gdzie niezawodność sprężarek jest kluczowa dla całej produkcji.

Pytanie 15

Licznik impulsów rewersyjnych to urządzenie

A. które wykonuje dodawanie i odejmowanie impulsów
B. które zajmuje się dodawaniem impulsów
C. które dokonuje odejmowania impulsów
D. które zapisuje w pamięci określoną liczbę impulsów
Rewersyjny licznik impulsów to urządzenie, które ma zdolność zarówno dodawania, jak i odejmowania impulsów. W praktycznych zastosowaniach, takie liczniki znajdują zastosowanie w dokładnych systemach pomiarowych, gdzie istotne jest monitorowanie zmieniającej się wartości. Na przykład, w automatyce przemysłowej, rewersyjne liczniki impulsów mogą być używane do zliczania liczby jednostek produkcji, a także do korygowania błędów, które mogłyby wystąpić w wyniku problemów z maszyną, takich jak przesunięcia w liczniku. Takie liczniki są zgodne z normami IEEE i innymi standardami, które podkreślają znaczenie elastyczności w systemach automatyki. W przypadku błędnego zliczenia, możliwość odejmowania impulsów pozwala na precyzyjne dostosowanie do rzeczywistej produkcji, co z kolei wpływa na efektywność i jakość procesów produkcyjnych. Ważne jest, aby inżynierowie dobrze rozumieli działanie tych układów, aby skutecznie wdrażać je w praktyce.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Materiał o których właściwościach należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
A.2,7040
B.2,75320
C.7,70320
D.8,8535
A. D.
B. A.
C. C.
D. B.
Wybór odpowiedzi B jest właściwy, ponieważ materiał ten ma kluczowe właściwości, które spełniają wymagania dla konstrukcji lekkiej i odpornej na odkształcenia. Gęstość materiału wynosząca 2,75 g/cm³ sprawia, że jego masa jest zredukowana, co jest istotne w przypadku urządzeń mechatronicznych, gdzie waga ma bezpośredni wpływ na mobilność i wydajność. Ponadto, granica plastyczności 320 MPa oznacza, że materiał jest w stanie wytrzymać znaczne obciążenia bez trwałych deformacji. Przykładowe zastosowania obejmują elementy konstrukcyjne w robotyce oraz podzespoły w przenośnych urządzeniach, które muszą zachować swoją formę podczas użytkowania. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór materiałów o niskiej gęstości i wysokiej wytrzymałości jest kluczowy dla zapewnienia efektywności energetycznej i niezawodności urządzeń. W branży mechatronicznej często wykorzystuje się materiały kompozytowe, które łączą te pożądane właściwości, co dodatkowo podkreśla znaczenie odpowiedniego doboru materiałów.

Pytanie 18

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. dokręcenie przyłącza kluczem dynamometrycznym
B. wymiana przyłącza
C. wymiana uszczelki pomiędzy przyłączem a siłownikiem
D. uszczelnienie przyłącza taśmą teflonową
Użycie taśmy teflonowej do uszczelnienia przyłącza może wydawać się szybkim sposobem na rozwiązanie problemu, ale w rzeczywistości to podejście nie załatwia wszystkich spraw związanych z nieszczelnością w systemach pneumatycznych. Ta taśma jest raczej do uszczelniania połączeń gwintowych, a w przypadku zużytych lub uszkodzonych elementów, jak przyłącza, to tak naprawdę nie rozwiązuje problemu. Może to prowadzić do dodatkowych kłopotów, jak zatykanie przepływu powietrza, co wpływa na całą wydajność systemu. Wymiana uszczelki między przyłączem a siłownikiem też nie jest właściwą odpowiedzią, bo to nie wyeliminuje nieszczelności, jeśli same przyłącze jest uszkodzone. Dokręcanie przyłącza kluczem dynamometrycznym może dać chwilowe rezultaty, ale jeśli siła jest za duża, to jeszcze bardziej uszkodzi elementy, a na dłuższą metę i tak będziesz musiał wymienić całe przyłącze. W inżynierii mechatronicznej ważne jest, żeby korzystać z dobrych komponentów i przestrzegać standardów jakości. Dlatego zawsze lepiej wymienić uszkodzony element na nowy, zgodny z wymaganiami producenta, żeby to rzeczywiście miało sens.

Pytanie 19

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 500 mm2
B. 3 000 mm2
C. 1 000 mm2
D. 2 000 mm2
Często można spotkać się z błędami w obliczeniach powierzchni tłoka, które wynikają z nieprawidłowego zrozumienia relacji między siłą, ciśnieniem a powierzchnią. Osoby, które udzieliły odpowiedzi wskazujących na 3000 mm², 1500 mm² czy 1000 mm², mogą nie uwzględniać istotnego czynnika, jakim jest współczynnik sprawności. Taki współczynnik uwzględnia rzeczywiste straty energii w systemie hydraulicznym, a jego zignorowanie prowadzi do błędnych obliczeń. W przypadku odpowiedzi 3000 mm² mogło dojść do błędnego założenia, że siła wytwarzana przez tłok jest wyższa niż w rzeczywistości, co jest niezgodne z podanymi danymi. Osoba, która wskazała 1500 mm², najprawdopodobniej obliczyła powierzchnię czynną bez uwzględnienia ciśnienia lub zastosowała niewłaściwe jednostki. Natomiast wskazanie 1000 mm² może wynikać z mylnego założenia, że współczynnik sprawności działa w odwrotny sposób niż w rzeczywistości. W rzeczywistości, aby uzyskać pożądaną siłę, musimy uwzględnić sprawność jako element redukujący efektywną moc. Dlatego kluczowe jest zrozumienie i prawidłowe stosowanie wzorów, a także znajomość jednostek miary, aby uniknąć takich pomyłek. Zastosowanie odpowiedniej metodologii obliczeniowej oraz znajomość standardów inżynieryjnych może znacząco poprawić jakość i trafność naszych wyników.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na rysunkach przedstawiono nakrętkę

Ilustracja do pytania
A. kwadratową.
B. motylkową.
C. radełkową.
D. koronową.
Nakrętka koronowa, przedstawiona na rysunku, jest powszechnie stosowanym elementem złącznym, charakteryzującym się sześciokątnym kształtem oraz wypustami na zewnętrznej krawędzi. Te wypusty pozwalają na łatwe dokręcanie i odkręcanie nakrętki za pomocą klucza, co jest kluczowe w wielu zastosowaniach inżynieryjnych i mechanicznych. Nakrętki koronowe są często wykorzystywane w konstrukcjach maszyn, gdzie wymagana jest wysoka siła zaciągająca oraz odporność na luzowanie się połączeń. Dzięki ich konstrukcji, umożliwiają one uzyskanie lepszego momentu dokręcania, co jest zgodne z dobrymi praktykami w inżynierii mechanicznej. Warto również zauważyć, że zastosowanie nakrętek koronowych jest preferowane w standardach takich jak ISO 4032, które regulują wymiary i tolerancje dla takich elementów złącznych. Używanie nakrętek koronowych przyczynia się do zwiększenia bezpieczeństwa połączeń mechanicznych, minimalizując ryzyko ich awarii.

Pytanie 22

Który rodzaj obróbki metalu przedstawiono na ilustracji?

Ilustracja do pytania
A. Walcowanie.
B. Szlifowanie.
C. Toczenie.
D. Nawęglanie.
Walcowanie jest zaawansowaną metodą obróbki plastycznej, w której materiał metalowy przechodzi pomiędzy dwoma lub więcej obracającymi się walcami. Ta technika jest szeroko stosowana w przemyśle, szczególnie w produkcji blach, prętów oraz innych elementów o określonym kształcie i wymiarach. Proces ten pozwala na uzyskanie pożądanej grubości materiału, a także na poprawę jego właściwości mechanicznych. Walcowanie może być wykonywane na gorąco lub na zimno, co wpływa na finalne właściwości materiału. Walcowanie na gorąco, w przeciwieństwie do walcowania na zimno, umożliwia uzyskanie większych odkształceń bez ryzyka pęknięć. Dodatkowo, podczas walcowania, materiał ulega zjawisku zwanym strain hardening, co zwiększa jego wytrzymałość. W praktyce, walcowanie wykonuje się zgodnie z normami ISO i innymi standardami branżowymi, co zapewnia powtarzalność i jakość produkcji. Ta metoda jest niezbędna w wielu gałęziach przemysłu, w tym w budownictwie, motoryzacji oraz lotnictwie.

Pytanie 23

Cyfrowy tachometr jest narzędziem do mierzenia

A. naprężeń w metalach
B. natężenia przepływu powietrza
C. lepkości cieczy
D. prędkości obrotowej wału silnika
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 24

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
B. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
C. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
D. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
Wybór nieprawidłowej odpowiedzi wskazuje na pewne nieporozumienia dotyczące roli podzespołu instalacji pneumatycznej. Zanieczyszczenia powietrza to kluczowy element, który musi być skutecznie kontrolowany, aby zapewnić optymalną wydajność narzędzi pneumatycznych. Odpowiedzi sugerujące, że podzespół zajmuje się usuwaniem wilgoci lub stabilizowaniem ciśnienia i temperatury, mogą prowadzić do błędnych wniosków. Wilgoć w układzie pneumatycznym może prowadzić do korozji i uszkodzeń, a stabilizacja ciśnienia i temperatury to zadanie, które bardziej przypisane jest innym systemom. Niepoprawne odpowiedzi mogą także sugerować, że redukcja ciśnienia oraz naolejanie są niezwiązane z usuwaniem zanieczyszczeń, co jest nieprawdziwe. Te elementy są kluczowe w kontekście prawidłowego funkcjonowania systemów pneumatycznych, a ich niewłaściwe zrozumienie może prowadzić do nieefektywności w procesach przemysłowych. Właściwe zastosowanie filtrów, reduktorów i oliwiarek stanowi fundament dobrej praktyki w inżynierii pneumatycznej, a ich prawidłowe funkcjonowanie ma za zadanie nie tylko poprawić wydajność, ale również wydłużyć żywotność sprzętu. Niezrozumienie tych aspektów prowadzi do ryzyka awarii i zwiększenia kosztów związanych z konserwacją i naprawami.

Pytanie 25

Uszkodzeniu uległ regulator temperatury i procesu JCM-33A zasilany napięciem sieciowym, posiadający wyjście alarmu przerwania pętli regulacji i wyjście prądowe 4÷20 mA. Na podstawie fragmentu karty katalogowej dobierz model regulatora, który odpowiada uszkodzonemu.

Ilustracja do pytania
A. JCM-33A-R/M,-,LA
B. JCM-33A-A/M,-,LA
C. JCM-33A-R/M,1,SM
D. JCM-33A-A/M,1,SM
Wybór regulatora, który nie spełnia wymagań technicznych, może prowadzić do poważnych konsekwencji w systemach automatyki. W przypadku opcji JCM-33A-R/M,1,SM, błędem jest założenie, że 'R' oznacza złącze alarmowe. Rzeczywiście, 'R' odnosi się do wyjścia regulacyjnego, co jest nieodpowiednie dla sytuacji, w której wymagane jest wyjście alarmowe. Użycie regulatora z wyjściem regulacyjnym w miejscu, gdzie potrzebne jest alarmowe, może nie tylko spowodować niewłaściwe działanie systemu, ale także zagrażać bezpieczeństwu procesu. Wybór JCM-33A-A/M,-,LA nie jest również do pomylenia z innymi modelami, ponieważ oznaczenie 'SM' wskazuje na wejście binarne, które jest zbędne w kontekście opisanego uszkodzenia. Niezrozumienie różnicy między wyjściem regulacyjnym a alarmowym może prowadzić do niepoprawnego doboru urządzeń, co jest powszechnym błędem w praktyce inżynieryjnej. Użytkownicy powinni być świadomi, że każda zmiana w konfiguracji regulatora powinna być zgodna z wymaganiami procesu, co podkreśla znaczenie norm i dobrych praktyk w projektowaniu systemów automatyki.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Czynniki zagrażające zdrowiu ludzi, związane z użyciem urządzeń hydraulicznych, są w głównej mierze spowodowane przez

A. wysokie temperatury płynów.
B. wysokie ciśnienia płynów oraz ogromne siły.
C. duże przepływy prądów.
D. wibracje oraz hałas.
Odpowiedź dotycząca wysokich ciśnień cieczy i dużych sił jako zagrożeń dla zdrowia człowieka w kontekście urządzeń hydraulicznych jest poprawna. Urządzenia hydrauliczne działają na zasadzie wykorzystania ciśnienia cieczy do przenoszenia sił i momentów, co czyni je niezwykle efektywnymi w wielu zastosowaniach przemysłowych. Wysokie ciśnienie w układach hydraulicznych, które może osiągać wartości kilkuset barów, stwarza ryzyko nie tylko uszkodzenia samych urządzeń, ale również poważnych wypadków, jeśli system ulegnie awarii. Przykładem może być wybuch węża hydraulicznego, który może prowadzić do niebezpiecznych sytuacji, takich jak obrażenia ciała pracowników. Dlatego w branży hydraulicznej istnieją ścisłe normy bezpieczeństwa, takie jak ISO 4413, które określają wymagania dotyczące hydraulicznych systemów zasilania, aby minimalizować ryzyko związane z wysokim ciśnieniem i siłami. Użytkownicy urządzeń hydraulicznych powinni być odpowiednio przeszkoleni, a urządzenia poddawane regularnym inspekcjom, aby zapewnić ich bezpieczeństwo i sprawność działania.

Pytanie 28

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. chłodziarko-zamrażarka z cyfrowym sterowaniem
B. odtwarzacz płyt CD oraz DVD
C. drukarka laserowa
D. silnik indukcyjny klatkowy
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 29

Jaki rodzaj wyłącznika przedstawiono na rysunku?

Ilustracja do pytania
A. Krańcowy.
B. Nadprądowy.
C. Różnicowoprądowy.
D. Silnikowy.
Wyłącznik różnicowoprądowy, przedstawiony na rysunku, jest kluczowym elementem zabezpieczającym instalacje elektryczne przed porażeniem prądem. Oznaczenie 'FI-Schutzschalter' wskazuje na jego funkcję, a parametry takie jak 'IΔn 0,03A' oznaczają, że urządzenie jest zaprojektowane do wykrywania prądów upływowych o wartości 30 mA, co jest standardem dla ochrony ludzi w instalacjach domowych. Stosowanie wyłączników różnicowoprądowych jest szczególnie istotne w pomieszczeniach narażonych na wilgoć, takich jak łazienki czy kuchnie, gdzie ryzyko porażenia jest wyższe. W przypadku wykrycia różnicy między prądem wpływającym a wypływającym, wyłącznik automatycznie odłącza zasilanie, co skutecznie zapobiega niebezpiecznym sytuacjom. Dodatkowo, zgodnie z normami PN-IEC 61008, stosowanie wyłączników różnicowoprądowych w instalacjach elektrycznych jest wymogiem, co podkreśla ich znaczenie dla bezpieczeństwa użytkowników.

Pytanie 30

Który rodzaj smaru powinien być zastosowany do lubrykantowania elementów wykonanych z plastiku?

A. Smar molibdenowy
B. Smar silikonowy
C. Smar grafitowy
D. Smar litowy
Smar silikonowy jest odpowiednim wyborem do smarowania elementów plastikowych z kilku istotnych powodów. Przede wszystkim, silikon jest materiałem, który nie reaguje chemicznie z większością tworzyw sztucznych, co minimalizuje ryzyko ich degradacji czy uszkodzeń. Działa również jako doskonały środek smarny, który zmniejsza tarcie między ruchomymi częściami, co prowadzi do dłuższej żywotności elementów. Smary silikonowe są często stosowane w przemyśle motoryzacyjnym oraz przy produkcji zabawek i sprzętu AGD, gdzie plastikowe komponenty są powszechnie używane. Dodatkowo, smary silikonowe są odporne na działanie wysokich temperatur oraz wilgoci, co czyni je uniwersalnym rozwiązaniem w wielu zastosowaniach. Warto również zauważyć, że smar silikonowy nie przyciąga kurzu, co jest kluczowe w przypadku zastosowań, gdzie czystość powierzchni jest istotna. Zastosowanie smaru silikonowego w odpowiednich aplikacjach jest zgodne z zaleceniami producentów i dobrymi praktykami branżowymi, co zapewnia optymalne funkcjonowanie elementów plastikowych.

Pytanie 31

Przedstawiony na rysunku blok z biblioteki sterownika PLC ma za zadanie

Ilustracja do pytania
A. pamiętanie informacji w postaci binarnej.
B. zmianę częstotliwości sygnału cyfrowego.
C. odmierzanie określonego czasu.
D. opóźnienie czasowe sygnału.
Przerzutnik RS, który znajduje się w blokach sterowników PLC, pełni kluczową rolę w przechowywaniu stanu binarnego. Jego podstawowa funkcja polega na zapamiętywaniu informacji w postaci dwóch stanów: 'ustawionym' i 'zresetowanym'. Dzięki temu, przerzutniki są wykorzystywane w różnych aplikacjach automatyzacji przemysłowej, takich jak w systemach alarmowych, gdzie mogą przechowywać stan aktywacji alarmu. W praktyce, przerzutnik RS może być również używany do synchronizacji procesów w układach, gdzie istotne jest zachowanie stanu poprzedniego w przypadku zmiany sygnału wejściowego. Warto również zauważyć, że zgodnie z normami branżowymi, przerzutniki są fundamentalnym elementem w realizacji bardziej złożonych funkcji logicznych oraz w pamięciach programowalnych, co czyni je niezwykle ważnym narzędziem w inżynierii systemów automatyzacji.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. sprawdzenia wymiarów
B. analizy stopnia zużycia
C. oceny stopnia naprężenia
D. weryfikacji czystości paska
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 34

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy dwupołożeniowy (5/2)
B. pięciodrogowy trójpołożeniowy (5/3)
C. trójdrogowy dwupołożeniowy (3/2)
D. trójdrogowy trójpołożeniowy (3/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 35

Element oznaczony na schemacie symbolem 4N35 to

Ilustracja do pytania
A. fototranzystor.
B. transoptor.
C. fototyrystor.
D. optotriak.
Wybierając odpowiedzi inne niż transoptor, można napotkać kilka pułapek związanych z nieporozumieniami dotyczącymi funkcji i budowy elementów optoelektronicznych. Odpowiedź optotriak jest myląca, ponieważ optotriaki są używane do sterowania większymi obciążeniami, ale ich budowa różni się od transoptorów. Optotriaki składają się z diody oraz triaka, co sprawia, że są zdolne do prowadzenia prądu w obie strony, jednak nie zapewniają takiego samego poziomu izolacji galwanicznej jak transoptory. Z kolei fototranzystor to pojedynczy element, który przekształca światło w sygnał elektryczny, ale nie zawiera diody emitującej światło, co czyni go innym od transoptora. Wybór fototyrystora jest również błędny, gdyż fototyrystory działają na zasadzie podobnej do triaków, czyli są zaprojektowane do kontrolowania mocy, a nie do izolacji sygnału. Kluczowym błędem myślowym jest mylenie tych komponentów z ich funkcjami; każdy z nich ma specyficzne zastosowania w elektronice. Zrozumienie różnic między tymi elementami jest kluczowe, aby poprawnie diagnozować i projektować systemy elektroniczne, które są nie tylko funkcjonalne, ale także bezpieczne dla użytkowników.

Pytanie 36

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. położyć go na plecach z uniesionymi nogami
B. ustawić go w pozycji bocznej ustalonej
C. przystąpić do pośredniego masażu serca
D. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 37

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na wizualizację przebiegu pracy prasy
B. na załączanie i wyłączanie pracy prasy
C. na pomiar parametrów procesowych prasy
D. na odczyt wartości zmierzonych parametrów
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 38

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. rozdzielające
B. redukujące
C. dławiące
D. odcinające
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 39

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Wymieniać szybkozłączki
B. Dostosowywać ciśnienie powietrza
C. Usuwać kondensat
D. Zastępować przewody pneumatyczne
Wymiana przewodów pneumatycznych, regulacja ciśnienia powietrza oraz wymiana szybkozłączek to czynności, które mogą być przeprowadzane w ramach konserwacji układu pneumatycznego, ale nie mają one tak kluczowego znaczenia, jak regularne usuwanie kondensatu. W przypadku wymiany przewodów, choć jest to istotne, nie jest to procedura, którą należy wykonywać cyklicznie, chyba że przewody są uszkodzone lub zużyte. Regulacja ciśnienia powietrza jest z kolei bardziej związana z dostosowaniem parametrów pracy urządzenia do specyfikacji, a nie z utrzymywaniem systemu w dobrym stanie. Wiele osób może błędnie sądzić, że kontrolowanie ciśnienia jest najważniejsze, jednak to właśnie kondensat, jeśli nie jest odpowiednio usuwany, może prowadzić do awarii całego układu. Ponadto, wymiana szybkozłączek, choć również istotna, jest operacją doraźną, a nie cykliczną. W praktyce, ignorowanie kondensatu w układzie pneumatycznym może prowadzić do poważnych problemów, dlatego kluczowe jest zrozumienie, że to właśnie regularne jego usuwanie jest najważniejszym elementem dbałości o sprawność systemu. Prawidłowe zrozumienie tych aspektów konserwacji pozwala na unikanie kosztownych napraw oraz przestojów w produkcji.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.