Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 21 lutego 2026 21:43
  • Data zakończenia: 21 lutego 2026 21:55

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie diagnozowania awarii sprzętu RTV zasilanego prądem, należy korzystać z narzędzi

A. charakteryzujących się wysoką odpornością na uszkodzenia mechaniczne
B. wykazujących odporność na wysokie temperatury
C. posiadających adekwatną izolację dla napięcia
D. stworzonych z materiałów ze stali chromoniklowej
Odpowiednia izolacja napięciowa narzędzi używanych podczas diagnostyki sprzętu RTV pod napięciem jest kluczowa dla zapewnienia bezpieczeństwa technika oraz dla właściwego przeprowadzania prób i pomiarów. Narzędzia te powinny posiadać odpowiednie certyfikaty, które potwierdzają ich zdolność do pracy przy określonym napięciu. Na przykład, przy pracy z urządzeniami o napięciu do 1000 V, narzędzia muszą posiadać izolację o napięciu co najmniej 1000 V. Stosowanie narzędzi izolowanych minimalizuje ryzyko porażenia prądem, co jest zgodne z zaleceniami norm międzynarodowych, takich jak IEC 60900, dotyczących narzędzi ręcznych do pracy pod napięciem. Ważne jest, aby technicy pamiętali o regularnym sprawdzaniu stanu izolacji narzędzi, ponieważ ich uszkodzenie, np. pęknięcia lub zużycie, może znacznie zwiększyć ryzyko wypadków. Przykładem mogą być izolowane śrubokręty, które pozwalają na bezpieczne dokonywanie napraw bez ryzyka kontaktu z elementami pod napięciem.

Pytanie 2

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Poprawia warunki funkcjonowania odbiornika.
B. Aktywuje filtr fal odbitych w odbiorniku.
C. Pogarsza warunki pracy odbiornika.
D. Modyfikuje zakres częstotliwości filtra w.cz.
Duże zachmurzenie ma negatywny wpływ na pracę odbiorników GPS, ponieważ sygnały satelitarne są osłabiane przez warstwy chmur oraz związane z nimi czynniki atmosferyczne. Gdy sygnał GPS przemieszcza się przez atmosferę, odbija się od cząsteczek wody w chmurach, co prowadzi do opóźnień i zniekształceń. Jak pokazują badania, w przypadku intensywnego zachmurzenia, zwłaszcza w chmurach deszczowych, jakość sygnału może ulec znacznemu pogorszeniu. Przykładem zastosowania tej wiedzy jest planowanie misji lotniczych lub morskich, gdzie precyzyjne wskazania GPS są kluczowe. Odbiorniki GPS mogą również korzystać z technik takich jak różnicowanie sygnału (DGPS), aby zwiększyć dokładność położenia pomimo zakłóceń spowodowanych atmosferą. W praktyce operatorzy powinni być świadomi, że w trudnych warunkach pogodowych, jak zachmurzenie, mogą wystąpić większe błędy w pomiarach, co powinno być uwzględnione w analizach ryzyka i podczas podejmowania decyzji operacyjnych. Ponadto, zgodnie z wytycznymi organizacji zajmujących się nawigacją satelitarną, istotne jest monitorowanie warunków atmosferycznych w celu optymalizacji pracy systemów GPS.

Pytanie 3

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest ciągły
B. badany obwód jest uszkodzony
C. w badanym obwodzie znajduje się złącze półprzewodnikowe
D. w badanym obwodzie znajduje się źródło prądowe
Wybór odpowiedzi, że badany obwód jest przerwany, jest podstawowym błędem w rozumieniu działania multimetru. W rzeczywistości, gdy multimetr nie wydaje dźwięku, wskazuje na przerwany obwód. Przerwa w obwodzie oznacza, że nie ma możliwości przepływu prądu, co jest sprzeczne z sygnałem dźwiękowym generowanym przez urządzenie. Twierdzenie, że badany obwód jest ciągły jest kluczowe dla analizy stanu instalacji elektrycznych. Kolejna koncepcja, którą należy zrozumieć, to fakt, że obecność źródła prądowego w obwodzie nie jest warunkiem koniecznym do wydania dźwięku przez multimetr, ponieważ urządzenie jedynie sprawdza ciągłość przewodów, a nie źródła zasilania. Ponadto, istnienie złącza półprzewodnikowego również nie wpływa na pomiar ciągłości, jako że multimetr w trybie testowania ciągłości zazwyczaj nie jest przystosowany do oceny złożonych parametrów półprzewodników. Dlatego ważne jest, aby unikać typowych błędów myślowych, takich jak mieszanie funkcji multimetru z innymi pomiarami, co prowadzi do błędnych interpretacji wyników. Zrozumienie podstaw działania urządzeń pomiarowych jest kluczowe w działalności związanej z elektrycznością, a także w przestrzeganiu standardów bezpieczeństwa przy pracy z instalacjami elektrycznymi.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie elementy urządzeń elektronicznych opisuje termin LCD?

A. Wyświetlaczy ciekłokrystalicznych
B. Barier podczerwieni
C. Sygnalizatorów akustycznych
D. Czujników zbliżeniowych
Wyświetlacze ciekłokrystaliczne, znane również jako LCD (ang. Liquid Crystal Display), to technologie wykorzystywane do wyświetlania informacji w urządzeniach elektronicznych, takich jak telewizory, monitory komputerowe, smartfony oraz wiele innych. LCDs działają na zasadzie modulacji światła przez ciekłe kryształy, co pozwala na uzyskanie wyraźnego obrazu przy stosunkowo niskim zużyciu energii. Przykładowo, w telewizorach LCD stosowane są podświetlenia LED, które w połączeniu z matrycą ciekłokrystaliczną tworzą obraz o wysokiej jakości. Zastosowanie LCD w codziennych urządzeniach elektronicznych uczyniło je standardem w branży, zwłaszcza w kontekście wysokiej rozdzielczości i efektywności energetycznej. Standardy takie jak ISO 9241 dotyczące ergonomii wyświetlaczy potwierdzają efektywność LCD w kontekście komfortu użytkowania. Ponadto, w ostatnich latach technologia LCD została znacznie rozwinięta, wprowadzając innowacje takie jak technologie IPS, które poprawiają kąty widzenia oraz odwzorowanie kolorów.

Pytanie 7

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
B. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
C. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
D. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
Opaska antyelektrostatyczna na rękę jest kluczowym elementem zabezpieczającym podczas pracy z delikatnymi komponentami elektronicznymi, szczególnie z układami scalonymi CMOS. Układy te są szczególnie wrażliwe na ładunki elektrostatyczne, które mogą powodować uszkodzenia, a nawet zniszczenie elementów. Opaska działa na zasadzie uziemienia ciała montera, co pozwala na rozproszenie nagromadzonych ładunków elektrostatycznych, eliminując ryzyko ich przekazania na wrażliwe komponenty. Przykładem praktycznego zastosowania opaski może być wymiana pamięci RAM czy procesora w komputerze stacjonarnym. W takich sytuacjach, nie tylko zapobiega się uszkodzeniu pojedynczych układów, ale także zwiększa się ogólną niezawodność urządzenia. Zgodnie z normami IPC (Institute for Interconnecting and Packaging Electronics), stosowanie opasek antyelektrostatycznych jest standardową procedurą w procesach montażu i serwisowania elektroniki, co dodatkowo podkreśla ich znaczenie w branży.

Pytanie 8

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. sinusoidalny
B. impulsowy
C. prostokątny
D. trójkątny
Odpowiedź 'sinusoidalny' jest prawidłowa, ponieważ przebieg sinusoidalny charakteryzuje się tym, że jego wartość szczytowa wynosi 1 V, co jest zgodne z ustawieniami generatora. Woltomierz AC wskazał 0,707 V, co odpowiada wartości skutecznej (RMS) dla sygnału sinusoidalnego. Wartość skuteczna sygnału sinusoidalnego można obliczyć jako wartość szczytowa podzieloną przez pierwiastek z dwóch, co potwierdza, że dla 1 V wartości szczytowej wartość skuteczna wynosi 1 V / √2 ≈ 0,707 V. Przebiegi sinusoidalne są powszechnie stosowane w zastosowaniach audio oraz w systemach zasilania AC. W inżynierii elektronicznej, zrozumienie charakterystyki sygnałów sinusoidalnych jest kluczowe dla projektowania układów oraz analizy ich działania zgodnie z normami IEC. Ponadto, w zastosowaniach praktycznych, takich jak telekomunikacja, sygnały sinusoidalny są wykorzystywane do modulacji, co wpływa na jakość przesyłanych informacji.

Pytanie 9

Aby połączyć segmenty sieci LAN za pomocą kabla Ethernet w jedną większą sieć, należy wykorzystać

A. router.
B. bramkę.
C. switch.
D. modem.
Wybór routera jako urządzenia do łączenia segmentów sieci LAN jest błędny, ponieważ routery pełnią inną rolę w architekturze sieci. Router jest odpowiedzialny za kierowanie pakietami danych między różnymi sieciami, a nie za zarządzanie komunikacją wewnątrz jednego segmentu. Działa on na trzeciej warstwie modelu OSI i wykorzystuje adresy IP do podejmowania decyzji dotyczących trasowania. Korzystanie z routera do łączenia urządzeń w sieci LAN wprowadza dodatkową złożoność i opóźnienia, które są niepotrzebne w takim kontekście. Modem z kolei jest urządzeniem stosowanym do łączenia lokalnej sieci z internetem, konwertując sygnały cyfrowe na analogowe i odwrotnie. Nie służy on do wewnętrznego zarządzania komunikacją pomiędzy urządzeniami w sieci LAN, co czyni go niewłaściwym wyborem w tym przypadku. Bramki, będące mostem między różnymi protokołami, również nie są odpowiednie do łączenia segmentów LAN, ponieważ ich podstawowym zadaniem jest konwersja protokołów. Tego rodzaju błędne podejścia wynikają często z pomylenia ról poszczególnych urządzeń sieciowych oraz braku zrozumienia, jak działają różne warstwy modelu OSI. Ważne jest, aby rozróżniać te urządzenia i ich funkcje, aby efektywnie zarządzać siecią i zapewnić odpowiednią wydajność oraz bezpieczeństwo.

Pytanie 10

Na podstawie rysunku określ na jakiej wysokości prowadzone będą przewody ułożone w strefie przypodłogowej.

Ilustracja do pytania
A. Od 0 do 30 cm nad podłogą.
B. Od 15 do 30 cm nad podłogą.
C. Od 30 do 45 cm nad podłogą.
D. Od 15 do 45 cm nad podłogą.
Wysokość od 15 do 45 cm nad podłogą to dobry wybór, bo jest zgodna z tym, co mówią najlepsze praktyki przy układaniu przewodów w strefie przypodłogowej. Taka wysokość nie tylko chroni przewody przed uszkodzeniami mechanicznymi, ale też zmniejsza ryzyko ich kontaktu z wilgocią, która często występuje blisko podłogi. Jak pokazują standardy budowlane, w tym norma PN-IEC 60364, podobne zalecenia są powszechne. Oprócz tego, umiejscowienie przewodów na tej wysokości ułatwia dostęp do nich w razie potrzeby naprawy czy konserwacji. To też jest lepsze dla estetyki wnętrza, bo można je łatwiej ukryć w meblach. Generalnie, zrozumienie i stosowanie się do tych zasad to kluczowa sprawa dla bezpieczeństwa i dobrego działania instalacji.

Pytanie 11

Na jaki zakres należy ustawić miernik napięcia, aby poprawnie zmierzyć z największą dokładnością napięcie akumulatora przedstawionego na rysunku?

Ilustracja do pytania
A. 20 V AC
B. 200 V DC
C. 20 V DC
D. 200 V AC
Odpowiedź 20 V DC to strzał w dziesiątkę, bo dokładnie pasuje do napięcia akumulatora, które ma 12V. Jak wybierasz zakres 20 V DC, to masz pewność, że pomiar będzie mega dokładny, bo ten zakres jest zbliżony do napięcia, które zmierzasz sprawdzić. Gdybyś ustawił na przykład 200 V DC, mogłoby być kiepsko, bo miernik straci na precyzji, a to przez mniejszą czułość w takim ustawieniu. W praktyce, ustawienie miernika w odpowiednim zakresie jest naprawdę ważne, żeby uzyskać rzetelne wyniki. Pamiętaj, że przy pomiarach napięcia stałego (DC) przy akumulatorach zawsze lepiej trzymać się zakresów DC, żeby uniknąć błędnych odczytów i nie narazić sprzętu na uszkodzenia. Wiedza, jak ustawiać odpowiednie zakresy, to kluczowa umiejętność w codziennym używaniu mierników i podstawowe zasady w branży.

Pytanie 12

Przyrząd przedstawiony na rysunku służy do przytrzymywania

Ilustracja do pytania
A. elementów elektronicznych podczas lutowania.
B. szkła powiększającego podczas lutowania.
C. stopu lutowniczego podczas lutowania.
D. płytek drukowanych podczas lutowania.
Przyrząd przedstawiony na zdjęciu, znany jako trzecia ręka, jest kluczowym narzędziem w procesie lutowania, szczególnie przy pracy z płytkami drukowanymi. Jego główną funkcją jest stabilne i precyzyjne utrzymanie płytek w odpowiedniej pozycji, co znacząco ułatwia lutowanie. Dzięki zastosowaniu tych narzędzi można uniknąć ruchów, które mogą prowadzić do uszkodzeń lutów lub samych komponentów. Użycie trzeciej ręki zwiększa efektywność pracy, gdyż operator ma obie ręce wolne, co pozwala na dokładniejsze manewrowanie lutownicą. W praktyce, przy lutowaniu skomplikowanych układów elektronicznych, takich jak te stosowane w projektach DIY lub prototypach, przyrząd ten jest nieoceniony. Dobrą praktyką jest także stosowanie podkładek lub mat antypoślizgowych, aby jeszcze bardziej zabezpieczyć elementy przed przypadkowym przesunięciem.

Pytanie 13

Które z podanych elementów układów elektrycznych mogą być sprzęgnięte magnetycznie?

A. Diody
B. Tranzystory
C. Rezystory
D. Cewki
Cewki są elementami obwodów elektrycznych, które mogą być sprzężone magnetycznie dzięki zjawisku indukcji elektromagnetycznej. Gdy przez cewkę przepływa prąd, wytwarza ona pole magnetyczne. Jeśli w pobliżu znajduje się druga cewka, to zmiana prądu w pierwszej cewce może indukować prąd w drugiej. To zjawisko jest szeroko wykorzystywane w transformatorach, które są kluczowymi urządzeniami w systemach zasilania. Transformator składa się z dwóch cewek na wspólnym rdzeniu magnetycznym i umożliwia zmianę napięcia prądu przemiennego. Ponadto, sprzężenie magnetyczne jest podstawą działania silników elektrycznych, które przekształcają energię elektryczną w mechaniczną, a także w indukcyjnych elementach elektronicznych wykorzystywanych w różnych aplikacjach, takich jak filtry czy oscylatory. Dobre praktyki w projektowaniu obwodów elektrycznych uwzględniają odpowiednią separację i proporcje cewek, aby zminimalizować straty energii oraz zapewnić optymalne działanie systemu.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W którą końcówkę powinien być wyposażony wkrętak służący do dokręcenia wkrętu przedstawionego na rysunku?

Ilustracja do pytania
A. Torx
B. Pozidriv
C. Philips
D. Tri-Wing
Końcówka Torx jest odpowiednia dla wkrętów z charakterystycznym sześciopromiennym gwintem wewnętrznym, co czyni ją idealnym wyborem w tym przypadku. Wkręty Torx są powszechnie używane w przemyśle motoryzacyjnym, elektronicznym oraz w meblarstwie, ponieważ oferują lepsze przenoszenie momentu obrotowego i zmniejszają ryzyko poślizgu narzędzia. Stosowanie końcówek Torx w porównaniu do innych rodzajów, takich jak Philips czy Pozidriv, pozwala na bardziej precyzyjne dokręcanie, co jest kluczowe w zastosowaniach wymagających dużej siły. Warto również zauważyć, że standardy ISO i DIN określają wymiary i właściwości końcówek Torx, co zapewnia ich szeroką dostępność oraz zgodność w różnych zastosowaniach. Ponadto, wiele narzędzi ręcznych i elektrycznych jest zaprojektowanych z myślą o końcówkach Torx, co czyni je wszechstronnym narzędziem w każdym warsztacie.

Pytanie 16

Zakres regularnego kontrolowania oraz testowania zasilających instalacji urządzeń elektronicznych nie obejmuje

A. badania ciągłości przewodów ochronnych
B. pomiaru poboru mocy przez zasilane odbiorniki
C. pomiaru rezystancji przewodów
D. próby działania urządzeń różnicowoprądowych
Wszystkie pozostałe opcje dotyczące zakresu okresowego sprawdzania instalacji zasilającej są istotne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń. Badanie ciągłości przewodów ochronnych ma kluczowe znaczenie, ponieważ zapewnia, że wszelkie potencjalne różnice w napięciach są skutecznie eliminowane, co zapobiega porażeniom prądem. Rezystancja przewodów, z kolei, jest istotnym parametrem, który wpływa na bezpieczeństwo i stabilność systemu elektrycznego. Jej pomiar w kontekście norm PN-EN 61557 pozwala na ocenę, czy przewody ochronne działają prawidłowo. Próba działania urządzeń różnicowoprądowych również ma ogromne znaczenie w kontekście zapobiegania wypadkom. Te urządzenia, zaprojektowane w celu ochrony przed porażeniem prądem, muszą być regularnie testowane, aby upewnić się, że działają poprawnie w sytuacjach awaryjnych. Konsekwentne pomijanie tych badań może prowadzić do niebezpiecznych sytuacji oraz zagrożeń dla zdrowia użytkowników. Dlatego tak ważne jest, aby zrozumieć, że każdy z tych elementów jest integralną częścią procesu zapewnienia bezpieczeństwa w instalacjach elektrycznych, a nie tylko luksusowym dodatkiem do oceny wydajności energetycznej. Mylne jest myślenie, że pomiar poboru mocy jest kluczowym elementem okresowych sprawdzeń, ponieważ jego celem jest bardziej analiza efektywności niż bezpieczeństwa instalacji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22
A. KUMAX = 2,4 V/V
B. KUMAX = 12 V/V
C. KUMAX = 24 V/V
D. KUMAX = 260 V/V
Odpowiedź KUMAX = 12 V/V jest poprawna, ponieważ wzmocnienie napięciowe definiuje się jako stosunek napięcia wyjściowego do napięcia wejściowego. W tym przypadku, dla częstotliwości środkowej 260 Hz, napięcie wyjściowe wynosi 2,4 V, a napięcie wejściowe to 200 mV (0,2 V). Obliczając wzmocnienie, uzyskujemy wartość 12 V/V, co oznacza, że napięcie wyjściowe jest 12 razy większe od napięcia wejściowego. W praktyce, takie wzmocnienie jest istotne w układach wzmacniaczy, gdzie precyzyjne dostosowanie wzmocnienia napięcia jest kluczowe dla osiągnięcia pożądanej jakości sygnału. Dobrze zaprojektowane układy wzmacniaczy wykorzystują stabilne źródła napięcia i precyzyjne komponenty, co pozwala na uzyskanie wysokiej linearności i niskich zniekształceń sygnału. Standardy dotyczące wzmacniaczy, takie jak normy IEEE, podkreślają konieczność dokładnych pomiarów wzmocnienia, aby zapewnić niezawodność i efektywność działania całego systemu elektronicznego.

Pytanie 20

Na podstawie załączonego fragmentu dokumentacji technicznej urządzenia elektronicznego określ jego klasę ochronności przeciwporażeniowej.

Ilustracja do pytania
A. Klasa II
B. Klasa 0
C. Klasa III
D. Klasa I
Poprawna odpowiedź to Klasa II, co oznacza, że urządzenie to posiada podwójną izolację lub izolację wzmocnioną. Taki typ ochrony przeciwporażeniowej jest szczególnie ważny w kontekście bezpieczeństwa użytkowników, ponieważ eliminuje potrzebę uziemienia, co czyni urządzenia bardziej uniwersalnymi w zastosowaniach domowych i przemysłowych. Urządzenia klasy II są stosowane w wielu codziennych urządzeniach, takich jak suszarki do włosów czy małe sprzęty elektroniczne. W praktyce, jeśli urządzenie jest oznaczone symbolem kwadratu z podwójnym konturem, oznacza to, że zgodnie z normą IEC 61140, ma ono wystarczające zabezpieczenia, aby zminimalizować ryzyko porażenia prądem. W przypadku awarii, prąd nie ma drogi do ziemi, co sprawia, że użytkownik jest w znacznie większym stopniu chroniony. Wybierając urządzenia klasy II, można być pewnym, że projektanci zadbali o bezpieczeństwo, co jest kluczowe w kontekście powszechnego użytkowania sprzętu elektronicznego.

Pytanie 21

Jaki środek ochrony osobistej jest najczęściej używany podczas naprawy urządzeń elektronicznych w serwisie RTV?

A. Maska ochronna do twarzy
B. Szkła ochronne
C. Rękawiczki
D. Fartuch ochronny
Wybór innych środków ochrony indywidualnej, takich jak okulary, maski ochronne czy rękawice, może wydawać się logiczny, jednak nie adresują one najistotniejszych zagrożeń podczas wykonywania napraw w serwisach RTV. Okulary, mimo że chronią oczy przed drobnymi odłamkami czy kurzem, nie zapewniają ochrony całego ciała przed substancjami chemicznymi, które mogą być obecne w procesie naprawy. W przypadku maski ochronnej, jej zasadniczym celem jest ochrona dróg oddechowych, co jest istotne, lecz nie wystarcza do zabezpieczenia całego ciała przed ewentualnymi zagrożeniami. Rękawice, choć mogą chronić dłonie przed zranieniami czy chemikaliami, to wciąż pozostawiają inne części ciała nieosłonięte. Zastosowanie fartucha ochronnego jest szczególnie ważne, ponieważ łączy w sobie ochronę przed różnorodnymi zagrożeniami, co czyni go najbardziej wszechstronnym środkiem ochrony w tej sytuacji. Niezrozumienie tej zasady prowadzi do błędnych wniosków dotyczących bezpieczeństwa w miejscu pracy. Kluczowym jest holistyczne podejście do ochrony osobistej, które powinno obejmować stosowanie fartucha jako priorytetowego środka ochrony, a nie jedynie dodatku do pozostałych elementów wyposażenia ochronnego.

Pytanie 22

Jakiego typu złącza mogą być zaciskane przy pomocy narzędzia przedstawionego na zdjęciu?

Ilustracja do pytania
A. BNC
B. HDMI
C. TNC
D. RJ-45
Zaciskarka przedstawiona na zdjęciu jest dedykowana do złącz RJ-45, które są powszechnie stosowane w sieciach komputerowych Ethernet. Złącza te umożliwiają efektywne łączenie urządzeń, takich jak routery, komputery czy przełączniki. Zaciskanie końcówek RJ-45 polega na umieszczeniu odpowiednio przygotowanego kabla w złączu i użyciu narzędzia, które łączy przewody z złączem, zapewniając stabilne połączenie. W praktyce, złącza RJ-45 są zgodne z normami TIA/EIA-568, które określają standardy dla okablowania strukturalnego w budynkach. Warto także zwrócić uwagę na różnice między wtykami typu RJ-45 a innymi typami złącz, które nie wymagają zaciskania, jak na przykład HDMI. Zastosowanie zaciskarki do RJ-45 pozwala na elastyczność w konfiguracji sieci oraz możliwość szybkiego wykonywania przewodów na miejscu, co jest szczególnie ważne w dynamicznie zmieniających się środowiskach biurowych.

Pytanie 23

Ukształtowanie terenu ma wpływ na zasięg przesyłu sygnału za pośrednictwem

A. skrętki ekranowanej
B. światłowodu
C. linii radiowej
D. skrętki nieekranowanej
Linie radiowe, w przeciwieństwie do innych typów transmisji, takich jak skrętki czy światłowody, są szczególnie wrażliwe na ukształtowanie terenu. Fale radiowe mogą być tłumione i odbijane przez różne przeszkody, w tym góry, budynki i inne elementy krajobrazu. W praktyce oznacza to, że w obszarach górzystych lub zabudowanych zasięg sygnału radiowego może być znacznie ograniczony, co wpływa na jakość transmisji danych. W przypadku skrętek, zarówno ekranowanych, jak i nieekranowanych, sygnał przesyłany jest przewodowo, co eliminuje problem tłumienia przez ukształtowanie terenu. W kontekście standardów, projektowanie sieci radiowych wymaga starannego planowania, w tym analizy terenu oraz zastosowania technologii, które mogą kompensować te efekty, takich jak MIMO (Multiple Input Multiple Output) czy beamforming. Przykładem zastosowania linii radiowych jest komunikacja bezprzewodowa w sieciach komórkowych, gdzie odpowiednie zasięg i jakość sygnału są kluczowe dla użytkowników.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie jest zastosowanie symetryzatora antenowego?

A. aby zwiększyć zysk energetyczny anteny
B. do przesyłania sygnałów z kilku anten do jednego odbiornika
C. do dopasowania impedancyjnego anteny i odbiornika
D. w celu zmiany charakterystyki kierunkowej anteny
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 26

Aby zweryfikować funkcjonalność kabla krosowego, co należy zastosować?

A. testera kabli sieciowych przy odłączonym kablu od wszystkich urządzeń
B. wobulatora przy odłączonym kablu od wszystkich urządzeń
C. wobulatora przy podłączonym kablu do sieci komputerowej
D. testera kabli sieciowych przy podłączonym kablu do sieci komputerowej
Tester kabli sieciowych to naprawdę przydatne urządzenie, które pozwala sprawdzić, czy kable krosowe działają jak należy. Żeby wyniki były miarodajne, kabel musi być odłączony od wszystkich urządzeń. To pozwala testerowi na dokładne zbadanie każdej żyły kabli, bez żadnych zakłóceń z podłączonych sprzętów. Gdy kabel jest odłączony, można przeprowadzić solidną analizę, co pozwala wyłapać ewentualne zwarcia, przerwy czy złe połączenia. Warto też pamiętać, że standardy jak TIA/EIA-568 mówią, jak najlepiej instalować i testować kabli, a przestrzeganie ich to klucz do dobrze działającej sieci. Testowanie po instalacji jest super ważne, bo można szybko znaleźć i naprawić błędy, co poprawia niezawodność całego systemu. Używanie testera przy odłączonym kablu to najlepszy sposób, żeby upewnić się, że wszystko działa jak trzeba, co jest mega ważne dla stabilności i wydajności naszych sieci.

Pytanie 27

Który typ klucza potrzebny jest do odkręcenia śrub pokazanych na rysunku?

Ilustracja do pytania
A. PZ
B. TORX
C. HEX
D. PH
Odpowiedź "TORX" jest poprawna, ponieważ na zdjęciu widoczne są śruby z sześcioramiennym gwiazdkowym wcięciem, które jest charakterystyczne dla kluczy TORX. Klucz TORX, opracowany w latach 60-tych XX wieku, zapewnia lepsze dopasowanie do śruby i redukuje ryzyko uszkodzenia zarówno klucza, jak i samej śruby. W zastosowaniach przemysłowych, gdzie wymagane są wysokie momenty obrotowe, klucze TORX są powszechnie stosowane, ponieważ minimalizują poślizg i umożliwiają efektywne przenoszenie siły. Klucze te są standardem w wielu branżach, takich jak motoryzacja, elektronika i budownictwo, co czyni je niezbędnym narzędziem w pracy technika. Warto również zauważyć, że wprowadzenie kluczy TORX zwiększyło bezpieczeństwo konstrukcji, ponieważ wiele z tych śrub jest zabezpieczonych przed manipulacjami za pomocą standardowych narzędzi. Klucze HEX, PH i PZ, mimo że również używane w różnych zastosowaniach, mają odmienne kształty i przeznaczenie, które nie pasują do charakterystyki śrub widocznych na zdjęciu.

Pytanie 28

Podczas hibernacji komputera zachodzi

A. przełączanie na zasilanie z UPS.
B. zapisanie zawartości pamięci na dysku twardym.
C. reset systemu.
D. zamknięcie systemu.
Hibernacja systemu komputerowego to proces, w którym zawartość pamięci operacyjnej (RAM) jest zapisywana na dysku twardym w celu oszczędzania energii, a następnie system może zostać wyłączony. Ta metoda jest szczególnie przydatna w laptopach oraz urządzeniach mobilnych, gdzie długotrwałe użytkowanie na baterii ma kluczowe znaczenie. Po wznowieniu pracy, system odtworzy stan, w jakim został wstrzymany, przywracając wszystkie otwarte aplikacje i dokumenty. Hibernacja różni się od usypiania, gdzie dane w pamięci są zachowywane tylko na czas aktywnego stanu, przy minimalnym zużyciu energii. W standardach zarządzania energią, taki jak ACPI (Advanced Configuration and Power Interface), hibernacja jest zalecana jako efektywne rozwiązanie do zarządzania mocą, które pozwala na długotrwałe przechowywanie stanu systemu bez potrzeby ciągłego zasilania. Przykładem zastosowania hibernacji może być moment, gdy użytkownik planuje dłuższą przerwę od pracy i chce wrócić do tego samego miejsca w systemie bez utraty postępów.

Pytanie 29

Maksymalne rozciągnięcie kabla UTP w gniazdku użytkownika nie powinno przekraczać

A. 12 mm
B. 3 mm
C. 30 mm
D. 20 mm
Maksymalne rozszycie kabla UTP w gniazdku abonenckim określane na 12 mm jest zgodne z wymaganiami standardów telekomunikacyjnych, takich jak TIA/EIA-568. Ważne jest, aby minimalizować długość odsłoniętych par przewodów, ponieważ zbyt duża długość może prowadzić do zwiększenia podatności na zakłócenia elektromagnetyczne oraz degradację sygnału. Kiedy przewody są rozdzielane i odsłonięte na zbyt dużej długości, mogą powstawać niepożądane efekty, takie jak crosstalk i tłumienie sygnału, co negatywnie wpływa na jakość transmisji danych. Przykładem zastosowania tej zasady jest instalacja w biurach, gdzie wiele urządzeń może współdzielić tę samą infrastrukturę sieciową. Odpowiednie utrzymanie maksymalnego rozszycia w gniazdku pozwala na zachowanie pełnej funkcjonalności oraz wydajności sieci, co jest kluczowe w środowiskach o wysokich wymaganiach transmisyjnych, takich jak centra danych czy biura z intensywnym obciążeniem sieciowym.

Pytanie 30

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. linii nierezonansowych typu delta
B. falowodów
C. linii rezonansowych równoległych
D. symetryzatorów
Odpowiedź 'symetryzatorów' jest poprawna, ponieważ symetryzator jest urządzeniem stosowanym do przekształcania sygnałów z linii asymetrycznych, takich jak przewody współosiowe, na sygnały symetryczne. W kontekście połączeń antenowych, symetryzatory są kluczowe do efektywnego przesyłania sygnału do odbiornika telewizyjnego, który często ma wejście symetryczne. Użycie symetryzatora pozwala na eliminację problemów związanych z niedopasowaniem impedancji, co może prowadzić do strat sygnału lub odbić. Przykładem zastosowania symetryzatorów są instalacje antenowe, gdzie stosuje się je do podłączenia anteny o wyjściu symetrycznym do odbiornika telewizyjnego. Standardy branżowe, takie jak te dotyczące instalacji antenowych, podkreślają znaczenie stosowania symetryzatorów w celu uzyskania optymalnej jakości odbioru, co jest szczególnie istotne w przypadku sygnałów telewizyjnych wymagających wysokiej integralności i niskiego poziomu zakłóceń. Warto również wspomnieć, że symetryzatory mogą występować w różnych formach, w tym jako transformatorów, i są projektowane tak, aby spełniały konkretne wymagania dotyczące pasma przenoszenia i tłumienia sygnału.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Na rysunku przedstawiono symbol

Ilustracja do pytania
A. anteny satelitarnej.
B. gniazda abonenckiego.
C. wzmacniacza dystrybucyjnego.
D. zacisku zasilania.
Symbol przedstawiony na rysunku jest kluczowym elementem w schematach instalacji telekomunikacyjnych, ponieważ oznacza gniazdo abonenckie. Gniazdo to jest punktem, w którym użytkownik końcowy może podłączyć swoje urządzenia, takie jak telewizory, modemy czy telefony. Zastosowanie gniazd abonenckich jest normą w instalacjach telekomunikacyjnych, ponieważ umożliwia łatwe podłączanie i odłączanie sprzętu, co jest szczególnie ważne w środowiskach o dużym natężeniu użycia technologii. Gniazda te są projektowane zgodnie z określonymi standardami, które zapewniają ich kompatybilność z różnymi urządzeniami. W kontekście instalacji telekomunikacyjnych, prawidłowe stosowanie gniazd abonenckich przyczynia się do zoptymalizowania przepływu danych oraz do zminimalizowania potencjalnych zakłóceń w komunikacji. Dzięki gniazdom abonenckim można również łatwo przeprowadzać modernizacje i aktualizacje systemów telekomunikacyjnych bez konieczności ingerencji w całą sieć.

Pytanie 33

Narzędzie pokazane na rysunku służy do wykonywania połączeń

Ilustracja do pytania
A. klejonych.
B. lutowanych.
C. zgrzewanych.
D. spawanych.
Lutowanie to naprawdę ważna metoda łączenia metalowych elementów, zwłaszcza w elektronice i przemyśle. Ten sprzęt, który widzisz na zdjęciu, czyli lutownica, to podstawa, bo to ona umożliwia lutowanie. A lutowanie polega na użyciu materiału lutowniczego, najczęściej cyny, żeby połączyć różne części w sposób, który jest trwały i solidny. Z tego, co widzę, lutowanie jest szczególnie istotne w elektronice, gdzie liczy się precyzja; wiadomo, że w urządzeniach jak płytki drukowane, dobre połączenia to podstawa. Są też standardy, takie jak IPC-A-610, które mówią, jakie powinny być te połączenia. Lutowanie ma zastosowanie nie tylko w produkcji elektroniki, ale też w naprawach sprzętu audio-wizualnego czy w instalacjach elektrycznych. Tak naprawdę to wszędzie tam, gdzie potrzebujemy dokładnych i mocnych połączeń. Czy nie wydaje ci się, że taka wiedza jest naprawdę przydatna?

Pytanie 34

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. pamięci statycznych
B. pamięci dynamicznych
C. czasowych
D. programowalnych
Wybór odpowiedzi dotyczącej pamięci, niezależnie czy to dynamiczne, statyczne, czy jakieś czasowe, to błąd. Te układy mają zupełnie inną funkcję niż programowalne układy logiczne. Pamięci dynamiczne (czyli DRAM) i statyczne (SRAM) to układy, które służą do przechowywania danych, a nie do wykonywania operacji logicznych. Zwykle używamy ich w komputerach i innych urządzeniach elektronicznych. Z kolei układy czasowe, jak te nasze zegarowe, zajmują się synchronizowaniem operacji w systemach digitalnych, ale nie mają tej fajnej możliwości programowania logiki jak PLD. Często mylimy te wszystkie funkcje i skupiamy się na tym, co już znamy, nie myśląc o ich rzeczywistym zastosowaniu. W praktyce rozróżnienie tych układów jest niezwykle ważne dla skutecznego projektowania systemów elektronicznych. Programowalne układy logiczne dają nam swobodę w projektowaniu, podczas gdy pamięci mają już ustaloną funkcję i nie możemy ich zmieniać po wyprodukowaniu.

Pytanie 35

W jakiej jednostce mierzy się stosunek poziomu sygnału do szumu MER w systemach telewizyjnych?

A. dB
B. dBmV
C. dBµV
D. dBA
Wykorzystanie jednostek takich jak dBA lub dBmV w kontekście pomiaru stosunku poziomu sygnału do szumu w instalacjach telewizyjnych jest niepoprawne. dBA to jednostka, która odnosi się do poziomu głośności sygnału z uwzględnieniem wrażliwości ludzkiego ucha na różne częstotliwości, co czyni ją nieadekwatną w kontekście pomiarów sygnału telewizyjnego. Z kolei dBmV to jednostka wyrażająca napięcie w miliwoltach w stosunku do 1 V, używana głównie w kontekście systemów telekomunikacyjnych i nie jest odpowiednia do mierzenia stosunku sygnału do szumu, który wymaga odniesienia do mocy. dBµV, choć również związane z napięciem, koncentruje się na poziomie sygnału w kontekście telekomunikacji, ale nie oddaje pełnego obrazu stosunku sygnału do szumu. Typowym błędem myślowym w tym kontekście jest utożsamianie różnych jednostek miary, co może prowadzić do nieporozumień w ocenie jakości sygnału. Właściwe rozumienie jednostek miary i ich zastosowania jest kluczowe w projektowaniu i diagnozowaniu systemów telewizyjnych, co podkreśla znaczenie edukacji w tym zakresie dla specjalistów w dziedzinie telekomunikacji.

Pytanie 36

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. odchylania poziomego i pionowego
B. separatora sygnałów
C. wzmacniacza obrazu
D. wielkiej i pośredniej częstotliwości
Odpowiedź 'wielkiej i pośredniej częstotliwości' jest poprawna, ponieważ moduł ten jest kluczowy w procesie odbioru sygnału telewizyjnego z anteny. W systemach telewizyjnych, częstotliwości pośrednie (IF) są używane do konwersji sygnału odbieranego z anteny na poziom, który może być łatwiej przetwarzany przez odbiornik. Jeśli ten moduł jest uszkodzony, sygnał z anteny nie jest właściwie demodulowany, co prowadzi do braku obrazu. Natomiast sygnał z tunera satelitarnego oraz z kamery VHS-C są już na poziomie, który nie wymaga dalszej obróbki w zakresie częstotliwości pośrednich, dlatego są wyświetlane poprawnie. Przykładem zastosowania tej wiedzy może być diagnozowanie problemów z odbiorem telewizji naziemnej, gdzie kluczowe jest sprawdzenie, czy sygnał pośredni jest prawidłowo przetwarzany. Wiedza ta jest zgodna z praktykami serwisowymi, gdzie szczegółowa analiza sygnałów IF jest standardem w naprawach i diagnostyce odbiorników telewizyjnych.

Pytanie 37

Który element anteny satelitarnej oznaczono na rysunku cyfrą 1?

Ilustracja do pytania
A. Wspornik.
B. Konwerter.
C. Reflektor.
D. Siłownik.
Element oznaczony na rysunku cyfrą 1 to konwerter, który odgrywa kluczową rolę w funkcjonowaniu anteny satelitarnej. Jego zadaniem jest odbieranie sygnałów satelitarnych, które są na ogół w postaci fal radiowych, oraz ich konwersja na sygnały, które mogą być przetwarzane przez odbiornik telewizyjny. Konwerter działa na zasadzie zmiany częstotliwości sygnału, co umożliwia jego efektywne przesyłanie przez przewód (tzw. kabel koncentryczny) do dekodera lub telewizora. W praktyce, konwertery są dostępne w różnych rodzajach, takich jak konwertery pojedyncze, podwójne czy quad, które różnią się funkcjonalnością i możliwością obsługi wielu odbiorników. Dobrą praktyką jest dobór konwertera odpowiedniego do specyfikacji anteny oraz wymagań systemu, aby zapewnić optymalną jakość odbioru. Wiedza na temat konwerterów oraz ich wpływu na jakość sygnału jest niezbędna, aby skutecznie rozwiązywać ewentualne problemy z odbiorem sygnału satelitarnego.

Pytanie 38

Do połączenia jakich urządzeń nie nadaje się przedstawiony na fotografii kabel zakończony z obu stron złączem RJ-45?

Ilustracja do pytania
A. Modemu z gniazdem telefonicznym
B. Komputera z modemem.
C. Komputera z routerem.
D. Telewizora z routerem.
Istnieje kilka nieporozumień związanych z błędnymi odpowiedziami, które mogą prowadzić do mylnych wniosków o zastosowaniu kabla zakończonego złączem RJ-45. Przede wszystkim, połączenie komputera z modemem przez RJ-45 jest jak najbardziej możliwe i często stosowane. RJ-45 jest standardem dla Ethernetu, co oznacza, że jest on dedykowany do komunikacji danych w sieciach lokalnych. W związku z tym, twierdzenie, że RJ-45 mógłby łączyć komputer z modemem, jest błędne. Również podłączenie telewizora do routera za pomocą kabla RJ-45 jest praktyką szeroko stosowaną, zwłaszcza w aktualnych modelach telewizorów, które posiadają złącza Ethernetowe. To umożliwia korzystanie z funkcji smart TV, takich jak strumieniowanie filmów online czy przeglądanie Internetu. Z kolei połączenie modemu z gniazdem telefonicznym przez RJ-45 jest nieprawidłowe, ponieważ gniazda telefoniczne najczęściej wykorzystują złącza RJ-11. Stąd wynika nieporozumienie, które prowadzi do błędnych odpowiedzi. Kluczowe jest, aby zrozumieć, jakie złącza są przeznaczone do konkretnych zastosowań oraz jakie standardy należy stosować przy tworzeniu połączeń sieciowych. Wiedza na temat różnic pomiędzy złączami RJ-45 i RJ-11 pomoże uniknąć typowych błędów związanych z nieodpowiednim łączeniem urządzeń.

Pytanie 39

Zacisk urządzenia elektronicznego, którego symbol graficzny przedstawiono na rysunku, służy do podłączenia przewodu

Ilustracja do pytania
A. neutralnego.
B. fazowego.
C. uziemiającego.
D. wyrównawczego.
Zacisk uziemiający jest kluczowym elementem w każdym urządzeniu elektrycznym, pełniącym funkcję zapewnienia bezpieczeństwa użytkownikom. Symbol przedstawiony na rysunku jest powszechnie uznawanym oznaczeniem dla tego typu zacisku. Uziemienie ma za zadanie odprowadzenie nadmiaru energii elektrycznej do ziemi, co minimalizuje ryzyko porażenia prądem w sytuacjach awaryjnych, takich jak zwarcia czy uszkodzenia izolacji. Na przykład, w instalacjach domowych, przewód uziemiający łączy się z metalowymi elementami budynku, co gwarantuje, że wszelkie niebezpieczne napięcia zostaną skierowane do ziemi. W kontekście standardów, normy PN-EN 61140 oraz PN-IEC 60364 jasno określają zasady dotyczące uziemienia oraz ochrony przed porażeniem elektrycznym, co podkreśla znaczenie prawidłowego podłączenia tego typu zacisku.

Pytanie 40

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. aktywnym
B. aktywnym inwersyjnym
C. zatkania (odcięcia)
D. nasycenia
Odpowiedź "aktywnym" jest prawidłowa, ponieważ w takim ustawieniu tranzystora bipolarnego, złącze BE (baza-emiter) jest spolaryzowane w kierunku przewodzenia, co pozwala na przepływ prądu przez to złącze. Złącze CB (kolektor-baza) jest zaporowo spolaryzowane, co skutkuje brakiem przepływu prądu wstecznego. W efekcie tranzystor działa w trybie aktywnym, co oznacza, że może być używany jako wzmacniacz sygnału. W praktyce, to ustawienie jest kluczowe w zastosowaniach takich jak wzmacniacze audio czy obwody analogowe, gdzie wymagane jest precyzyjne kontrolowanie sygnału. W trybie aktywnym, mała zmiana prądu bazy prowadzi do dużej zmiany prądu kolektora, co czyni tranzystory bipolarne bardzo efektywnymi komponentami w projektowaniu układów elektronicznych. Warto również zauważyć, że w trybie aktywnym tranzystor działa w bezpiecznym zakresie pracy, co jest istotne dla długoterminowej stabilności układów elektronicznych.