Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 lutego 2026 21:09
  • Data zakończenia: 3 lutego 2026 21:51

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Ledową.
B. Sodową.
C. Rtęciową.
D. Żarową.
Odpowiedź "Ledową" jest poprawna, ponieważ na zdjęciu widoczna jest lampa LED, która charakteryzuje się wieloma małymi diodami emitującymi światło. W przeciwieństwie do lamp żarowych, które mają jedno większe źródło światła, lampy LED oferują szereg zalet. Przykładowo, ich wydajność energetyczna jest znacznie wyższa, co prowadzi do oszczędności energii i dłuższej żywotności. W praktycznym zastosowaniu oznacza to, że lampy LED mogą być wykorzystywane w różnych kontekstach, jak oświetlenie wnętrz, iluminacje zewnętrzne, a także w instalacjach przemysłowych. Zgodnie z normami branżowymi, lampy LED nie emitują promieniowania UV, co czyni je bezpiecznymi w zastosowaniach, gdzie istotna jest ochrona przed szkodliwym wpływem światła. Warto również dodać, że technologia LED jest zgodna z trendami zrównoważonego rozwoju, co czyni je preferowanym wyborem w nowoczesnych budynkach.

Pytanie 2

Jaka jest wymagana wartość rezystancji izolacji przewodów przy pomiarach odbiorczych instalacji elektrycznej o napięciu znamionowym badanego obwodu U ≤ 500 V? 

A. ≥ 1 MΩ
B. ≥ 0,5 MΩ
C. < 1 MΩ
D. < 0,5 MΩ
W przypadku rezystancji izolacji bardzo łatwo wpaść w pułapkę myślenia „byle nie było zwarcia, to jest dobrze”. To błędne podejście. Same wartości typu 0,5 MΩ czy mniej mogą komuś wydawać się jeszcze „duże”, bo przecież to setki tysięcy omów, ale z punktu widzenia bezpieczeństwa instalacji niskiego napięcia to po prostu za mało. Normy dotyczące instalacji elektrycznych w budynkach, takie jak PN‑HD 60364, jasno określają, że dla obwodów o napięciu znamionowym do 500 V minimalna dopuszczalna rezystancja izolacji przy pomiarze odbiorczym wynosi 1 MΩ. To nie jest wartość „umowna”, tylko wynik doświadczeń i analizy ryzyka porażeniowego oraz pożarowego. Zbyt niska rezystancja izolacji oznacza zwiększony prąd upływu. W praktyce może to powodować m.in. nieprawidłowe działanie wyłączników różnicowoprądowych (fałszywe zadziałania), nagrzewanie się izolacji w miejscach zawilgocenia, a w skrajnych przypadkach nawet iskrzenie i lokalne przegrzania. Odpowiedzi sugerujące wartości poniżej 1 MΩ zakładają, że „pół megaoma też wystarczy”, bo przecież to nadal wysoka rezystancja. Tyle że normy są tutaj jednoznaczne – 0,5 MΩ to wartość niewystarczająca przy odbiorze instalacji o napięciu do 500 V. Jest to typowy błąd myślowy: patrzymy na liczbę w oderwaniu od kontekstu norm i nie bierzemy pod uwagę, że instalacja ma działać bezpiecznie przez lata, w warunkach wilgoci, zanieczyszczeń i starzenia się izolacji. Jeśli już na starcie mamy rezystancję izolacji w okolicach 0,5 MΩ, to po kilku latach eksploatacji może ona spaść jeszcze niżej, co będzie poważnym problemem. Drugi błąd to odwrócenie znaku nierówności – wartości typu „< 1 MΩ” czy „< 0,5 MΩ” w ogóle nie opisują wymagań normowych, tylko raczej stan, który powinien skłonić do szukania uszkodzeń. W dobrych praktykach branżowych przyjmuje się, że nowa instalacja powinna mieć rezystancję izolacji zdecydowanie powyżej wartości minimalnej, a wynik w pobliżu granicy traktuje się jako sygnał ostrzegawczy. Dlatego przy projektowaniu, montażu i odbiorze nie wystarczy kierować się intuicją, trzeba znać konkretne wartości graniczne z norm i umieć je zastosować w praktyce pomiarowej.

Pytanie 3

Która z wymienionych czynności sprawdza skuteczność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Badanie wyłącznika różnicowoprądowego.
B. Pomiar impedancji pętli zwarciowej.
C. Pomiar rezystancji izolacji przewodów.
D. Badanie stanu izolacji podłóg.
Prawidłowa odpowiedź to badanie wyłącznika różnicowoprądowego, bo to właśnie on jest typowym środkiem tzw. ochrony uzupełniającej przed porażeniem prądem. Ochrona uzupełniająca ma zadziałać wtedy, gdy zawiedzie izolacja podstawowa albo pojawi się niebezpieczne napięcie dotykowe na obudowie urządzenia. Wyłącznik różnicowoprądowy (RCD) porównuje prąd wpływający i wypływający z obwodu; jeśli pojawi się prąd upływu do ziemi lub przez ciało człowieka, różnica prądów przekroczy wartość znamionową (np. 30 mA) i aparat musi zadziałać w bardzo krótkim czasie. Zgodnie z normą PN-HD 60364 oraz dobrymi praktykami pomiary RCD wykonuje się okresowo, miernikiem do badania wyłączników różnicowoprądowych, sprawdzając m.in. prąd zadziałania, czas zadziałania, działanie przy różnych kątach fazowych i przy prądzie jednokrotnym oraz 5-krotnym. W typowej praktyce serwisowej, np. w instalacjach domowych czy warsztatowych, pomiar RCD jest obowiązkowym elementem protokołu pomiarów ochronnych. Po samym wciśnięciu przycisku „TEST” na obudowie nie można uznać ochrony uzupełniającej za sprawdzoną – to tylko orientacyjna kontrola mechanizmu. Rzetelne badanie wykonuje się miernikiem, z rejestracją czasu zadziałania (np. poniżej 300 ms dla RCD 30 mA przy prądzie znamionowym), z kontrolą ciągłości przewodu ochronnego i poprawnego podłączenia. Moim zdaniem warto zapamiętać prostą zasadę: skuteczność ochrony uzupełniającej = sprawne RCD o odpowiedniej czułości + poprawnie wykonana instalacja ochronna, a to potwierdzamy właśnie badaniem wyłącznika różnicowoprądowego w ramach pomiarów okresowych i odbiorczych.

Pytanie 4

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór oprawki oznaczonej innymi literami, oprócz D, może wynikać z niepełnego zrozumienia właściwości materiałowych używanych w konstrukcji opraw. Na przykład, wiele osób może sądzić, że materiały takie jak tworzywa sztuczne są wystarczające dla źródeł światła dużej mocy. Jednakże, tworzywa sztuczne mają ograniczoną odporność na wysokie temperatury i mogą się topnieć lub odkształcać w warunkach, gdzie temperatura przekracza 100°C. Ponadto, stosowanie metali do budowy opraw również nie jest zalecane, ponieważ ich właściwości przewodzenia ciepła mogą prowadzić do lokalnych przegrzań i uszkodzenia zarówno oprawki, jak i źródła światła. W praktyce, niewłaściwy dobór materiału może prowadzić do skrócenia żywotności żarówki, zwiększonego ryzyka awarii, a także potencjalnych zagrożeń dla użytkowników. Często spotykanym błędem jest również niedocenianie znaczenia odprowadzania ciepła, co w dłuższej perspektywie prowadzi do obniżenia efektywności energetycznej systemu oświetleniowego. Dlatego kluczowe jest, aby projektując oprawy do źródeł światła dużej mocy, kierować się sprawdzonymi standardami i praktykami, które zapewnią odpowiednią wydajność i bezpieczeństwo w użytkowaniu.

Pytanie 5

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Poprawna odpowiedź to C, ponieważ symbol "I∆" wewnątrz kwadratu jest standardowym oznaczeniem wyłącznika różnicowoprądowego (RCD) na schematach montażowych instalacji elektrycznych. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach ochrony przed porażeniem elektrycznym, a ich główną funkcją jest wykrywanie różnicy w prądzie płynącym do i z urządzenia. W przypadku wykrycia takiej różnicy, która może wskazywać na nieprawidłowe działanie instalacji (np. w wyniku uszkodzenia izolacji), wyłącznik automatycznie odłącza zasilanie, co chroni użytkowników przed niebezpieczeństwem. W praktyce, wyłączniki RCD są szeroko stosowane w budynkach mieszkalnych, komercyjnych oraz przemysłowych, zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61008-1. Zrozumienie znaczenia symboli na schematach jest istotne dla prawidłowego montażu i eksploatacji instalacji elektrycznych, co zapobiega awariom oraz zwiększa bezpieczeństwo użytkowników.

Pytanie 6

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do łączenia przewodów dowolnego typu.
B. Do wykonywania połączeń bez zdejmowania izolacji.
C. Do zdejmowania izolacji z przewodów dwużyłowych.
D. Do zaciskania końcówek tulejkowych na przewodach.
Wybór innej odpowiedzi może być spowodowany jakimś nieporozumieniem odnośnie funkcji złączek elektrycznych. Na przykład, mylenie łączenia bez zdejmowania izolacji to błąd, bo złączki WAGO wymagają, żeby izolacja była odpowiednio ścięta, żeby połączenie było pewne. Z kolei mówienie, że łączą przewody dowolnego typu jest trochę na wyrost, bo niektóre złączki są projektowane do konkretnych zastosowań. Poza tym, stosowanie ich do zaciskania końcówek tulejkowych to też nie najlepszy pomysł, bo WAGO do tego się nie nadają – mogą przez to wystąpić błędy w połączeniach i ryzyko awarii. No i sugerowanie, że złączka służy do zdejmowania izolacji z przewodów dwużyłowych, to chyba jakieś nieporozumienie, bo do tego trzeba użyć odpowiednich narzędzi, a nie złączek. Dlatego warto zrozumieć, jak te złączki działają w praktyce i jakie są podstawowe zasady ich stosowania w elektryce.

Pytanie 7

Co oznacza symbol literowy YKY?

A. kabel z żyłami miedzianymi w izolacji z PVC
B. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
C. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
D. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
Wybór odpowiedzi dotyczącej kabla o żyłach aluminiowych lub przewodów telekomunikacyjnych jest błędny, ponieważ te typy kabli różnią się w fundamentalny sposób od standardów oznaczonych symbolem YKY. Kable z żyłami aluminiowymi, choć mogą być lżejsze i tańsze niż ich miedziane odpowiedniki, mają znacznie gorszą przewodność elektryczną, co prowadzi do strat energii oraz potencjalnych problemów z niezawodnością w dłuższej perspektywie. Dodatkowo, przewody telekomunikacyjne, które również pojawiają się w alternatywnych odpowiedziach, są przeznaczone do zupełnie innych zastosowań, takich jak przesyłanie danych, co czyni je nieodpowiednimi w kontekście instalacji elektrycznych. Wybór przewodu oponowego warsztatowego również nie jest trafny, gdyż dotyczy on innego rodzaju zastosowań, głównie w warsztatach, gdzie wymagane są wysokie właściwości mechaniczne. W rezultacie, mylenie zastosowań i typów kabli oraz przewodów może prowadzić do nieefektywności i zagrożeń w instalacjach elektrycznych. Kluczowe jest zrozumienie specyfikacji technicznych oraz ich odpowiedniego doboru do konkretnych potrzeb, aby zapewnić bezpieczeństwo i efektywność energetyczną.

Pytanie 8

W którym układzie sieciowym, w przypadku przerwania przewodu ochronno-neutralnego, na obudowach metalowych odbiorników może pojawiać się pełne napięcie fazowe?

A. TN-C
B. TT
C. TN-S
D. IT
Prawidłowa odpowiedź to układ TN-C, bo właśnie w tym systemie przewód ochronno‑neutralny PEN pełni jednocześnie dwie funkcje: przewodu roboczego (N) i ochronnego (PE). Jeśli dojdzie do jego przerwania, wszystkie obudowy urządzeń podłączone do tego przewodu „tracą” połączenie z punktem neutralnym transformatora i zaczynają się zachowywać jak przewód fazowy – może się na nich pojawić pełne napięcie fazowe względem ziemi. I to jest bardzo niebezpieczne w praktyce, bo użytkownik dotyka wtedy normalnie uziemionej obudowy, która nagle ma 230 V. W układzie TN-C przewód PEN jest prowadzony wspólnie, najczęściej w starszych instalacjach dwuprzewodowych (L + PEN). Z mojego doświadczenia właśnie w takich starych blokach czy kamienicach ryzyko przerwania PEN jest realne: poluzowane zaciski, korozja, złe łączenia. Normy, np. PN‑HD 60364, od lat odradzają stosowanie TN-C w instalacjach odbiorczych wewnątrz budynków i zalecają przejście na układy TN-S albo TN-C-S, gdzie funkcje PE i N są rozdzielone. Rozdział PEN na PE i N (układ TN-C-S) wykonuje się możliwie blisko punktu zasilania budynku, a w instalacji wewnętrznej prowadzi się już trzy przewody: L, N, PE, co radykalnie zmniejsza ryzyko pojawienia się napięcia na obudowach. W praktyce dobrym zwyczajem jest unikanie „dorabiania” ochrony przez mostkowanie bolca ochronnego do N w gniazdach w starych instalacjach TN-C. To tylko utrwala niebezpieczny układ i zwiększa skutki potencjalnego przerwania PEN. Zawodowo patrząc, każda modernizacja instalacji w TN-C powinna iść w stronę wymiany przewodów i rozdziału przewodu PEN, a nie kombinowania z przejściówkami. Moim zdaniem to jedno z kluczowych zagadnień ochrony przeciwporażeniowej, które każdy elektryk powinien mieć „w małym palcu”.

Pytanie 9

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Komutacyjnego
B. Wzbudzenia
C. Twornika
D. Kompensacyjnego
W silnikach prądu stałego, niektóre uzwojenia pełnią różne funkcje, a ich zrozumienie jest kluczowe dla właściwego działania urządzenia. Uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które jest niezbędne do działania silnika. Przez to uzwojenie przepływa prąd, ale nie bezpośrednio przez szczotki, co może wprowadzać w błąd. Uzwojenie kompensacyjne ma na celu zredukowanie wpływu zmienności obciążenia na silnik, co jest istotne w kontekście stabilizacji pracy, ale również nie jest związane z dostarczaniem prądu przez szczotki. Uzwojenie komutacyjne, z kolei, jest odpowiedzialne za komutację prądu w tworniku, co oznacza, że zmienia kierunek przepływu prądu w odpowiednich momentach, ale nie jest to miejsce, w którym prąd jest dostarczany przez szczotki. Typowym błędem myślowym jest mylenie funkcji poszczególnych uzwojeń oraz nierozumienie ich wzajemnych interakcji. Wiedza ta jest kluczowa dla inżynierów zajmujących się projektowaniem oraz konserwacją silników elektrycznych, dlatego warto zgłębiać temat, by unikać nieporozumień i błędów w praktyce inżynieryjnej. Użycie terminologii technicznej oraz znajomość zasad działania poszczególnych elementów silnika prądu stałego są niezbędne w rozwiązywaniu problemów oraz optymalizacji ich pracy.

Pytanie 10

Oznaczenie YDYn 4x2,5 mm2 znajdujące się na izolacji dotyczy przewodu

A. oponowego
B. podtynkowego
C. natynkowego
D. samonośnego
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji przewodów elektrycznych. Przewody natynkowe są zazwyczaj instalowane w sposób widoczny, na powierzchni ścian, co nie odpowiada charakterystyce przewodów samonośnych, które są przeznaczone do wieszania bez dodatkowego wsparcia. Z kolei przewody oponowe, które są elastyczne i strukturalnie dostosowane do ciężkich warunków, nie są przeznaczone do instalacji na zewnątrz bez dodatkowych osłon, co czyni je nieodpowiednimi do zastosowań samonośnych. Przewody podtynkowe, jak sama nazwa wskazuje, muszą być montowane w murach, co również odróżnia je od przewodów samonośnych. Kluczową różnicą jest to, że przewody samonośne muszą być przystosowane do pracy w warunkach atmosferycznych, co jest potwierdzone odpowiednimi atestami i normami. W rozumieniu tych kategorii, można zauważyć, że mylenie ich zastosowań prowadzi do praktycznych problemów w instalacjach elektrycznych, takich jak uszkodzenia mechaniczne czy niewłaściwe zasilanie urządzeń. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 11

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Indukcyjnego pierścieniowego.
B. Indukcyjnego klatkowego.
C. Synchronicznego z obcym wzbudzeniem.
D. Obcowzbudnego prądu stałego.
Analizując dostępne odpowiedzi, można zauważyć kilka powszechnych nieporozumień związanych z różnymi typami silników elektrycznych. Silnik obcowzbudny prądu stałego jest konstrukcją, która charakteryzuje się oddzielnym źródłem zasilania dla pola magnetycznego, co nie znajduje odzwierciedlenia w schemacie i jego budowie. Silniki tego typu mają zupełnie inną architekturę i przeznaczenie, często używane w aplikacjach wymagających dużej kontroli nad prędkością obrotową, ale nie są w stanie dostarczyć tej samej elastyczności co silniki pierścieniowe. Z kolei silnik indukcyjny klatkowy, który posiada wirnik wykonany w formie klatki, jest prostszy w budowie i nie pozwala na taką regulację momentu obrotowego jak silnik pierścieniowy. Ta konstrukcja jest bardziej powszechna w zastosowaniach przemysłowych, jednak nie ma możliwości tak szczegółowego dostosowania parametrów pracy. Natomiast silnik synchroniczny z obcym wzbudzeniem, który również został wymieniony w odpowiedziach, opiera się na stałym polu magnetycznym i charakteryzuje się innym sposobem działania. W odróżnieniu od silników indukcyjnych, synchroniczne wykorzystują stałe źródło pola, co sprawia, że ich zastosowanie jest inne i wymagające. Zrozumienie różnic między tymi typami silników jest kluczowe, aby podejmować właściwe decyzje w kontekście wyboru odpowiedniej technologii do konkretnych zastosowań przemysłowych. Kluczowe jest, aby pamiętać o specyfikach konstrukcyjnych i ich wpływie na właściwości użytkowe, co może prowadzić do znacznych nieporozumień w praktyce inżynieryjnej.

Pytanie 12

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Wybór odpowiedzi A, B lub D może wynikać z nieporozumienia dotyczącego symboliki graficznej używanej w elektrotechnice. Symbole te mają na celu ułatwienie identyfikacji funkcji urządzeń oraz ich prawidłowego połączenia w instalacjach elektrycznych. Odpowiedź A może sugerować, że użytkownik pomylił dwuklawiszowy łącznik z innym typem łącznika, podczas gdy w rzeczywistości każdy typ łącznika ma swoje specyficzne oznaczenie. Z kolei odpowiedź B może być wynikiem nieprawidłowego zrozumienia schematów elektrycznych, gdzie umiejętność ich czytania jest kluczowa. Odpowiedź D, która nie odnosi się w ogóle do dwuklawiszowego łącznika, może świadczyć o braku wiedzy na temat różnorodności łączników dostępnych na rynku. W każdym z tych przypadków, kluczowym błędem jest brak zrozumienia, jak symbole graficzne przekładają się na rzeczywiste urządzenia elektryczne oraz ich funkcjonalności. Właściwe rozpoznawanie symboli jest fundamentalne, ponieważ pozwala na poprawne wykonanie instalacji elektrycznych zgodnie z obowiązującymi normami i standardami, co jest istotne dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w obiektach budowlanych. Aby uniknąć takich pomyłek, warto zapoznać się z materiałami edukacyjnymi związanymi z podstawami elektrotechniki oraz z praktykami instalacyjnymi, które pomogą w interpretacji schematów oraz właściwym doborze elementów w instalacjach.

Pytanie 13

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. NYM-J
B. H03VV-F
C. H07V-U
D. NAYY-O
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 14

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Nasadowym.
B. Oczkowym.
C. Płaskim.
D. Imbusowym.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 15

Przeciążenie w instalacji elektrycznej polega na

A. przekroczeniu maksymalnego prądu znamionowego instalacji.
B. bezpośrednim połączeniu dwóch faz w systemie.
C. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
D. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 16

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Silnika jednofazowego.
B. Dławika.
C. Transformatora jednofazowego.
D. Prądnicy synchronicznej.
Odpowiedzi, które wskazują na inne maszyny elektryczne, zawierają szereg nieprawidłowych założeń, które mogą prowadzić do mylnych wniosków. Na przykład, silnik jednofazowy jest często mylony z dławikiem, jednak te dwa urządzenia mają diametralnie różne funkcje. Dławik jest elementem pasywnym, który ma na celu ograniczenie prądu w obwodach elektrycznych, co nie ma związku z zapisanymi parametrami na tabliczce, które dotyczą aktywnego urządzenia, jakim jest silnik. Transformator jednofazowy to kolejne niewłaściwe skojarzenie, ponieważ jego główną funkcją jest zmiana napięcia, a nie generowanie ruchu mechanicznego, jak w przypadku silnika. Parametry takie jak moc, prąd czy napięcie, które są kluczowe dla silnika, nie są odpowiednie dla transformatora. Prądnica synchroniczna, z kolei, jest maszyną, która generuje energię elektryczną, a nie wykorzystuje jej do wytwarzania ruchu, co również wyklucza ją jako właściwą odpowiedź. Mylnym wnioskom często towarzyszy brak zrozumienia różnic w działaniu różnych urządzeń elektrycznych oraz ich zastosowania. Aby poprawnie zidentyfikować typ maszyny, ważne jest, aby zrozumieć, jakie funkcje pełnią poszczególne elementy i jakie są ich charakterystyczne parametry. W praktyce, znajomość tych różnic jest niezbędna do skutecznego projektowania oraz doboru odpowiednich urządzeń w inżynierii elektrycznej.

Pytanie 17

Wskaż właściwą kolejność prac przy wymianie uszkodzonego wyłącznika schodowego.

A. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż wyłącznika, montaż wyłącznika, wyłączenie napięcia.
B. Wyłączenie napięcia, demontaż wyłącznika, montaż wyłącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia.
C. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż wyłącznika, montaż wyłącznika, włączenie napięcia, sprawdzenie prawidłowości działania.
D. Stwierdzenie braku napięcia, wyłączenie napięcia, montaż wyłącznika, demontaż wyłącznika, sprawdzenie prawidłowości działania, włączenie napięcia.
Prawidłowa kolejność prac, którą wybrałeś, dokładnie odzwierciedla podstawową zasadę w elektroenergetyce: najpierw bezpieczeństwo, potem praca, na końcu uruchomienie i test. Najpierw musi być wyłączenie napięcia – czyli odłączenie obwodu od zasilania odpowiednim łącznikiem, wyłącznikiem nadprądowym albo rozłącznikiem. Sama pozycja dźwigni w rozdzielnicy to za mało, ale jest to pierwszy krok. Następnie konieczne jest stwierdzenie braku napięcia, czyli sprawdzenie przy pomocy odpowiedniego wskaźnika napięcia, czy na przewodach naprawdę nie ma potencjału. W dobrych praktykach zawsze mówi się: nie ufaj tylko pozycji wyłącznika, zawsze weryfikuj przyrządem. Dopiero po potwierdzeniu braku napięcia można bezpiecznie przystąpić do demontażu uszkodzonego wyłącznika schodowego – odkręcenie osprzętu, odłączenie przewodów, oznaczenie ich, żeby nie pomylić przy ponownym podłączeniu. Potem następuje montaż nowego wyłącznika: prawidłowe podłączenie przewodu fazowego na zacisk wspólny (L, COM) i przewodów korespondencyjnych na pozostałe zaciski, solidne dokręcenie śrub, poprawne ułożenie przewodów w puszce. Po zakończeniu prac montażowych można dopiero włączyć napięcie w rozdzielnicy. Ostatni krok to sprawdzenie prawidłowości działania – czyli kilka razy przełączenie obu wyłączników schodowych, sprawdzenie czy światło reaguje prawidłowo z każdego miejsca. Moim zdaniem to właśnie ten etap wiele osób bagatelizuje, a jest on kluczowy: pozwala wychwycić złe podłączenie korespondencji, pomylenie przewodu fazowego z neutralnym albo z ochronnym, co byłoby poważnym błędem. Cała ta sekwencja jest zgodna z ogólnymi zasadami BHP, wymaganiami norm PN-HD 60364 oraz typowymi procedurami LOTO (Lock Out/Tag Out) stosowanymi w energetyce i instalacjach elektrycznych. W praktyce, przy każdej pracy w puszce czy oprawie oświetleniowej, warto mentalnie powtarzać sobie ten schemat: odłącz – sprawdź – wykonaj – uruchom – przetestuj. To bardzo ogranicza ryzyko porażenia i uszkodzenia instalacji.

Pytanie 18

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 4.
C. Symbolem 2.
D. Symbolem 3.
Symbol 2 jest poprawnym oznaczeniem instalacji prowadzonej na drabinkach kablowych, zgodnie z aktualnymi normami i standardami branżowymi, takimi jak PN-IEC 60617. Drabinki kablowe są powszechnie stosowane w infrastrukturze elektroenergetycznej, gdzie służą do organizacji i prowadzenia okablowania w sposób uporządkowany i estetyczny. W praktyce, instalacje prowadzone na drabinkach kablowych charakteryzują się równoległymi liniami, które symbolizują drabinki, oraz dodatkowymi poprzeczkami, które mogą ilustrować mocowania kabli. Ważne jest, aby znać te symbole, gdyż są one niezbędnymi elementami dokumentacji technicznej, a ich poprawne użycie może znacząco ułatwić identyfikację i konserwację instalacji. Użycie symbolu 2 w schematach pozwala na łatwe zrozumienie rozmieszczenia instalacji przez techników oraz inżynierów, co przyczynia się do większego bezpieczeństwa i efektywności pracy. Dodatkowo, znajomość takich symboli jest kluczowa w kontekście współpracy z innymi specjalistami w branży, co może przyspieszyć procesy projektowe i wykonawcze.

Pytanie 19

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Wykorzystywanie urządzeń o zbyt dużej mocy
B. Użycie wyłącznika o zbyt długim czasie reakcji
C. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
D. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 20

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. schodowy.
B. dwubiegunowy.
C. świecznikowy.
D. hotelowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 21

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Izolator wsporczy.
C. Wkładkę topikową bezpiecznika mocy.
D. Bezpiecznik aparatowy.
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących funkcji i budowy różnych elementów zabezpieczeń elektrycznych. Izolator przepustowy wysokiego napięcia to komponent stosowany do przeprowadzania przewodów przez przegrody, takie jak ściany czy dachy, i nie ma żadnego zastosowania w kontekście zabezpieczeń przed przeciążeniami. Jego konstrukcja różni się znacznie od wkładki topikowej, która jest przeznaczona do ochrony obwodów. Bezpiecznik aparatowy, chociaż również ma na celu ochronę obwodów, jest innego typu urządzeniem – ma zazwyczaj bardziej złożoną budowę i może obejmować mechanizmy ręcznego resetowania, co czyni go odmiennego od prostoty budowy wkładki topikowej. Izolator wsporczy, będący elementem wspierającym przewody w stacjach elektroenergetycznych, również nie ma żadnego związku z funkcją zabezpieczającą obwody przed przeciążeniem. Te różnice w przeznaczeniu i konstrukcji mogą prowadzić do błędnych wniosków i wyboru niewłaściwych odpowiedzi, co podkreśla znaczenie znajomości właściwości oraz zastosowań poszczególnych komponentów w systemach elektrycznych. Warto zauważyć, że gruntowna wiedza na temat elementów zabezpieczających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności w pracy z instalacjami elektrycznymi.

Pytanie 22

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Wyzwalacza przeciążeniowego.
B. Styku ruchomego.
C. Wyzwalacza zwarciowego.
D. Komory łukowej.
Pojęcia związane ze stykami ruchomymi, komorami łukowymi oraz wyzwalaczami przeciążeniowymi często mylone są z funkcją wyzwalacza zwarciowego, co prowadzi do nieporozumień w zrozumieniu działania wyłączników nadprądowych. Styki ruchome są elementami, które w momencie zadziałania wyłącznika fizycznie przerywają obwód, jednak same w sobie nie mają zdolności do detekcji zwarcia. Ich rola jest czysto mechaniczna i nie obejmuje analizy prądu. Komory łukowe natomiast służą do gaszenia łuku elektrycznego, który powstaje w momencie przerywania obwodu, ale również nie mają zdolności wykrywania zwarć. Wyzwalacze przeciążeniowe, z drugiej strony, odpowiadają za zadziałanie w sytuacji długotrwałego nadmiaru prądu, co różni się od nagłego zwarcia. Często występujące nieporozumienia dotyczące tych elementów mogą wynikać z błędnej interpretacji ich funkcji. Kluczowe jest zrozumienie, że wyzwalacz zwarciowy jest wyspecjalizowanym elementem odpowiedzialnym za natychmiastowe przerwanie obwodu w przypadku niebezpiecznego wzrostu prądu, co ma fundamentalne znaczenie dla ochrony instalacji elektrycznej. Zatem, znajomość działania tych elementów oraz ich roli w systemie ochrony elektrycznej jest niezbędna dla zapewnienia bezpieczeństwa w instalacjach i umożliwienia prawidłowego doboru komponentów w zgodzie z normami branżowymi.

Pytanie 23

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 100/100 V
B. 300/500 V
C. 450/750 V
D. 300/300 V
Izolacja przewodów stosowanych w sieciach trójfazowych niskiego napięcia, takich jak 230/400 V, powinna spełniać określone normy dotyczące napięcia znamionowego. Odpowiedź 300/500 V jest prawidłowa, ponieważ zapewnia odpowiedni margines bezpieczeństwa i wytrzymałość na napięcia krótkotrwałe, które mogą wystąpić w wyniku zakłóceń lub przepięć. Przykładowo, przewody o izolacji 300/500 V są powszechnie stosowane w instalacjach domowych oraz przemysłowych, gdzie wymagane jest zabezpieczenie przed zwarciami i innymi problemami elektrycznymi. Zgodnie z normą PN-EN 60228, przewody te muszą być odporne na wysokie temperatury oraz działanie substancji chemicznych, co czyni je idealnym wyborem do różnorodnych zastosowań. W praktyce, dobór odpowiedniej izolacji ma kluczowe znaczenie dla bezpieczeństwa i efektywności systemów elektrycznych, dlatego ważne jest, aby stosować przewody zgodne z wymaganiami dotyczącymi napięcia znamionowego, zapewniając tym samym wysoką jakość instalacji elektrycznych.

Pytanie 24

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik zaniku i kolejności faz.
B. Ogranicznik przepięć.
C. Wyłącznik różnicowoprądowy z członem nadprądowym.
D. Wyłącznik nadprądowy dwubiegunowy.
Wyłącznik różnicowoprądowy z członem nadprądowym to urządzenie o kluczowym znaczeniu w systemach elektroenergetycznych, które zapewnia zarówno ochronę przed przeciążeniem, jak i przed porażeniem prądem elektrycznym. Jego charakterystyczne oznaczenia i symbole na obudowie pozwalają na łatwe zidentyfikowanie go wśród innych urządzeń elektrycznych. W praktyce, wyłączniki różnicowoprądowe z członem nadprądowym są często stosowane w instalacjach domowych oraz przemysłowych, gdzie zabezpieczają przed skutkami zwarć i przeciążeń. Zgodnie z normami PN-EN 61008 oraz PN-EN 60947, urządzenia te powinny być stosowane w obwodach, gdzie istnieje ryzyko porażenia prądem, zwłaszcza w pomieszczeniach wilgotnych, jak łazienki czy kuchnie. Regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich skuteczności. Dobrą praktyką jest również ich instalacja w obwodach, gdzie zasilane są urządzenia o dużym poborze mocy, co minimalizuje ryzyko uszkodzenia sprzętu i zapewnia bezpieczeństwo użytkowników.

Pytanie 25

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Warunki zewnętrzne, którym instalacja jest poddawana
B. Liczba urządzeń zasilanych z tej instalacji
C. Metoda montażu instalacji
D. Kształt budynku w przestrzeni
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 26

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO < Zs ∙ Ia
B. UO > Zs ∙ Ia
C. UO < Zs ∙ 2Ia
D. UO > Zs ∙ 2Ia
Odpowiedź UO > Zs ∙ Ia jest poprawna, ponieważ zgodnie z zasadami ochrony urządzeń elektrycznych, napięcie znamionowe (UO) powinno być większe od iloczynu impedancji pętli zwarciowej (Zs) i wartości prądu, który zapewnia bezzwłoczne zadziałanie urządzenia ochronnego (Ia). To oznacza, że w przypadku zwarcia, napięcie musi być wystarczające, aby zainicjować odpowiednią reakcję urządzenia ochronnego, co zapewnia bezpieczeństwo użytkowników oraz integralność systemu. Zgodnie z normami takimi jak PN-EN 60947-2, które określają wymagania dotyczące zabezpieczeń elektrycznych, ta zasada jest kluczowa w projektowaniu i eksploatacji instalacji elektrycznych. Przykładem zastosowania tej zasady może być proces doboru wyłączników nadprądowych, które muszą odpowiednio reagować na zwarcia, aby zminimalizować ryzyko pożaru lub uszkodzeń urządzeń. Odpowiednie obliczenia impedancji pętli zwarciowej oraz prądu zadziałania są niezbędne w analizie ochrony instalacji, co podkreśla praktyczny aspekt tej wiedzy w codziennej pracy inżynierów elektryków.

Pytanie 27

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-L
B. Z L-PE(RCD)
C. Z L-N
D. Z L-PE
W kontekście pomiarów impedancji pętli zwarcia, wybór odpowiedniej funkcji pomiarowej ma kluczowe znaczenie. Odpowiedzi takie jak "Z L-PE", "Z L-N" oraz "Z L-L" nie są prawidłowe, ponieważ nie uwzględniają obecności wyłącznika różnicowoprądowego (RCD) w układzie. Pomiar "Z L-PE" zazwyczaj odnosi się do uziemienia bez uwzględnienia specyfiki RCD, co może prowadzić do niepełnych lub nieprawidłowych danych. W przypadku "Z L-N" pomiar koncentruje się na napięciu między linią a neutralnym przewodem, co również nie odzwierciedla rzeczywistego stanu impedancji pętli zwarcia, szczególnie w kontekście ochrony przed porażeniem. Z kolei pomiar "Z L-L" dotyczy wyłącznie połączenia między przewodami fazowymi i nie dostarcza informacji o uziemieniu, co jest istotne w analizie bezpieczeństwa. Często błędem myślowym jest zakładanie, że bezpośrednie połączenia między przewodami wystarczą do oceny bezpieczeństwa instalacji. Należy pamiętać, że prawidłowa ocena wymaga uwzględnienia wszystkich komponentów, w tym urządzeń ochronnych, jakimi są RCD. Zaniedbanie tego aspektu może prowadzić do poważnych konsekwencji, dlatego tak istotne jest stosowanie odpowiednich metod pomiarowych, zgodnych z normami, aby zapewnić pełne bezpieczeństwo instalacji elektrycznych.

Pytanie 28

Na podstawie ilustracji przedstawiającej fragment instalacji elektrycznej, określ technikę wykonania instalacji.

Ilustracja do pytania
A. Podtynkowa.
B. Natynkowa na uchwytach.
C. Natynkowa prowadzona w rurkach.
D. Wtynkowa.
Na fotografii łatwo się pomylić, bo widać przewody na wierzchu muru, więc część osób od razu myśli o instalacji natynkowej. Tymczasem kluczowe jest to, na jakim etapie budowy jesteśmy i co się stanie dalej. Przewody są ułożone na surowej ścianie z cegły i wyraźnie przygotowane do przykrycia tynkiem – to jest właśnie klasyczna instalacja wtynkowa. Błąd polega często na utożsamianiu każdego widocznego przewodu z instalacją natynkową, a to nie do końca tak działa. Instalacja natynkowa na uchwytach to rozwiązanie docelowe: przewody lub przewody w izolacji są prowadzone po gotowej powierzchni ściany, mocowane klipsami, listwami lub korytami i pozostają widoczne po zakończeniu robót wykończeniowych. Stosuje się ją np. w piwnicach, garażach, warsztatach, gdzie nikt nie planuje tynkowania ścian albo priorytetem jest łatwy dostęp do przewodów. Na zdjęciu widać mury w stanie surowym i brak jakiegokolwiek wykończenia, więc trudno mówić o docelowej instalacji natynkowej. Z kolei instalacja natynkowa prowadzona w rurkach polega na układaniu przewodów wewnątrz rur sztywnych lub peszli po powierzchni ściany; rury są dobrze widoczne i tworzą osobną, mechaniczną osłonę. Tu czegoś takiego nie widać – przewody biegną swobodnie, jedynie przytwierdzone do cegły. Częsty błąd myślowy polega też na myleniu pojęć „podtynkowa” i „wtynkowa”. W języku potocznym bywa to mieszane, ale w technice instalacyjnej podtynkowa oznacza zwykle prowadzenie przewodów w rurkach lub peszlach zatopionych w tynku lub w konstrukcji ściany. W pokazanym przypadku przewód leży bezpośrednio na murze i dopiero zostanie zatopiony w tynku, bez ciągłej rury ochronnej – czyli jest to typowa wtynkowa. Żeby dobrze rozpoznawać takie sytuacje, warto zawsze zadać sobie pytanie: czy to jest stan końcowy instalacji, czy dopiero przygotowanie pod tynk? I czy przewód ma własną osłonę mechaniczną w postaci rury, czy jego ochroną będzie później warstwa tynku. Odpowiedź na te dwie kwestie zwykle rozwiewa wątpliwości.

Pytanie 29

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór nieodpowiedniego narzędzia do zaciskania końcówek tulejkowych izolowanych może prowadzić do wielu problemów technicznych, które wpływają na jakość i bezpieczeństwo połączeń elektrycznych. Wiele osób może sądzić, że inne narzędzia, takie jak szczypce uniwersalne, spawarki lub narzędzia do cięcia, mogą być stosowane do tego celu. Jednakże, jest to fundamentalny błąd. Narzędzia te nie zapewniają odpowiedniego profilu zaciskowego ani precyzji, co skutkuje nierównomiernym lub niewłaściwym zaciśnięciem końcówki. Tego typu błędy mogą prowadzić nie tylko do zwiększonego oporu elektrycznego, ale także do przegrzewania się połączeń, co w konsekwencji może prowadzić do ich uszkodzenia lub zapłonu. Również, niezastosowanie się do standardów, takich jak normy IEC, które precyzują wymagania dotyczące narzędzi elektrycznych, może skutkować nieodpowiednimi połączeniami. Kluczowe jest, aby wykorzystywać odpowiednie narzędzia do konkretnych zadań - w tym przypadku szczypce do zaciskania końcówek tulejkowych izolowanych, które zostały zaprojektowane z myślą o zapewnieniu trwałej i bezpiecznej pracy. Wybór właściwego narzędzia ma kluczowe znaczenie dla długotrwałości instalacji oraz bezpieczeństwa użytkowników.

Pytanie 30

Na rysunku pokazano pętlę zwarciową w układzie typu

Ilustracja do pytania
A. TN-C-S
B. TT
C. IT
D. TN-S
Odpowiedź TN-C-S jest poprawna, ponieważ odnosi się do systemu zasilania, w którym przewód PEN, pełniący funkcję zarówno przewodu ochronnego (PE), jak i neutralnego (N), jest rozdzielany na te dwa oddzielne przewody w określonym punkcie instalacji. Taki sposób realizacji systemu jest zgodny z normami bezpieczeństwa, co zapewnia nie tylko właściwe zabezpieczenie przed porażeniem prądem, ale także minimalizuje ryzyko zakłóceń w pracy urządzeń elektrycznych. W praktyce, układ TN-C-S jest często stosowany w budynkach mieszkalnych oraz przemysłowych, gdzie istotne jest zachowanie wysokiego poziomu bezpieczeństwa. Rozdzielenie przewodu PEN na PE i N zmniejsza ryzyko wystąpienia prądów wyrównawczych oraz potencjalnych problemów związanych z niewłaściwym uziemieniem. Ponadto, w kontekście regulacji, taki układ jest zgodny z normami IEC 60364, które nakładają obowiązek stosowania rozwiązań minimalizujących ryzyko wystąpienia niebezpiecznych sytuacji związanych z elektrycznością. Warto również zauważyć, że przy projektowaniu instalacji elektrycznych, inżynierowie muszą zwracać uwagę na lokalne przepisy i normy, które mogą wpłynąć na wybór konkretnego systemu zasilania.

Pytanie 31

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Woltomierza
B. Miernika z funkcją pomiaru rezystancji
C. Miernika z funkcją pomiaru pojemności
D. Amperomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 32

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
B. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
C. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
D. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 33

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 2 do 3
B. 5 do 10
C. 10 do 20
D. 3 do 5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 34

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 35

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. prefabrykowanej.
B. wiązanej.
C. podtynkowej.
D. natynkowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bruzdownica, znana również jako przecinarka do betonu lub stali, jest narzędziem wykorzystywanym w instalacjach podtynkowych w celu wykonywania rowków w ścianach i stropach. Takie rowki są niezbędne do osadzenia przewodów elektrycznych czy rur hydraulicznych, co pozwala na estetyczne i funkcjonalne wykończenie wnętrz. Wykonywanie instalacji podtynkowej, która jest schowana w ścianach, wymaga precyzyjnego cięcia, a bruzdownica umożliwia to z dużą dokładnością oraz w stosunkowo krótkim czasie. Ponadto, przy użyciu bruzdownicy można dostosować szerokość i głębokość rowków do specyfiki używanych materiałów oraz przewodów, co jest istotne z punktu widzenia bezpieczeństwa i norm budowlanych. W praktyce, aby uzyskać najlepsze rezultaty, operator bruzdownicy powinien przestrzegać zaleceń producenta oraz standardów BHP, co przyczynia się do zwiększenia efektywności pracy oraz zmniejszenia ryzyka wypadków. Prawidłowe stosowanie bruzdownicy ma także wpływ na późniejsze etapy wykończenia, takie jak tynkowanie czy malowanie, które powinny być przeprowadzane na równych i gładkich powierzchniach, stworzonych przez profesjonalnie wykonane rowki.

Pytanie 36

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
B. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
C. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
D. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.

Pytanie 37

Na której ilustracji przedstawiono symbol graficzny przewodu ochronnego?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ilustracja 2 przedstawia symbol graficzny przewodu ochronnego zgodny z normami i przepisami dotyczącymi oznaczeń w instalacjach elektrycznych. Przewód ochronny, zwany również przewodem uziemiającym, ma kluczowe znaczenie w zapewnieniu bezpieczeństwa instalacji oraz ochrony przed porażeniem elektrycznym. Oznaczenie to składa się z linii prostej oraz przylegającej do niej linii ukośnej, co jednoznacznie wskazuje na funkcję ochronną tego przewodu. Zgodnie z normą PN-EN 60446, symbole powinny być tak zaprojektowane, aby były łatwe do rozpoznania i zrozumienia dla wszystkich osób zajmujących się instalacjami elektrycznymi. Użycie poprawnego oznaczenia przewodu ochronnego jest kluczowe, aby upewnić się, że instalacje są realizowane zgodnie z najlepszymi praktykami, co w konsekwencji minimalizuje ryzyko wystąpienia awarii oraz wypadków. W praktyce, właściwe oznaczenie przewodów ochronnych można spotkać na placach budowy, w dokumentacji technicznej oraz w instrukcjach obsługi urządzeń elektrycznych, co potwierdza ich znaczenie w codziennej pracy specjalistów branży elektrycznej.

Pytanie 38

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,00 Ω
B. 3,83 Ω
C. 2,30 Ω
D. 1,15 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 39

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do rozruchu silnika pierścieniowego.
B. Do załączenia silnika z opóźnieniem.
C. Do pracy równoległej dwóch styczników.
D. Do pracy zależnej dwóch styczników.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Do pracy zależnej dwóch styczników" jest poprawna, ponieważ schemat przedstawia układ, w którym odpowiednie połączenie styczników K1 i K2 pozwala na zależne działanie tych urządzeń. W praktyce, taki układ jest wykorzystywany w systemach automatyki przemysłowej, gdzie jeden proces wymaga aktywacji kolejnego urządzenia. Przykładem może być sytuacja, w której włączenie jednego silnika elektrycznego (K1) uruchamia system chłodzenia (K2). W standardach branżowych, takich jak normy IEC 60204 dotyczące bezpieczeństwa maszyn, kluczowe jest zapewnienie, aby sterowanie urządzeniami odbywało się w sposób przemyślany i bezpieczny, co jest realizowane poprzez zastosowanie układów zależnych. Takie podejście nie tylko zwiększa efektywność systemu, ale również minimalizuje ryzyko błędów w procesach przemysłowych oraz zapewnia wysoką niezawodność działania układów automatyki.

Pytanie 40

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Wkrętaka typu torks.
B. Klucza nasadowego.
C. Wkrętaka krzyżowego.
D. Klucza ampulowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klucz ampulowy, znany także jako klucz imbusowy, jest narzędziem przeznaczonym do pracy z śrubami i wkrętami, które mają łeb sześciokątny wewnętrzny. W przypadku opisanej sytuacji, użycie klucza ampulowego jest kluczowe, ponieważ idealnie pasuje do profilu łba śruby, co zapewnia skuteczne i bezpieczne wkręcanie lub wykręcanie. Tego typu klucze są szeroko stosowane w różnych dziedzinach, takich jak mechanika, elektronika czy budownictwo, co czyni je niezastąpionym narzędziem w zestawie każdego profesjonalisty. W praktyce, klucz ampulowy pozwala na uzyskanie dużego momentu obrotowego przy niewielkim wysiłku, co jest szczególnie ważne przy pracy z metalowymi elementami, które mogą być narażone na korozję lub inne uszkodzenia. Dodatkowo, klucze te są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do różnych śrub, zgodnie z normami ISO i DIN. Użycie odpowiedniego narzędzia z pewnością przyczyni się do wydajności pracy oraz do ograniczenia ryzyka uszkodzeń elementów montażowych.