Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 28 października 2025 08:40
  • Data zakończenia: 28 października 2025 09:06

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Tuner DVB-T pozwala na odbiór sygnałów

A. telewizji satelitarnej analogowej
B. telewizji satelitarnej cyfrowej
C. telewizji naziemnej cyfrowej
D. telewizji naziemnej analogowej
Odpowiedzi dotyczące analogowej telewizji naziemnej, cyfrowej telewizji satelitarnej oraz analogowej telewizji satelitarnej są nieprawidłowe, ponieważ koncentrują się na technologiach, które nie są powiązane z sygnałem DVB-T. Analogowa telewizja naziemna, choć była standardem w przeszłości, uległa deprecjacji, a jej miejsce zajęła telewizja cyfrowa, w tym DVB-T. W kontekście cyfrowej telewizji satelitarnej, odbiór sygnału odbywa się poprzez zupełnie inny system (DVB-S), który nie jest kompatybilny z tunerami DVB-T. Analogowa telewizja satelitarna również korzystała z innej technologii przesyłania sygnału, co sprawia, że jest to błędne podejście. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, obejmują mylenie różnych standardów przesyłu sygnału oraz niezrozumienie, że cyfrowa telewizja naziemna korzysta z technologii, która pozwala na efektywniejsze zarządzanie pasmem i lepszą jakość obrazu. Różne technologie wymagają również odpowiednich urządzeń, co podkreśla znaczenie zrozumienia, jakie sygnały mogą być odbierane przez dany tuner. Dlatego tak istotne jest posługiwanie się właściwymi terminami i technologiami, aby móc skutecznie korzystać z nowoczesnych rozwiązań w dziedzinie telewizji.

Pytanie 2

Zawarte w tabeli dane techniczne dotyczą czujki

Typ czujkiNC
Dwa tory detekcjiPIR+MW
Wymiary obudowy65 x 138 x 58 mm
Zakres temperatur pracy-40°C...+55°C
Zalecana wysokość montażu2,4 m
Maksymalny pobór prądu20 mA
Zasięg działania15 m
A. akustycznej.
B. zalania.
C. ruchu.
D. czadu.
Czujki ruchu są kluczowymi elementami nowoczesnych systemów zabezpieczeń, a ich działanie opiera się na technologii detekcji PIR (pasywnej podczerwieni) oraz MW (mikrofali). W przedstawionej tabeli, informacja o "dwóch torach detekcji PIR+MW" jasno wskazuje, że czujka jest zaprojektowana do wykrywania ruchu. Technologia PIR jest odpowiedzialna za detekcję zmian w promieniowaniu podczerwonym, co jest skuteczne w monitorowaniu obiektów emitujących ciepło, takich jak ludzie. Z kolei technologia mikrofalowa pozwala na wykrywanie ruchu w większym zakresie, co zwiększa niezawodność czujnika. Praktyczne zastosowanie czujek ruchu znajduje się w systemach alarmowych, automatyce budynkowej oraz inteligentnych domach, gdzie mogą służyć do automatycznego włączenia oświetlenia lub alarmu, gdy wykryją obecność. Zastosowanie takich czujników jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i komfortu użytkowania, co czyni je niezbędnymi w nowoczesnych instalacjach.

Pytanie 3

Jakiego typu procesor jest używany w wzmacniaczach z cyfrowym przetwarzaniem dźwięku?

A. DSP
B. RISC
C. AVR
D. CISC
Wzmacniacze z cyfrowym przetwarzaniem dźwięku (DSP - Digital Signal Processing) wykorzystują specjalizowane procesory, które są zoptymalizowane do realizacji skomplikowanych algorytmów manipulacji sygnałem. Procesory DSP charakteryzują się zdolnością do szybkiego przetwarzania danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach audio, takich jak filtracja, kompresja, echo czy inny efekt dźwiękowy. Dzięki architekturze, która umożliwia równoległe przetwarzanie wielu operacji matematycznych, DSP potrafią efektywnie zarządzać dużymi zestawami danych audio. Przykłady zastosowań obejmują profesjonalne systemy nagłośnienia, gdzie jakość dźwięku ma kluczowe znaczenie, oraz w sprzęcie konsumenckim, takim jak procesory w soundbarach czy systemach hi-fi. Rekomendacje branżowe wskazują, że zastosowanie DSP w audio to standard w nowoczesnych urządzeniach, co potwierdza ich niezastąpioną rolę w obróbce dźwięku.

Pytanie 4

Najczęściej wykorzystywany do tworzenia sieci komputerowej LAN przewód UTP skrętka jest zbudowany z

A. dwóch par żył w przewodzie
B. jednej pary żył w przewodzie
C. czterech par żył w przewodzie
D. trzech par żył w przewodzie
Przewód UTP (Unshielded Twisted Pair) używany w budowie sieci LAN składa się z czterech par przewodów, co jest zgodne z najnowszymi standardami sieciowymi, takimi jak 10BASE-T, 100BASE-TX oraz 1000BASE-T. W każdej parze żył, przewody są skręcone ze sobą, co redukuje zakłócenia elektromagnetyczne oraz poprawia jakość sygnału. Dzięki czterem parom możliwe jest jednoczesne przesyłanie danych w obu kierunkach, co zwiększa przepustowość i efektywność komunikacji w sieci. Standardy takie jak TIA/EIA-568 określają zasady dotyczące użycia przewodów UTP oraz ich okablowania, co jest kluczowe przy projektowaniu nowoczesnych sieci komputerowych. W praktyce, stosowanie skrętki UTP z czterema parami żył pozwala na osiągnięcie dużej szybkości transmisji, co jest szczególnie istotne w środowiskach biurowych czy w centrach danych, gdzie wymagana jest wysoka wydajność sieci. Dodatkowo, zrozumienie struktury przewodu UTP ma kluczowe znaczenie dla instalacji oraz diagnostyki problemów w sieci.

Pytanie 5

Która z funkcji w oprogramowaniu EDA zajmuje się wyznaczaniem ścieżek przy projektowaniu układów PCB?

A. Routing
B. RuleCheck
C. Annotation
D. Placing
Wybór innych opcji wskazuje na pewne nieporozumienia dotyczące funkcji programów EDA oraz ich zastosowania w projektowaniu obwodów drukowanych. RuleCheck odnosi się do weryfikacji zasad projektowych, takich jak upewnienie się, że nie ma naruszeń reguł dotyczących odstępów czy szerokości ścieżek. Choć ważne, nie zajmuje się bezpośrednio wytyczaniem tras. Placing koncentruje się na odpowiednim umiejscowieniu komponentów na PCB, co jest krokiem poprzedzającym routing. Nieodpowiednie umiejscowienie elementów może prowadzić do problemów w późniejszym etapie, ale samo w sobie nie wytycza ścieżek. Annotation to proces przypisywania etykiet i identyfikatorów komponentom, co jest istotne dla organizacji projektu, ale również nie ma wpływu na sam proces routingu. Zrozumienie tych funkcji jest kluczowe dla efektywnego projektowania obwodów, dlatego warto zapoznać się z ich rolą w cyklu życia projektu PCB. Przede wszystkim, nieprawidłowe podejście do rozróżnienia tych funkcji może prowadzić do nieefektywności w projektach oraz wydłużenia czasu realizacji, co w branży elektronicznej jest niewłaściwe. Właściwe zrozumienie roli routingu, a także innych funkcji, jest fundamentem dla każdego inżyniera zajmującego się projektowaniem PCB.

Pytanie 6

Jakie kroki należy podjąć w pierwszej kolejności podczas wymiany przekaźnika w obwodzie sterowania?

A. Wyjąć przewody przymocowane do styków przekaźnika
B. Zatrzymać zasilanie w obwodzie sterowania
C. Zdjąć przekaźnik z szyny TH-35
D. Odłączyć kable przymocowane do cewki przekaźnika
Wyłączenie napięcia w obwodzie sterowania jest kluczowym krokiem przed przystąpieniem do wymiany przekaźnika. Bezpieczeństwo operatora oraz zachowanie integralności sprzętu są najważniejszymi priorytetami w pracy z instalacjami elektrycznymi. W przypadku przekaźników, ich cewki mogą być pod napięciem, co stwarza ryzyko porażenia prądem elektrycznym. Standardy BHP oraz zalecenia branżowe jednoznacznie wskazują, że przed wszelkimi pracami serwisowymi należy zawsze wyłączyć zasilanie. Przykładowo, w przemyśle automatyki, powszechnie stosuje się praktykę umieszczania znaków ostrzegawczych w pobliżu paneli sterujących informujących o konieczności wyłączenia zasilania przed jakimikolwiek interwencjami. Dopiero po upewnieniu się, że napięcie zostało wyłączone, można bezpiecznie odłączać przewody i demontować przekaźnik, co zapobiega nie tylko wypadkom, ale także uszkodzeniu urządzeń. Zastosowanie tej zasady jest fundamentem profesjonalizmu w każdej działalności związanej z elektrycznością.

Pytanie 7

Jaki układ wzmacniający z użyciem tranzystora bipolarnego odznacza się względnie wysokim wzmocnieniem napięciowym oraz znacznym wzmocnieniem prądowym?

A. OG
B. OE
C. OB
D. OC
Wybór odpowiedzi OB, OC lub OG wskazuje na nieporozumienie związane z charakterystyką układów wzmacniających. Układ OB (obrotnik bazy) jest stosunkowo rzadko używany w praktycznych zastosowaniach, ponieważ jego wzmocnienie napięciowe jest niskie, a głównym celem jest przekształcenie sygnału bez znaczącego wzmocnienia. Z kolei układ OC (obrotnik kolektora) charakteryzuje się wysokim wzmocnieniem prądowym, ale niskim wzmocnieniem napięciowym. Jest to konfiguracja, która jest wykorzystywana głównie w przypadku wzmacniaczy mocy, gdzie kluczowe jest dostarczenie dużych prądów do obciążenia, a niekoniecznie wzmocnienie sygnału. W przypadku OG (obrotnik górny) mamy do czynienia z układem, który nie jest standardowo używany w klasycznych układach wzmacniających, co może prowadzić do mylnego wniosku, że ma zastosowanie w kontekście dużego wzmocnienia zarówno napięciowego, jak i prądowego. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, obejmują mylenie typów wzmacniaczy i ich podstawowych właściwości. Kluczowe jest zrozumienie, że różne konfiguracje tranzystorów mają różne zastosowania i skutki dla wzmocnienia sygnałów, co jest fundamentalne w inżynierii elektronicznej.

Pytanie 8

Jakie urządzenie łączy komputer z lokalną siecią komputerową?

A. karta sieciowa
B. most
C. firewall
D. wyposażenie bramowe
Karta sieciowa to taki kluczowy element, który łączy komputer z lokalną siecią, jakby to był most między różnymi urządzeniami. Jej główne zadanie to umożliwienie komunikacji, co jak wiadomo, odbywa się poprzez zamianę danych na sygnały elektryczne i przesyłanie ich przez różne media, jak kable Ethernet czy fale radiowe w sieciach bezprzewodowych. Karty sieciowe występują w różnych wersjach, na przykład jako karty rozszerzeń do montażu w gniazdach PCI albo jako wbudowane urządzenia w laptopach. Każda z nich ma swój unikalny adres MAC, który jest, mówiąc kolokwialnie, takim identyfikatorem w sieci. Standardy, jak IEEE 802.3 dla Ethernet czy IEEE 802.11 dla Wi-Fi, mówią, jak te karty powinny działać, żeby wszystko ze sobą współpracowało. Dzięki nim użytkownicy mogą korzystać z różnych zasobów sieciowych, jak serwery, drukarki czy internet, co jest niezbędne, szczególnie w biurach i domach.

Pytanie 9

Na podstawie fragmentu instrukcji zamka zbliżeniowego określ sygnalizację informującą, że urządzenie jest w trybie programowania.

SYGNALIZACJA DŹWIĘKOWA I OPTYCZNA
Status działaniaŚwiatło czerwoneŚwiatło zieloneŚwiatło niebieskieBrzęczyk
Strefa 1, odblokowana-Jasne-Krótki dzwonek
Strefa 2, odblokowana--JasneKrótki dzwonek
ZasilanieJasne--Długi dzwonek
GotowośćZapala się powoli---
Naciśnięcie klawisza---Krótki dzwonek
Operacja zakończona pomyślnie--JasnyDługi dzwonek
Operacja zakończona niepowodzeniem---3 krótkie dzwonki
Wprowadzenie trybu programowaniaJasny--Długi dzwonek
Wprowadzony tryb programowaniaJasnyJasny--
Wyjście z trybu programowaniaZapala się powoli--Długi dzwonek
AlarmZapala się szybko--Alarm
A. Szybkie zapalanie diody LED czerwonej.
B. Wyłączona dioda LED niebieska, bez brzęczyka.
C. Trzy krótkie dzwonki, wyłączone diody LED.
D. Włączone diody LED czerwona i niebieska.
Jak widzisz, gdy niebieska dioda LED jest wyłączona i brzęczyk też nie działa, to znaczy, że urządzenie jest w trybie programowania. To bardzo ważne, bo w systemach zbliżeniowych możemy wtedy dostosować różne ustawienia, na przykład dodać nowych użytkowników czy zmienić kody dostępu. Musimy dobrze rozumieć, w jakim stanie jest nasze urządzenie, bo to kluczowe dla bezpieczeństwa. Na przykład w automatyce budynkowej, jeśli źle zrozumiemy, co sygnalizują diody LED lub dźwięki, możemy przez przypadek zmienić coś, co wpłynie na cały system. Dlatego warto znać te sygnały, bo to duża część szkolenia dla techników, którzy zajmują się instalowaniem i naprawianiem zabezpieczeń zbliżeniowych. To naprawdę istotna kwestia w codziennej pracy.

Pytanie 10

W przedstawionym na rysunku stabilizatorze wystąpiło zwarcie jednego z elementów. Wskaż, który podzespół uległ uszkodzeniu. Woltomierz prądu stałego wskazuje około 5 V.

Ilustracja do pytania
A. Dioda Dz
B. Układ μA7805
C. Kondensator C1
D. Kondensator C2
Analizując inne odpowiedzi, możemy zauważyć pewne nieporozumienia dotyczące funkcji i zachowania elementów w przedstawionym stabilizatorze napięcia. W przypadku kondensatorów C1 i C2, ich głównym zadaniem jest filtrowanie, co oznacza, że nie są one odpowiedzialne za regulację napięcia. Kondensatory działają jako akumulatory energii, a ich awaria zazwyczaj prowadzi do spadku wydajności systemu lub zakłóceń, ale nie wpływa bezpośrednio na poziom napięcia wyjściowego w taki sposób, jak sugeruje pytanie. Z kolei układ μA7805 pełni rolę stabilizatora napięcia i, jeśli woltomierz wskazuje 5 V, oznacza to, że jego działanie jest prawidłowe. Sądzenie, że którykolwiek z wymienionych kondensatorów lub układ sam w sobie mógłby być przyczyną zwarcia, jest błędne, ponieważ ich uszkodzenie nie spowodowałoby stabilizacji napięcia na tym poziomie. Zdarza się, że użytkownicy mylnie przypisują winę za awarię komponentów na podstawie objawów, nie biorąc pod uwagę, jak poszczególne elementy współdziałają w układzie. Kluczowe jest zrozumienie, że przy diagnozowaniu usterek ważne jest dokładne przeanalizowanie roli każdego z elementów oraz ich interakcji w całym systemie. Takie podejście pozwala na skuteczniejsze rozwiązywanie problemów oraz lepsze projektowanie obwodów elektronicznych.

Pytanie 11

Przepustowość transferu danych w sieci wynosząca 256 kb/s odpowiada wartości

A. 8kB/s
B. 32kB/s
C. 16kB/s
D. 64kB/s
Odpowiedź 32kB/s jest prawidłowa, ponieważ 1 bajt (B) składa się z 8 bitów (b). Aby przeliczyć prędkość transferu z kilobitów na kilobajty, należy podzielić wartość w kilobitach przez 8, ponieważ 8 bitów tworzy 1 bajt. Zatem, 256 kb/s podzielone przez 8 daje 32 kB/s. Przykładowo, w przypadku pobierania pliku o wielkości 32 kB z prędkością 256 kb/s, czas pobierania wyniesie zaledwie 1 sekundy. W praktyce, znajomość tej konwersji jest kluczowa dla projektantów sieci oraz inżynierów zajmujących się optymalizacją wydajności transferu danych. Przykładowo, w kontekście monitorowania przepustowości sieci, umiejętność szybkiego przeliczania jednostek pozwala na lepszą ocenę efektywności transferu oraz identyfikację potencjalnych wąskich gardeł w komunikacji sieciowej.

Pytanie 12

Która z technologii stosuje światło podczerwone do przesyłania danych?

A. BLUETOOTH
B. ZIGBEE
C. IRDA
D. WIMAX
IRDA, czyli Infrared Data Association, to taki fajny standard do komunikacji bezprzewodowej. Działa na zasadzie światła podczerwonego i jest wykorzystywany do przesyłania danych na krótkich dystansach. Sporo urządzeń korzysta z tej technologii, jak telefony, laptopy czy różne drukarki i skanery. Działa to tak, że urządzenia muszą być blisko siebie, zazwyczaj w odległości maksymalnie 1 metra, a nawet można przesyłać dane z prędkością do 4 Mbps. Przykładowo, można łatwo przesłać kontakty między telefonami, nawet bez kabli. IRDA jest też oszczędna pod względem energii, co czyni ją idealną dla urządzeń na baterie. Dzięki temu standardowi różne urządzenia od różnych producentów mogą ze sobą współpracować, co jest naprawdę ważne w dzisiejszym świecie komunikacji bezprzewodowej.

Pytanie 13

Przedstawiony na zdjęciu klucz Dallas jest elementem systemu

Ilustracja do pytania
A. sieci komputerowej.
B. automatyki przemysłowej.
C. dostępu i zabezpieczeń.
D. telewizji dozorowej.
Klucz Dallas, znany również jako iButton, jest kluczowym elementem w systemach kontroli dostępu i zabezpieczeń. Jego zastosowanie polega na bezpiecznej identyfikacji użytkowników, co czyni go niezwykle użytecznym w różnych aplikacjach, takich jak automatyczne otwieranie drzwi, autoryzacja dostępu do systemów komputerowych oraz zabezpieczenia w budynkach użyteczności publicznej. Klucz działa na zasadzie komunikacji z czytnikiem, co pozwala na szybką weryfikację tożsamości. Praktyczne zastosowania obejmują m.in. systemy kontroli dostępu w biurach, fabrykach czy instytucjach finansowych, gdzie bezpieczeństwo jest priorytetem. Dobre praktyki w branży wskazują na konieczność używania unikalnych identyfikatorów, co znacznie podnosi poziom bezpieczeństwa. Warto również zwrócić uwagę na standardy, takie jak ISO/IEC 27001, które dotyczą zarządzania bezpieczeństwem informacji, a systemy oparte na kluczach Dallas mogą wspierać implementację tych standardów poprzez efektywne zarządzanie dostępem i identyfikacją użytkowników.

Pytanie 14

Sieć komputerowa obejmująca obszar miasta to sieć

A. LAN
B. WAN
C. PAN
D. MAN
Odpowiedź 'MAN' (Metropolitan Area Network) jest poprawna, ponieważ odnosi się do sieci komputerowej o zasięgu miejskim, która łączy różne lokalizacje w obrębie jednego miasta lub aglomeracji. Sieci MAN są zazwyczaj używane do połączeń między biurami, uczelniami, a także dostawcami usług internetowych w danym regionie, co pozwala na efektywną wymianę danych. W praktyce, sieci te mogą wykorzystywać różnorodne technologie, takie jak Ethernet, Wi-Fi czy światłowody. Przykładem zastosowania sieci MAN może być system komunikacji miejskiej, który łączy różne punkty obsługi pasażerów oraz sieci zarządzania ruchem. W branży telekomunikacyjnej, MAN stanowi istotny element architektury sieci, umożliwiając zbudowanie infrastruktury, która wspiera usługi szerokopasmowe i wideo, zapewniając jednocześnie odpowiednią przepustowość i niskie opóźnienia. Zgodnie z dobrymi praktykami, projektowanie sieci MAN powinno uwzględniać aspekty skalowalności i niezawodności, co jest kluczowe dla zapewnienia ciągłości usług.

Pytanie 15

Aby zmierzyć rezystancję rezystora za pomocą metody technicznej, należy użyć

A. dwóch watomierzy
B. dwóch woltomierzy
C. woltomierza i amperomierza
D. częstotliwościomierza
Aby zmierzyć rezystancję rezystora metodą techniczną, najlepszym rozwiązaniem jest użycie woltomierza i amperomierza. Ta metoda polega na pomiarze spadku napięcia na rezystorze oraz prądu płynącego przez ten rezystor. Zgodnie z prawem Ohma, rezystancję (R) można obliczyć za pomocą równania R = U/I, gdzie U to napięcie mierzone w woltach, a I to prąd mierzony w amperach. Taki pomiar jest praktyczny w laboratoriach, gdzie precyzyjne wyniki są kluczowe. Warto również zauważyć, że stosowanie tej metody wymaga dobrej znajomości obsługi multimetru oraz umiejętności interpretacji wyników, co jest standardem w pracy z układami elektronicznymi. Woltomierze oraz amperomierze są powszechnie wykorzystywane w diagnostyce i konserwacji urządzeń elektrycznych, a ich zastosowanie w pomiarach rezystancji pozwala na uzyskanie dokładnych danych o stanie komponentów. W praktyce, pomiar rezystancji w ten sposób jest nie tylko dokładny, ale również umożliwia identyfikację problemów w układzie, co jest istotne w inżynierii elektronicznej.

Pytanie 16

Podczas pomiaru poziomu sygnału telewizji DVB-T w gnieździe abonenckim zbiorczej instalacji antenowej uzyskano wartość 26 dB µV. Zmierzony sygnał

A. umożliwia prawidłowy odbiór
B. przekracza dopuszczalną wartość maksymalną
C. wymaga zastosowania wzmacniacza w instalacji
D. wymaga zastosowania filtra zakłóceń w instalacji
Wartość 26 dB µV, uzyskana podczas pomiaru sygnału DVB-T, nie wskazuje na jego przekroczenie, co sugerowane jest w niektórych odpowiedziach. W rzeczywistości, przekroczenie wartości maksymalnej sygnału telewizyjnego oznacza, że jego poziom może prowadzić do zniekształceń lub tzw. przesterowania, co jest zjawiskiem zupełnie innym. Istotne jest, aby zrozumieć, że w kontekście telewizji DVB-T, odbiorniki są zaprojektowane tak, aby radzić sobie z pewnym zakresem poziomów sygnału, a nie każdy sygnał o niskim poziomie jest równoznaczny z jego złym odbiorem. Zbyt niskie sygnały mogą prowadzić do problemów z jakością odbioru, ale nie można ich mylić z sygnałem przekraczającym wartości maksymalne. Twierdzenie, że sygnał wymaga filtra zakłóceń, również jest błędne, ponieważ filtr zakłóceń stosuje się, gdy sygnał jest zanieczyszczony innymi częstotliwościami. W przypadku zbyt niskiego poziomu sygnału, zamiast zakłóceń, mamy do czynienia z problemem intensywności sygnału, który nie umożliwia prawidłowego odbioru. Kluczowe jest, aby zrozumieć, że każde urządzenie w instalacji antenowej, w tym wzmacniacze, powinno być stosowane zgodnie z wymaganiami telewizji cyfrowej, aby zapewnić optymalną jakość sygnału i uniknąć nieporozumień dotyczących sygnałów o niewystarczającej mocy.

Pytanie 17

Podczas konserwacji systemu sygnalizacji włamania i napadu nie jest konieczne sprawdzenie

A. poziomu naładowania akumulatora
B. działania obwodów sabotażowych
C. działania czujek alarmowych
D. wysokości zamontowania manipulatora
Wysokość zamontowania manipulatora nie jest elementem, który wpływa na funkcjonalność systemu sygnalizacji włamania i napadu, co czyni tę odpowiedź prawidłową. W ramach konserwacji systemu kluczowe jest sprawdzenie działania obwodów sabotażowych, poziomu naładowania akumulatora oraz czujek alarmowych. Obwody sabotażowe mają na celu zabezpieczenie urządzeń przed próbami ich usunięcia lub zniszczenia, co jest kluczowe dla utrzymania integralności systemu. Poziom naładowania akumulatora jest istotny, aby zapewnić ciągłość zasilania w przypadku awarii energetycznej, a czujki alarmowe są pierwszym ogniwem detekcji intruza. Dlatego w praktyce, podejście do konserwacji powinno uwzględniać te elementy w celu zapewnienia sprawności systemu. Zgodnie z normami branżowymi, regularne przeglądy tych komponentów powinny być integralną częścią procedur konserwacyjnych, co zapewnia bezpieczeństwo użytkowników oraz ich mienia.

Pytanie 18

Jaką rolę pełni heterodyna w odbiorniku radiowym?

A. generatora lokalnego
B. demodulatora
C. wzmacniacza wstępnego
D. mieszacza
Heterodyna w odbiorniku radiowym rzeczywiście pełni funkcję generatora lokalnego, co jest kluczowe w procesie odbioru sygnałów radiowych. Generator lokalny generuje sygnał o stałej częstotliwości, który następnie jest mieszany z sygnałem odbieranym z anteny. Proces ten, znany jako mieszanie, pozwala na przesunięcie częstotliwości sygnału do zakresu częstotliwości pośredniej (IF). Dzięki temu, sygnał staje się bardziej dostępny dla dalszego przetwarzania, w tym demodulacji, co jest niezbędne do uzyskania pierwotnej informacji. W praktyce, zastosowanie heterodyny jako generatora lokalnego jest standardową praktyką w radioodbiornikach, co czyni je bardziej efektywnymi w odbiorze i przetwarzaniu sygnałów. Heterodyna jest szczególnie ważna w systemach komunikacji radiowej, gdzie jakość odbioru sygnału bezpośrednio wpływa na jakość transmisji. Dobrze zaprojektowane układy heterodynowe przyczyniają się do minimalizacji szumów i zakłóceń, co jest kluczowe w nowoczesnych zastosowaniach radiowych.

Pytanie 19

Na podstawie danych technicznych zawartych w tabeli określ rodzaj czujki opisanej przez te parametry.

Typ czujkiNC
Maksymalne napięcie przełączalne kontaktronu20 V
Maksymalny prąd przełączalny20 mA
Oporność przejściowa150 mΩ
Minimalna liczba przełączeń przy obciążeniu 20 V, 20 mA360 000
Materiał stykowyRu (Ruten)
Odległość zamknięcia styków kontaktronu18 mm
Odległość otwarcia styków kontaktronu28 mm
Masa10 g
A. Magnetyczna.
B. Ruchu.
C. Wibracyjna.
D. Akustyczna.
Czujka magnetyczna, która została opisana w tabeli, charakteryzuje się specyfiką, która czyni ją idealnym rozwiązaniem dla wielu zastosowań przemysłowych i zabezpieczeń. Niewielkie rozmiary oraz masa czujki są istotnymi czynnikami, które wpływają na jej wszechstronność. Czujki magnetyczne są często wykorzystywane w systemach alarmowych, do detekcji otwarcia drzwi i okien, a także w różnych aplikacjach automatyki budynkowej. Ich wysoka trwałość, wynikająca z minimalnej liczby przełączeń przy obciążeniu 20 V, 20 mA, wskazuje na mocne parametry elektryczne, które są niezbędne w środowiskach, gdzie niezawodność jest kluczowa. Materiał stykowy, jakim jest Ruten (Ru), zapewnia doskonałą przewodność oraz odporność na korozję, co jest typowe dla wysokiej jakości czujników. Zastosowanie czujników magnetycznych zgodnie z dobrymi praktykami i normami branżowymi, takimi jak standardy IEC, zapewnia ich efektywność i długowieczność w trudnych warunkach operacyjnych.

Pytanie 20

W przypadku wzmacniaczy prądu stałego pomiędzy kolejnymi stopniami nie wykorzystuje się sprzężenia pojemnościowego, ponieważ kondensator

A. tworzy przerwę dla sygnału o wysokiej częstotliwości
B. nie przekazuje składowej stałej sygnału
C. tak jak dioda, przewodzi sygnał w jednym kierunku
D. jest zworą dla sygnału stałego
Wzmacniacze prądu stałego, które są projektowane do pracy z sygnałami stałymi, nie stosują sprzężenia pojemnościowego, ponieważ kondensator, będący elementem pasywnym, nie przenosi składowej stałej sygnału. Sprzężenie pojemnościowe jest wykorzystywane głównie w wzmacniaczach prądu przemiennego, gdzie kondensator działa jako filtr, eliminując składowe stałe, umożliwiając przekazywanie składowych zmiennych sygnału. W praktyce, w układach wzmacniaczy prądu stałego, takie podejście byłoby niewłaściwe, ponieważ nasz sygnał mógłby zostać zniekształcony lub całkowicie zatrzymany. W związku z tym, w projektowaniu wzmacniaczy należy stosować inne metody, takie jak sprzężenie rezystancyjne lub innego rodzaju układy, które pozwalają na stabilizację sygnałów stałych bez wpływu kondensatorów. Przykładem mogą być wzmacniacze operacyjne w konfiguracjach, które zapewniają szeroki zakres DC, gdzie komponenty aktywne są kluczowe dla działania układu.

Pytanie 21

W trakcie regularnych przeglądów nie przeprowadza się

A. instalacji nowych urządzeń
B. analizy funkcjonowania urządzeń
C. pomiarów weryfikacyjnych
D. oceny stanu technicznego
Instalacja nowych urządzeń nie jest częścią zakresu działań związanych z okresowymi przeglądami. Okresowe przeglądy są kluczowym procesem w zarządzaniu i konserwacji urządzeń technicznych, mającym na celu zapewnienie ich prawidłowego funkcjonowania oraz bezpieczeństwa użytkowników. W ich ramach dokonuje się analizy działania istniejących urządzeń, które obejmuje ocenę efektywności ich pracy oraz identyfikację potencjalnych problemów mogących wpłynąć na ich funkcjonowanie. Przykładem może być regularne sprawdzanie i kalibracja czujników w systemach automatyki przemysłowej, co pozwala na utrzymanie ich w optymalnym stanie. Niezwykle istotnym aspektem przeglądów jest także ocena stanu technicznego, która umożliwia wczesne wykrywanie uszkodzeń lub zużycia komponentów. Pomiary sprawdzające, takie jak testy wydajności czy pomiary napięcia, są kluczowe w zapewnieniu, że urządzenia działają zgodnie z wymaganiami norm i standardów bezpieczeństwa. W związku z tym, instalacja nowych urządzeń powinna być planowana jako osobny proces, związany z modernizacją lub rozbudową infrastruktury, a nie jako część rutynowych przeglądów.

Pytanie 22

Według standardu przesyłania sygnału telewizyjnego w Polsce (64QAM, FEC 3/4), minimalna wartość sygnału na wyjściu z gniazda antenowego powinna wynosić

A. 42 dBμV
B. 48 dBμV
C. 26 dBμV
D. 30 dBμV
Wybór jakiegokolwiek poziomu sygnału innego niż 48 dBμV może prowadzić do nieprawidłowego odbioru sygnału telewizyjnego, co jest szczególnie istotne w systemie opartym na 64QAM i FEC 3/4. Poziomy takie jak 30 dBμV, 42 dBμV czy 26 dBμV są niewystarczające, aby zapewnić stabilny i niezawodny odbiór. Poziom 30 dBμV, na przykład, jest zbyt niski, aby pokonać typowe straty sygnału związane z kablami antenowymi oraz zakłóceniami zewnętrznymi. W praktyce może to prowadzić do błędów w dekodowaniu, co skutkuje przerywanym lub całkowicie utraconym sygnałem. 42 dBμV, chociaż teoretycznie może wydawać się akceptowalnym poziomem, nie uwzględnia należycie wszelkich dodatkowych strat, które mogą wystąpić w rzeczywistych warunkach. Ponadto, poziom 26 dBμV jest zdecydowanie poniżej wymaganych wartości, co oznacza, że sygnał będzie zbyt słaby do jakiejkolwiek sensownej analizy i dekodowania, co prowadzi do złej jakości obrazu oraz dźwięku. Zrozumienie tych wartości jest kluczowe dla projektowania efektywnych systemów telewizyjnych. Zastosowanie niewłaściwych poziomów sygnału może wynikać z niepełnej wiedzy na temat norm oraz specyfikacji technicznych, co prowadzi do błędnych decyzji podczas planowania i budowy instalacji. Dlatego tak ważne jest, aby zawsze przestrzegać zalecanych norm i standardów, aby uniknąć problemów z jakością sygnału.

Pytanie 23

Która z czynności związanych z konserwacją systemu alarmowego nie wymaga przestawienia centrali na tryb serwisowy?

A. Korekta bieżącego czasu
B. Modyfikacja czasu na wejście
C. Zamiana akumulatora
D. Wymiana czujnika PIR
Korekta bieżącego czasu w systemie alarmowym to ważna czynność, która nie wpływa na jego funkcjonalność ani bezpieczeństwo. Wprowadzenie centrali w tryb serwisowy jest wymagane w sytuacjach, które mogą wpływać na działanie systemu oraz jego zdolność do skutecznego reagowania na zagrożenia. Takie operacje jak wymiana akumulatora czy czujki PIR wiążą się z ryzykiem zakłócenia działania systemu, co może prowadzić do błędów w monitorowaniu i powiadamianiu o alarmach. Zmiana czasu na wejście, podobnie jak korekta bieżącego czasu, jest operacją czysto administracyjną, jednak istnieją różnice w ich wpływie na system. Korekta bieżącego czasu jest zazwyczaj realizowana podczas rutynowych przeglądów, co podkreśla znaczenie regularnej konserwacji. W dobrych praktykach branżowych wskazuje się, że administratorzy systemów alarmowych powinni regularnie monitorować i aktualizować czas w systemach, aby zapewnić ich adekwatne działanie. Ponadto, właściwe zarządzanie czasem jest kluczowe dla precyzyjnego rejestrowania zdarzeń, co jest istotne z perspektywy audytów bezpieczeństwa.

Pytanie 24

W skład urządzenia pomiarowego w automatycznym systemie regulacji wchodzi

A. przetwornik z członem wykonawczym
B. przetwornik oraz regulator
C. wyłącznie czujnik
D. czujnik oraz przetwornik
Urządzenie pomiarowe w automatyce to kluczowa sprawa! Składa się z czujnika i przetwornika. Czujnik to ten, który mierzy różne wartości, jak temperatura czy ciśnienie, i przekształca je na sygnał elektryczny. Na przykład, termopara to fajny czujnik, który właśnie tak działa – mierzy temperaturę i daje napięcie, które jest proporcjonalne do tej temperatury. Przetwornik z kolei zmienia ten sygnał elektryczny tak, żeby regulator mógł go zrozumieć. W praktyce to oznacza, że sygnał analogowy, jak na przykład napięcie z czujnika, zamienia się w sygnał cyfrowy, który komputery mogą analizować. Zintegrowany układ czujnika i przetwornika daje super możliwości, jeśli chodzi o monitorowanie i kontrolowanie różnych procesów, co jest mega istotne w wielu branżach, na przykład w przemyśle chemicznym czy automatyce budynkowej. Fajnie jest wiedzieć, że odpowiednie dobieranie czujników i przetworników w automatyzacji zapewnia precyzję i niezawodność systemów regulacji.

Pytanie 25

Zachowanie odpowiedniej polaryzacji w trakcie montażu elementów na płytce drukowanej wymaga element elektroniczny pokazany na rysunku

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Poprawna odpowiedź to D, ponieważ dioda jest elementem elektronicznym, który wymaga zachowania odpowiedniej polaryzacji podczas montażu. Dioda ma dwa terminale: anodę i katodę. Anoda to terminal, przez który prąd wpływa do diody, a katoda to terminal, przez który prąd wypływa. Właściwe podłączenie tych terminali jest kluczowe dla prawidłowego działania układu, ponieważ odwrotne podłączenie spowoduje, że dioda nie przewodzi prądu, co może prowadzić do awarii całego układu. W praktyce, w przypadku układów LED, niewłaściwe podłączenie diody może skutkować jej uszkodzeniem. Zgodnie z najlepszymi praktykami montażu, zawsze należy oznaczać terminale diod, aby uniknąć pomyłek. Zachowanie odpowiedniej polaryzacji jest również istotne w kontekście zgodności z normami przemysłowymi, które definiują zasady projektowania i montażu elektroniki, co przekłada się na niezawodność produktów. Na przykład, w elektronice użytkowej, takich jak telewizory czy komputery, błędne podłączenie diod może prowadzić do znacznych kosztów naprawy i obniżenia jakości produktu.

Pytanie 26

Jakie jest zastosowanie funkcji NTP w urządzeniach elektronicznych, które są połączone z Internetem?

A. Zmiany oprogramowania
B. Synchronizacji bieżącego czasu
C. Pobrania adresu IP z serwera DHCP
D. Weryfikacji tożsamości użytkownika
Funkcja NTP (Network Time Protocol) jest kluczowym protokołem w systemach komputerowych, który służy do synchronizacji czasu w urządzeniach podłączonych do sieci. Dzięki NTP, urządzenia mogą uzyskiwać dokładny czas z serwerów NTP, które są często zsynchronizowane z atomowymi zegarami, co zapewnia wysoką precyzję. Synchronizacja czasu jest fundamentalna w wielu aplikacjach, takich jak systemy bankowe, transakcje online, czy rejestracje zdarzeń w systemach monitorowania. Przykładowo, systemy bezpieczeństwa i audytów wymagają precyzyjnego znacznika czasu do prawidłowego funkcjonowania, aby móc jednoznacznie określić moment zdarzenia. NTP jest również zgodny z normami IETF, co czyni go standardem w dziedzinie synchronizacji czasu w sieciach komputerowych. Niezgodność czasowa może prowadzić do poważnych problemów, takich jak utrata danych czy błędy w komunikacji, co podkreśla znaczenie NTP w codziennym funkcjonowaniu złożonych systemów informatycznych.

Pytanie 27

Jaki typ generatora powinno się wykorzystać w bloku podstawy czasu oscyloskopu?

A. Generator impulsowy
B. Generator piłokształtny
C. Generator prostokątny
D. Generator sinusoidalny
Zastosowanie niewłaściwych typów generatorów w bloku podstawy czasu oscyloskopu może prowadzić do nieprawidłowych wyników pomiarów oraz trudności w interpretacji sygnałów. Generator impulsowy, który generuje krótkie impulsy o dużej amplitudzie, może wprowadzać zniekształcenia, ponieważ nie dostarcza informacji o czasie trwania sygnału. Użycie generatora prostokątnego, mimo iż pozwala na analizę sygnałów cyfrowych, nie spełnia wymagań dotyczących linearności zmian w czasie, co jest kluczowe w kontekście analizy sygnałów analogowych. Z kolei generator sinusoidalny generuje sygnały o stałej częstotliwości i amplitudzie, co może być niewystarczające do adekwatnego modelowania bardziej złożonych sygnałów, które występują w praktycznych zastosowaniach inżynierskich. Często błędne jest przekonanie, że każdy z tych generatorów może być stosowany wymiennie, co prowadzi do niepoprawnych wniosków i rezultatów analiz. W analizach inżynieryjnych niezwykle istotne jest stosowanie odpowiednich kształtów sygnałów, co znajduje potwierdzenie w praktykach i standardach branżowych, które wymagają precyzyjnych i powtarzalnych pomiarów. Właściwy dobór generatora, a w tym przypadku generatora piłokształtnego, odgrywa kluczową rolę w zapewnieniu dokładności i wiarygodności pomiarów, co jest niezbędne w każdej laboratorium inżynieryjnym.

Pytanie 28

Jaki parametr fali nośnej zmienia się w trakcie modulacji AM sygnałem o częstotliwości 1 kHz?

A. Częstotliwość
B. Częstotliwość kołowa
C. Intensywność
D. Kąt fazowy
Modulacja amplitudy, czyli AM, to nic innego jak zmiana wysokości fali nośnej w zależności od sygnału, który chcemy przesłać. Kiedy mamy sygnał audio z częstotliwością 1 kHz, to amplituda fali nośnej dostosowuje się tak, aby pokazać zmiany w dźwięku, co ułatwia przesyłanie informacji. Na przykład, jeśli głośność sygnału audio się zmienia, to amplituda fali nośnej także zmienia się, co prowadzi do różnych poziomów sygnału radiowego. AM to jedna z najstarszych metod, którą stosujemy w radiu i pomaga nam efektywnie przesyłać dźwięk na długie odległości przy w miarę dobrej jakości. Warto pamiętać, że podczas modulacji AM kluczowe są zmiany amplitudy, które przenoszą informacje o sygnale audio, co jest mega ważne w radiach i komunikacji.

Pytanie 29

W trakcie serwisowania instalacji antenowej zauważono błąd popełniony przez instalatora. Zamiast właściwego przewodu o impedancji falowej 75 Ω, podłączono przewód o impedancji falowej 300 Ω. W efekcie tego błędu sygnał, który docierał do odbiornika,

A. był równy 0
B. nie uległ zmianie
C. był stłumiony
D. był wzmocniony
Przyjmowanie, że sygnał był wzmocniony, jest błędne. Wzmacnianie sygnału może nastąpić jedynie w przypadku zastosowania odpowiednich wzmacniaczy sygnału, a nie w wyniku stosowania przewodów o nieodpowiedniej impedancji. Ponadto stwierdzenie, że sygnał był równy 0, ignoruje aspekt odbicia sygnału. W rzeczywistości, przy podłączeniu przewodu o wyższej impedancji, część sygnału zostanie odbita, ale nie oznacza to, że sygnał całkowicie zniknie. Bardziej trafne jest stwierdzenie, że sygnał będzie stłumiony, ale wciąż obecny na wyjściu. Twierdzenie, że sygnał nie uległ zmianie, jest również mylne, ponieważ każda zmiana w impedancji wpływa na charakterystykę transmisji. W praktyce, nawet niewielka różnica w impedancji może prowadzić do znacznych strat sygnału, co potwierdzają doświadczenia w dziedzinie telekomunikacji. Wiele systemów komunikacyjnych opiera się na określonych wartościach impedancji, a ich nieprzestrzeganie może prowadzić do błędów w transmisji danych, zniekształceń sygnału oraz ogólnego obniżenia jakości odbioru. Dlatego kluczowe jest stosowanie komponentów o odpowiednich parametrach, aby zapewnić niezawodność i jakość sygnału.

Pytanie 30

Kto głównie korzysta z instrukcji serwisowych?

A. osoby sprzedające sprzęt
B. osoby użytkujące sprzęt
C. osoby dostarczające sprzęt do klienta
D. osoby naprawiające uszkodzony sprzęt
Instrukcje serwisowe są kluczowym narzędziem dla osób zajmujących się naprawą uszkodzonego sprzętu. Zawierają one szczegółowe informacje dotyczące diagnozowania problemów, kroków do ich rozwiązania oraz specyfikacji technicznych, które są niezbędne do prawidłowej naprawy. Na przykład, w przypadku awarii sprzętu elektronicznego, technik korzysta z instrukcji serwisowych, aby zlokalizować usterkę, zrozumieć, jakie części należy wymienić oraz jakie narzędzia są potrzebne do przeprowadzenia naprawy. W branży zamiennej istnieje szereg standardów, jak ISO 9001, które promują dokumentację procedur serwisowych. Dobre praktyki w zakresie serwisowania sprzętu obejmują także regularne aktualizowanie instrukcji zgodnie z najnowszymi rozwiązaniami technicznymi oraz zapewnienie ich dostępności dla wszystkich techników. Posiadanie dobrze opracowanych instrukcji serwisowych wpływa na efektywność pracy, redukuje błędy oraz przyspiesza czas reakcji na awarie, co jest kluczowe w zachowaniu wysokiej jakości usług serwisowych.

Pytanie 31

Jakie narzędzie należy zastosować do przykręcenia kabli w czujniku dymu i ciepła?

A. szczypce boczne
B. klucz nasadowy
C. wkrętak
D. przecinak
Wybór wkrętaka jako narzędzia do przykręcania przewodów w czujce dymu i ciepła jest słuszny, ponieważ wkrętak jest specjalistycznym narzędziem, które zostało zaprojektowane do pracy z wkrętami i śrubami. W przypadku instalacji czujników dymu i ciepła, które są kluczowe dla bezpieczeństwa pożarowego, odpowiednie mocowanie przewodów jest niezbędne. Wkrętak pozwala na precyzyjne i pewne dokręcenie elementów, co eliminuje ryzyko luźnych połączeń, które mogłyby prowadzić do awarii urządzenia. Użycie wkrętaka zgodnie z zaleceniami producenta oraz normami branżowymi, takimi jak normy IEC 60335 dotyczące urządzeń elektrycznych, jest praktyką, która zapewnia bezpieczeństwo i niezawodność działania systemów alarmowych. Ponadto, wkrętaki są dostępne w różnych rozmiarach i typach (np. płaskie, krzyżakowe), co pozwala na ich zastosowanie w wielu różnych konfiguracjach instalacyjnych, co czyni je uniwersalnym narzędziem dla techników i instalatorów.

Pytanie 32

Zamontowanie na jednym końcu toru transmisyjnego źródła sygnału o stałej i znanej mocy oraz na przeciwnym końcu miernika mocy optycznej pozwala bezpośrednio ustalić

A. długość światłowodu
B. miejsce spawu lub zgięcia światłowodu
C. całkowite tłumienie toru optycznego
D. tłumienie złączy
Analizując błędne podejścia do pytania, warto zaznaczyć, że odpowiedzi dotyczące miejsc spawów lub zgięć włókna, długości światłowodu oraz tłumienia złączy są niepoprawne. Miejsca spawów lub zgięć włókna nie mogą być precyzyjnie określone jedynie poprzez pomiar mocy na końcu toru optycznego, ponieważ wymagają one bardziej zaawansowanych technik, takich jak testowanie OTDR (Optical Time Domain Reflectometry). Długość światłowodu jest natomiast parametrem, który można oszacować na podstawie specyfikacji kabla, lecz nie jest bezpośrednio mierzony przy użyciu względem pomiaru mocy. Tłumienie złączy to zjawisko, które również można ocenić w sposób pośredni, lecz nie jest możliwe do bezpośredniego zmierzenia w tym konkretnym układzie bez dodatkowych pomiarów i obliczeń. Typowe błędy myślowe w tym przypadku polegają na myleniu pomiarów i ich interpretacji. Użytkownicy często zakładają, że pomiar mocy daje pełny obraz stanu toru transmitującego, co jest nieprecyzyjne. W rzeczywistości wymagana jest bardziej kompleksowa analiza, aby zrozumieć i ocenić wydajność oraz jakość systemów optycznych.

Pytanie 33

Do jakiej klasy urządzeń energoelektronicznych należy przekształtnik zwany czoperem?

A. Pośrednich konwerterów prądu stałego
B. Bezpośrednich konwerterów częstotliwości
C. Pośrednich konwerterów częstotliwości
D. Bezpośrednich konwerterów prądu stałego
Pojęcie przekształtników energetycznych może być dość skomplikowane i zrozumienie tego wymaga znajomości wielu różnych typów przekształtników. Zwłaszcza ważne jest, by wiedzieć, czym się różnią przekształtniki bezpośrednie od pośrednich. Bezpośrednie przekszładniki prądu stałego, jak czoper, działają tak, że nie potrzebują żadnych pośrednich form, żeby zmieniać energię elektryczną. Natomiast pośrednie przekształtniki, typu przekształtniki częstotliwości, najpierw potrzebują zamienić prąd stały na zmienny, co wiąże się z większymi stratami energii i złożonością. Często myli się czopery z pośrednimi przekształtnikami lub przekształtnikami częstotliwości, co może prowadzić do złych decyzji w inżynierii. Niedokładne rozumienie zasad działania różnych przekształtników, ich zastosowań i ograniczeń, może wprowadzać w błąd i prowadzić do naprawdę nieodpowiednich wyborów projektowych.

Pytanie 34

Wykonano pomiary rezystancji Rab czujki ruchu typu NC połączonej w konfiguracji 2EOL/NC z rezystorami R1 = R2 = 1,1 kΩ zgodnie ze schematem. Na podstawie zamieszczonych w tabeli wyników pomiarów oraz schematu połączeń można stwierdzić, że

Stan
styków
naruszeniesabotażnaruszenie
i sabotaż
brak naruszenia
i sabotażu
Rab [kΩ]2,21,1
Ilustracja do pytania
A. czujka ruchu działa poprawnie.
B. uszkodzony jest wyłącznie styk TMP.
C. uszkodzony jest wyłącznie styk NC.
D. uszkodzone są styki NC i TMP.
Czujka ruchu działa poprawnie, co zostało potwierdzone pomiarami rezystancji R_ab wynoszącymi 1,1 kΩ w stanie braku naruszenia i sabotażu. Taka wartość odpowiada oczekiwanym wartościom dla sprawnych czujek tego typu, które powinny wykazywać stabilną rezystancję w czasie normalnej pracy. Dobrą praktyką w systemach zabezpieczeń jest regularne sprawdzanie rezystancji obwodów czujników, co pozwala na wczesne wykrywanie ewentualnych usterek. Na przykład, w instalacjach alarmowych, regularna konserwacja i testowanie czujników pozwala na zapewnienie ich niezawodności. Oprócz pomiarów rezystancji, warto również zwracać uwagę na inne parametry, takie jak czas reakcji czujnika czy jego zasięg działania. W przypadku czujek ruchu, zgodność z wartościami określonymi przez producenta jest kluczowa, ponieważ niewielkie odchylenia mogą wskazywać na problemy, które mogą zagrażać bezpieczeństwu. Dlatego też, w kontekście wymagań branżowych, zaleca się stosowanie odpowiednich protokołów testowania oraz dokumentowanie wyników, co przyczynia się do ogólnej poprawy efektywności systemów zabezpieczeń.

Pytanie 35

W trakcie profesjonalnej wymiany uszkodzonego układu scalonego SMD - kontrolera przetwornicy impulsowej w odbiorniku TV - powinno się zastosować

A. lutownicy gazowej
B. stacji na gorące powietrze
C. stacji lutowniczej grzałkowej
D. lutownicy transformatorowej
Stacja na gorące powietrze jest idealnym narzędziem do wymiany uszkodzonych układów scalonych SMD, szczególnie w przypadku komponentów, które są trudne do lutowania i wymagają precyzyjnego podgrzewania. Dzięki zastosowaniu gorącego powietrza można równomiernie podgrzać płytkę drukowaną, co minimalizuje ryzyko uszkodzenia sąsiednich elementów. Ta metoda zapewnia również łatwiejsze usunięcie uszkodzonego komponentu bez konieczności agresywnego manipulowania lutownicą, co mogłoby doprowadzić do uszkodzenia ścieżek czy padów na PCB. W praktyce, stacja na gorące powietrze jest często używana w serwisach elektroniki, gdzie wymiana SMD jest rutynowym zadaniem. Umożliwia to także stosowanie różnorodnych dysz, które można dostosować do konkretnego zadania, co dodatkowo zwiększa precyzję i efektywność. Ponadto, zgodnie z najlepszymi praktykami, podczas wymiany układów SMD z użyciem stacji na gorące powietrze, istotne jest monitorowanie temperatury oraz czasu podgrzewania, aby uniknąć przegrzania komponentów. W związku z tym, stacja na gorące powietrze jest preferowanym narzędziem w profesjonalnych zastosowaniach związanych z naprawą elektroniki.

Pytanie 36

Stabilność systemu automatycznej regulacji sprawia, że gdy układ zostaje wyprowadzony ze stanu równowagi,

A. sam wraca do tego stanu.
B. nie wraca do tego stanu, oscyluje.
C. wyłącza się automatycznie.
D. resetuje się.
Stabilność układu automatycznej regulacji jest kluczowym parametrem, zapewniającym, że po zakłóceniu układ powróci do stanu równowagi. Odpowiedź, że układ "sam powraca do tego stanu", odnosi się do właściwości układów stabilnych, w których reakcja na zakłócenie prowadzi do minimalizacji odchyleń od ustalonej wartości. Przykładem zastosowania tego zjawiska są systemy termostatyczne, w których temperatura pomieszczenia regulowana jest automatycznie, a po przywróceniu właściwych warunków, temperatura wraca do zadanej wartości. W praktyce oznacza to, że układy takie, jak regulatory PID (Proporcjonalno- całkująco- różniczkujące), są projektowane zgodnie z zasadami stabilności, co pozwala na efektywne zarządzanie różnorodnymi procesami przemysłowymi. W standardach, takich jak IEC 61508, podkreśla się znaczenie stabilności w kontekście bezpieczeństwa funkcjonalnego, co dodatkowo zwiększa wagę tego zagadnienia w inżynierii automatyki.

Pytanie 37

Na podstawie analizy instalacji telewizyjnej nie jest możliwe określenie

A. zniekształceń lustra czaszy anteny
B. uszkodzenia powłoki kabla
C. uszkodzeń elektroniki konwertera
D. korozji czaszy anteny
Odpowiedź wskazująca, że na podstawie oględzin instalacji telewizyjnej nie można określić uszkodzenia elektroniki konwertera jest poprawna, ponieważ konwerter jest elementem, który przetwarza sygnał z anteny na sygnał, który może być odbierany przez telewizor. Uszkodzenia elektroniki konwertera, takie jak awarie układów scalonych czy uszkodzenia spowodowane przepięciami, mogą nie być widoczne podczas wizualnej inspekcji. W praktyce, aby ocenić stan elektroniki konwertera, konieczne jest przeprowadzenie testów parametrów sygnału oraz diagnostyki elektronicznej. Obejmuje to m.in. użycie specjalistycznych narzędzi, jak mierniki sygnału, które pozwalają na sprawdzenie jakości sygnału oraz analizy parametrów pracy konwertera. Zgodnie z dobrymi praktykami, zaleca się również regularne przeglądy i konserwację instalacji, aby zminimalizować ryzyko awarii elementów elektronicznych.

Pytanie 38

W obwodowych systemach zabezpieczeń wykorzystuje się detektory

A. magnetyczne
B. zalania
C. gazów usypiających
D. dymu i ciepła
Czujki magnetyczne to naprawdę ważne elementy systemów ochrony obwodowej. Działają na zasadzie wykrywania zmian w polu magnetycznym, co super chroni różne miejsca przed włamaniami. Zazwyczaj montuje się je w drzwiach i oknach, gdzie sprawdzają, czy są zamknięte. Jak coś się otworzy, to czujki od razu dają sygnał do centrali, co pozwala na szybkie działanie w razie zagrożenia. Można je znaleźć w alarmach w domach czy biurach, a zgodność z normami, jak PN-EN 50131, zapewnia, że naprawdę dobrze spełniają swoją rolę. Fajnie też, że mogą współpracować z innymi systemami bezpieczeństwa, co zwiększa ich skuteczność. Jak się zmodernizuje starsze systemy o czujki magnetyczne, to można poprawić ich sprawność i dostosować do aktualnych potrzeb użytkowników.

Pytanie 39

Wzmacniacz mocy dysponuje wyjściami głośnikowymi o impedancji 8 Ω. Jaka konfiguracja połączenia dwóch głośników będzie właściwa dla tego wzmacniacza?

A. Głośnik 8 Ω i 4 Ω połączone szeregowo
B. Dwa głośniki 8 Ω połączone równolegle
C. Dwa głośniki 16 Ω połączone równolegle
D. Głośnik 4 Ω i 2 Ω połączone szeregowo
Rozważając inne połączenia, można zauważyć, że łączenie dwóch głośników 8 Ω równolegle skutkowałoby uzyskaniem impedancji 4 Ω, co jest zbyt niskie dla wzmacniacza zaprojektowanego do pracy z obciążeniem 8 Ω. Tego typu złe połączenie może prowadzić do przesterowania wzmacniacza i jego uszkodzenia, ponieważ wzmacniacz nie jest w stanie dostarczyć wystarczającej mocy przy takiej impedancji. Podobnie, połączenie głośników o impedancji 8 Ω i 4 Ω szeregowo daje całkowitą impedancję 12 Ω. Takie połączenie również jest nieoptymalne, ponieważ wzmacniacz może nie osiągnąć pełnej mocy, co prowadzi do niższej wydajności systemu audio. Z kolei połączenie głośników 4 Ω i 2 Ω szeregowo skutkuje całkowitą impedancją 6 Ω, co znów różni się od wymaganego 8 Ω. W systemach audio ważne jest, aby zrozumieć zasady dotyczące impedancji oraz prawidłowego łączenia głośników. Typowe błędy myślowe, które prowadzą do niepoprawnych wniosków, to brak znajomości wzorów na obliczanie impedancji w połączeniach równoległych i szeregowych, co może prowadzić do niewłaściwych decyzji w doborze komponentów audio.

Pytanie 40

Na wykresach pokazano czasowe przebiegi sygnałów logicznych zarejestrowanych na: wejściu zegarowym CLK, wejściu informacyjnym D oraz wyjściu Q przerzutnika typu D. Przerzutnik ten jest wyzwalany

Ilustracja do pytania
A. zboczem opadającym sygnału zegarowego.
B. poziomem niskim sygnału zegarowego.
C. poziomem wysokim sygnału zegarowego.
D. zboczem narastającym sygnału zegarowego.
Przerzutnik typu D to jeden z tych elementów, które są naprawdę istotne w cyfrowych układach. Jego działanie jest mocno związane z sygnałem zegarowym, a dokładniej z momentem, kiedy ten sygnał zmienia swoje stany. Jak to się zwykle mówi, przerzutnik D załącza się na zboczu narastającym sygnału CLK, czyli w momencie, gdy sygnał przechodzi z niskiego poziomu na wysoki. To daje synchronizację operacji w całym systemie, a to jest kluczowe, zwłaszcza przy rejestracji danych, licznikach czy w systemach maszyn stanowych. Po prostu, przerzutnik D może zapisywać informacje dokładnie wtedy, kiedy sygnał zegarowy osiąga wysoki poziom. Jeśli jest częścią większego systemu, jak np. układ przesuwający, to ważne, żeby wszystko działało w idealnym synchronie z tym zegarem, żeby bity przesuwały się bez problemu. Ogólnie, użycie przerzutników D do synchronizacji sygnałów oraz w tworzeniu rejestrów i liczników to norma w nowoczesnych projektach elektronicznych, a dobrze jest wiedzieć, jak to wszystko działa.