Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 13:59
  • Data zakończenia: 7 grudnia 2025 14:11

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Schodowy
B. Krzyżowy
C. Świecznikowy
D. Dwubiegunowy
Świecznikowy łącznik instalacyjny jest odpowiednim rozwiązaniem w sytuacjach, gdy chcemy sterować jednym źródłem światła z dwóch miejsc, co jest typowe w korytarzach, schodach czy dużych pomieszczeniach. Posiada on dwa klawisze i trzy zaciski elektryczne, co pozwala na realizację funkcji przełączania obwodu. Dzięki zastosowaniu tego typu łącznika, użytkownik ma możliwość włączania i wyłączania oświetlenia z dwóch różnych lokalizacji, co znacząco zwiększa komfort użytkowania. W praktyce, łącznik świecznikowy jest często wykorzystywany w instalacjach domowych, w których architektura wnętrza wymaga takiej funkcjonalności. Dobrą praktyką jest stosowanie łączników zgodnych z normami elektrycznymi, co zwiększa bezpieczeństwo i niezawodność instalacji. Warto również zauważyć, że w przypadku modernizacji instalacji elektrycznej, wybór łącznika świecznikowego może być kluczowy dla poprawy ergonomii użytkowania oświetlenia.

Pytanie 2

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
B. Zamiana przewodu neutralnego z fazowym
C. Poluzowany przewód neutralny w głównym złączu budynku
D. Zamiana przewodu neutralnego z ochronnym
No, to zamiana przewodu neutralnego z fazowym czy ochronnym to już duża sprawa, ale w tym przypadku nie wyjaśnia to, czemu żarówki tak często się przepalają. Jeśli przewody się zamienia, to może być niebezpiecznie, bo napięcie z fazy w miejsce neutralnego potrafi naprawdę zaskoczyć użytkowników. Z kolei zamiana z przewodem ochronnym to już w ogóle łamanie zasad bezpieczeństwa i może przynieść duże problemy. Poluzowany przewód neutralny w złączu głównym też może być przyczyną, ale bardziej prawdopodobne jest, że coś jest nie tak w samej rozdzielnicy. Często instalatorzy zapominają o sprawdzeniu połączeń w rozdzielnicach, a to prowadzi do różnych kłopotów. Ludzie myślą, że instalacja ogólnie robi problemy, zamiast zbadać, co się dzieje lokalnie w rozdzielnicy. Pamiętaj, że każdy element w instalacji ma swoje zadanie i jeśli coś źle zrobisz, to możesz narazić sprzęt i zdrowie ludzi.

Pytanie 3

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duży przekrój uszkodzonego przewodu
B. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
C. Luźne połączenie w listwie neutralnej
D. Zbyt duża moc urządzenia
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 4

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. PE
B. FE
C. PEN
D. FB
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 5

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. nóż monterski
B. prasę hydrauliczną
C. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
D. cęgi do zdejmowania izolacji oraz wkrętak
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 6

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjnych.
B. Rtęciowych.
C. Żarowych.
D. Indukcyjnych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 7

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Wiertarka, wiertło, piła do cięcia, wkrętak.
B. Nóż monterski, wiertarka, zestaw kluczy.
C. Piła do cięcia, przecinak, młotek.
D. Zestaw kluczy, wkrętarka, wiertło, przecinak.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 8

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym końcu kabla. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły a i b są przerwane.
B. Żyły c i a są zwarte ze sobą.
C. Żyły c i a są przerwane.
D. Żyły a i b są zwarte ze sobą.
Odpowiedź, że żyły a i b są zwarte, jest jak najbardziej trafna. Pomiary rezystancji jasno pokazują, że te żyły są ze sobą połączone. W obu seriach testów, gdy te żyły były zwarte, rezystancja wynosiła wartość skończoną. To sugeruje, że mamy do czynienia z bezpośrednim połączeniem. W praktyce, w elektryce i telekomunikacji, ważne jest, by pamiętać o przestrzeganiu norm i standardów bezpieczeństwa przy łączeniu kabli. Chodzi o to, żeby uniknąć problemów, które mogą zepsuć całe systemy. Gdy pojawią się uszkodzenia lub awarie, jak przerwy w obwodach, kluczowe jest, żeby przeprowadzić dokładne pomiary dla diagnostyki. Dlatego umiejętne czytanie wyników pomiarów rezystancji jest absolutnie istotne dla prawidłowego działania instalacji elektrycznych. Dobrze jest też dokumentować pomiary, co naprawdę pomaga w podejmowaniu decyzji o naprawach czy zmianach w systemach.

Pytanie 9

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Poziomnica
B. Piła do metalu
C. Ściągacz izolacji
D. Młotek
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 10

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Zamontowanie źródeł światła oraz otwieranie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest nieodpowiednim działaniem, które może prowadzić do wielu problemów technicznych. Po pierwsze, pozostawienie źródeł światła w obwodzie może skutkować ich uszkodzeniem, gdyż wiele z nich nie jest przystosowanych do wytrzymywania napięcia testowego, które może być znacznie wyższe niż nominalne wartości robocze. Przykładowo, podczas testu rezystancji izolacji przy użyciu napięcia 500V, nieodpowiednio zabezpieczone źródła światła mogą ulec uszkodzeniu, co wiąże się z dodatkowymi kosztami naprawy lub wymiany. Podobnie, otwarcie łączników instalacyjnych może prowadzić do nieprzewidywalnych sytuacji, w których obwód może nie być całkowicie odłączony, co może spowodować powstanie niebezpiecznych warunków pracy. Zgodnie z zasadami BHP oraz wytycznymi dotyczącymi pomiarów elektrycznych, istotne jest, aby zawsze upewnić się, że obwód jest w pełni odłączony przed przystąpieniem do jakichkolwiek testów. Nieprzestrzeganie tych zasad może prowadzić do poważnych zagrożeń dla personelu oraz uszkodzeń sprzętu, co jest nieakceptowalne w profesjonalnych instalacjach elektrycznych.

Pytanie 11

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. GU10
B. E27
C. G9
D. MR16
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 12

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wyłącznik różnicowoprądowy przedstawiony na zdjęciu D jest właściwym rozwiązaniem do monitorowania prądu upływu w instalacji elektrycznej. Posiada on wskaźnik prądu upływu, który jest kluczowy dla bezpiecznej eksploatacji systemów elektrycznych. W praktyce, posiadając wyłącznik z takim wskaźnikiem, użytkownik jest w stanie na bieżąco śledzić ewentualne nieprawidłowości w działaniu instalacji, co może zapobiec poważnym uszkodzeniom sprzętu lub zagrożeniu dla życia. Standardy, takie jak PN-EN 61008, podkreślają konieczność stosowania wyłączników różnicowoprądowych dla zwiększenia bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania może być system monitorowania w budynkach mieszkalnych, gdzie wyłącznik D informuje o wszelkich problemach związanych z prądem upływu, co pozwala na szybsze reakcje i zminimalizowanie ryzyka. Posiadanie takiego wskaźnika jest zgodne z najlepszymi praktykami w zakresie ochrony przeciwnapięciowej i bezpieczeństwa elektrycznego.

Pytanie 13

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Bezpiecznik.
B. Przekaźnik termobimetalowy.
C. Wyłącznik silnikowy.
D. Rozłącznik.
Odpowiedź "Przekaźnik termobimetalowy" jest prawidłowa, ponieważ symbol dT na schemacie odnosi się do urządzenia, które ma kluczowe znaczenie w ochronie silników elektrycznych. Przekaźnik termobimetalowy działa na zasadzie reakcji na temperaturę, co czyni go idealnym rozwiązaniem do monitorowania i ochrony przed przeciążeniem prądowym. Kiedy prąd przekracza dopuszczalny poziom, generowane ciepło powoduje odkształcenie bimetalu, co prowadzi do otwarcia obwodu i wyłączenia silnika. Tego typu urządzenia są często stosowane w aplikacjach przemysłowych oraz w systemach automatyki, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem spowodowanym przeciążeniem. Zgodnie z normami IEC 60204-1, przekaźniki termobimetalowe są zalecane do ochrony silników, co podkreśla ich wysoką jakość i skuteczność w praktycznych zastosowaniach. Warto również zaznaczyć, że ich instalacja jest zgodna z dobrymi praktykami w zakresie bezpieczeństwa, co przyczynia się do długowieczności oraz efektywności pracy silników.

Pytanie 14

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Nasadowym.
B. Oczkowym.
C. Imbusowym.
D. Płaskim.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 15

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 2.
C. Na ilustracji 1.
D. Na ilustracji 3.
Ilustracja 4 przedstawia przewód czterordzeniowy, co jest zgodne z wymaganiami dotyczącymi trójfazowego przyłącza ziemnego w systemie TN-S. W tym systemie mamy do czynienia z trzema przewodami fazowymi (L1, L2, L3), jednym przewodem neutralnym (N) oraz oddzielnym przewodem ochronnym (PE). Taki układ zapewnia odpowiednią separację przewodów, co jest niezbędne dla bezpieczeństwa i efektywności instalacji elektrycznej. Przewody czterordzeniowe są powszechnie stosowane w budynkach jednorodzinnych z przyłączami trójfazowymi, ponieważ pozwalają na równomierne obciążenie faz oraz minimalizują ryzyko przeciążenia. Zgodnie z normami europejskimi, instalacje elektryczne powinny być projektowane zgodnie z zasadami bezpieczeństwa, a wybór odpowiednich przewodów jest kluczowy. Przewód czterordzeniowy na ilustracji 4 jest idealnym rozwiązaniem, ponieważ zapewnia zarówno zasilanie dla urządzeń trójfazowych, jak i ochronę przed porażeniem elektrycznym, co jest zgodne z normą PN-EN 60204-1. W praktyce, użycie takiego przewodu umożliwia również elastyczność w rozbudowie instalacji o dodatkowe urządzenia lub obwody, co jest istotnym aspektem w nowoczesnym budownictwie.

Pytanie 16

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Rozłącznik
B. Odłącznik
C. Wyłącznik
D. Stycznik
Wyłącznik to urządzenie elektroenergetyczne, które nie tylko przerywa obwód, ale także posiada komory gaszeniowe, co umożliwia mu skuteczne wyłączanie prądów zwarciowych. Komory te są kluczowe, ponieważ odpowiadają za stłumienie łuku elektrycznego, który powstaje podczas rozłączania obwodu w sytuacji zwarcia. Dzięki temu wyłączniki są w stanie szybko i bezpiecznie eliminować niebezpieczne prądy, co chroni urządzenia elektryczne oraz instalacje przed uszkodzeniami. Przykładami zastosowań wyłączników są systemy zabezpieczeń w elektrowniach, stacjach transformacyjnych oraz w instalacjach przemysłowych, gdzie niezawodność i bezpieczeństwo są kluczowe. W kontekście norm, wyłączniki powinny spełniać wymogi określone w normach IEC 60947 i PN-EN 60898, które regulują ich budowę oraz parametry pracy, co zapewnia ich wysoką jakość i efektywność działania.

Pytanie 17

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 3.
C. Na ilustracji 2.
D. Na ilustracji 4.
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.

Pytanie 18

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. cewkę przekaźnika z opóźnionym działaniem.
B. cewkę przekaźnika z opóźnionym odpadaniem.
C. wyzwalanie cieplne.
D. wyzwalanie elektroniczne.
Zrozumienie symboliki używanej w instalacjach elektrycznych jest kluczowe dla właściwego projektowania i analizy systemów zabezpieczeń. Jednakże, odpowiedzi takie jak wyzwalanie elektroniczne, cewka przekaźnika z opóźnionym działaniem oraz cewka przekaźnika z opóźnionym odpadaniem nie oddają właściwego znaczenia symbolowi przedstawionemu na schemacie. Wyzwalanie elektroniczne odnosi się do mechanizmów, które wykorzystują układy elektroniczne do detekcji przeciążeń i zwarć, a nie do działań opartych na cieple. Oznacza to, że wyzwalanie elektroniczne ma swoje zastosowanie, ale nie jest to rozwiązanie ukierunkowane na zabezpieczenia przed przeciążeniem termicznym. Podobnie, cewki przekaźników z opóźnionym działaniem i odpadaniem dotyczą mechanizmów, które wprowadzają czasowy aspekt do działania przekaźnika, co może być użyteczne w innych kontekstach, jednak nie są one związane z wyzwalaniem cieplnym. W praktyce, wielu inżynierów może popełnić błąd, zakładając, że te mechanizmy są wymienne, co jest mylnym podejściem. Wiedza na temat różnic między tymi rozwiązaniami jest niezbędna dla skutecznego projektowania systemów elektrycznych, które są zarówno bezpieczne, jak i efektywne. Warto zaznaczyć, że każdy z tych typów wyzwalania ma swoje specyficzne zastosowanie i zrozumienie ich różnic jest kluczowe w kontekście ochrony systemów elektrycznych przed różnymi typami awarii.

Pytanie 19

Rysunek przedstawia schemat lampy z układem zapłonowym. Jaka to lampa?

Ilustracja do pytania
A. Żarowa.
B. Fluorescencyjna.
C. Rtęciowa wysokoprężna.
D. Sodowa niskoprężna.
Lampa rtęciowa wysokoprężna, jak sugeruje poprawna odpowiedź, charakteryzuje się specyficznym układem zapłonowym, który obejmuje dławik, kondensator oraz elektrody. Te elementy są kluczowe dla prawidłowego działania lampy, ponieważ dławik stabilizuje prąd i napięcie, a kondensator wspomaga zapłon, co jest istotne w przypadku lamp o dużym napięciu. Lampy te znajdują szerokie zastosowanie, szczególnie w oświetleniu ulicznym, gdzie ich wysoka wydajność świetlna oraz długi czas eksploatacji są niezwykle cenne. Warto również zauważyć, że lampy rtęciowe wysokoprężne emitują światło o charakterystycznym niebieskawym odcieniu, co sprawia, że są popularne w przestrzeniach przemysłowych i na zewnątrz. W kontekście standardów, zgodność z normami IEC 61167 i IEC 62035 zapewnia wysoką jakość i niezawodność tych źródeł światła, co czyni je odpowiednim wyborem dla wielu zastosowań komercyjnych i publicznych.

Pytanie 20

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Miedź
B. Aluminium
C. Brąz
D. Stal
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 21

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Puszki łączeniowej.
B. Oprawki źródła światła.
C. Gniazda wtykowego.
D. Wtyczki kabla zasilającego.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 22

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Transformator separacyjny
B. Transformator bezpieczeństwa
C. Przetwornicę napięcia
D. Przekładnik prądowy
Przekładnik prądowy jest kluczowym elementem w pośrednich układach pomiarowych mocy czynnej, ponieważ jego główną funkcją jest przekształcenie dużych prądów roboczych na niższe, które mogą być bezpiecznie zmierzone przez urządzenia pomiarowe. Działa to na zasadzie indukcji elektromagnetycznej, gdzie prąd w obwodzie pierwotnym generuje pole magnetyczne, które z kolei indukuje prąd w obwodzie wtórnym. Dzięki zastosowaniu przekładników prądowych, możliwe jest monitorowanie i obliczanie zużycia energii, co jest niezwykle istotne w zarządzaniu efektywnością energetyczną w zakładach przemysłowych. Przykładem zastosowania mogą być instalacje, w których przekładniki prądowe są wykorzystywane do pomiarów w systemach monitorujących zużycie energii elektrycznej w czasie rzeczywistym. Dobrą praktyką w branży jest również regularna kalibracja przekładników, aby zapewnić ich dokładność oraz niezawodność w długoterminowym użytkowaniu. W kontekście norm, należy również odnosić się do standardów IEC 61869, które regulują kwestie dotyczące przekładników prądowych oraz ich zastosowań w układach pomiarowych.

Pytanie 23

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
B. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 24

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. aR 16 A
C. gB 20 A
D. gG 16 A
Wybór wkładki topikowej gG 16 A jest poprawny, ponieważ wkładki te są przeznaczone do ochrony obwodów przed przeciążeniem oraz zwarciem. W przypadku bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V, obliczamy maksymalny prąd znamionowy przy użyciu wzoru I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A zapewnia odpowiednią ochronę, gdyż jej wartość prądu znamionowego jest większa niż obliczona wartość prądu roboczego, co oznacza, że nie będzie zbyt szybko przerywała pracy urządzenia podczas normalnego użytkowania. Dodatkowo, wkładki gG charakteryzują się dobrą zdolnością do łapania zwarć, co jest kluczowe w przypadku bojlerów, które mogą doświadczać nagłych skoków prądu. Zastosowanie odpowiedniej wkładki topikowej jest ważne dla zapewnienia bezpieczeństwa instalacji oraz długowieczności urządzeń. W normach IEC 60269 podano, że wkładki gG są odpowiednie do ochrony przed przeciążeniami oraz zwarciami w obwodach instalacji elektrycznych, co czyni je dobrym wyborem w tym przypadku.

Pytanie 25

Na ilustracji przedstawiony jest

Ilustracja do pytania
A. kabel elektroenergetyczny.
B. kabel telekomunikacyjny.
C. przewód sterowniczy.
D. przewód spawalniczy.
Kabel elektroenergetyczny, który został przedstawiony na ilustracji, charakteryzuje się specyficzną budową oraz solidną izolacją, co jest kluczowe dla jego funkcji w systemach elektroenergetycznych. Te kable są zaprojektowane do przesyłania dużych ilości energii elektrycznej i zazwyczaj mają grubszą średnicę oraz wytrzymałe materiały izolacyjne, które chronią je przed uszkodzeniami mechanicznymi i wpływem warunków atmosferycznych. W kontekście standardów branżowych, kable elektroenergetyczne muszą spełniać rygorystyczne normy, takie jak normy IEC (Międzynarodowa Komisja Elektrotechniczna) czy EN (Europejskie Normy). W praktyce, ich zastosowanie obejmuje przesył energii do budynków, instalacji przemysłowych i infrastruktury miejskiej, co czyni je fundamentalnym elementem w systemach energetycznych. Wiedza na temat różnic między kablami energetycznymi, telekomunikacyjnymi a innymi przewodami jest istotna dla każdego inżyniera elektryka, aby zapewnić odpowiedni dobór materiałów i bezpieczeństwo instalacji.

Pytanie 26

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. przeważnie pośredniego - klasy IV.
B. pośredniego - klasy V.
C. przeważnie bezpośredniego - klasy II.
D. bezpośredniego - klasy I.
Odpowiedź 'przeważnie pośredniego - klasy IV.' jest prawidłowa, ponieważ na przedstawionym rysunku widać, że światło jest emitowane głównie w sposób pośredni. Oprawy oświetleniowe, które emitują światło pośrednio, są projektowane w taki sposób, aby rozpraszać światło za pomocą elementów takich jak mleczne szkło czy matowe powierzchnie, co zapewnia równomierne oświetlenie przestrzeni. Takie podejście jest korzystne w zastosowaniach, gdzie niepożądane są silne cienie oraz oślepiające refleksy. W kontekście norm, oprawy oświetleniowe klasy IV mogą znaleźć zastosowanie w biurach, salach konferencyjnych oraz miejscach, gdzie zależy nam na komforcie wzrokowym użytkowników. Zgodnie z zasadami ergonomii oświetlenia, odpowiednia jakość światła pośredniego wpływa korzystnie na samopoczucie i wydajność pracy, co podkreślają standardy ISO 8995-1. Zrozumienie różnych klas opraw oraz ich sposobu emisji jest kluczowe dla projektowania efektywnych systemów oświetleniowych.

Pytanie 27

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 28

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Indukcyjnej pierścieniowej.
B. Komutatorowej prądu przemiennego.
C. Indukcyjnej klatkowej.
D. Synchronicznej.
Maszyna wirująca przedstawiona na ilustracji to maszyna synchroniczna, której główną cechą charakterystyczną jest zsynchronizowanie prędkości obrotowej wirnika z częstotliwością prądu zasilającego. W przypadku maszyn synchronicznych wirnik posiada bieguny magnetyczne, co można zauważyć na ilustracji, gdzie oznaczone są bieguny S i N. Uzwojenie stojana, rozmieszczone wokół wirnika, generuje pole magnetyczne, które synchronizuje się z polem wirnika. Praktycznym zastosowaniem maszyn synchronicznych są elektrownie, gdzie wykorzystywane są jako generatory prądu. Dzięki swojej stabilności i efektywności, maszyny te są również stosowane w napędach elektrycznych, w aplikacjach wymagających precyzyjnej kontroli prędkości i momentu obrotowego, takich jak w systemach automatyki przemysłowej. Warto również zauważyć, że w porównaniu do innych rodzajów maszyn, maszyny synchroniczne oferują wyższą efektywność energetyczną i mniejsze straty, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 29

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 3 do 5
B. 10 do 20
C. 5 do 10
D. 2 do 3
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 30

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
B. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
C. Kontrola zabezpieczeń i stanu osłon części wirujących
D. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 31

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na ciepło
B. Zwiększenie wytrzymałości mechanicznej
C. Odporność na olej
D. Niepalność
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 32

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 22 stycznika K1
B. Z zaciskiem A2 stycznika K1
C. Z zaciskiem 4 listwy zaciskowej X1
D. Z zaciskiem 3 listwy zaciskowej X1
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 33

Jak należy interpretować przedstawiony na zdjęciu wynik pomiaru rezystancji izolacji przewodu o napięciu znamionowym 300 V/300 V wykonany miernikiem MIC-2 ustawionym na zakres 500 V?

Ilustracja do pytania
A. Miernik ma rozładowaną baterię.
B. Rezystancja izolacji przewodu jest wystarczająca.
C. Zbyt mała rezystancja izolacji przewodu.
D. Miernik jest uszkodzony.
Odpowiedź, że rezystancja izolacji przewodu jest wystarczająca, jest prawidłowa, ponieważ wynik pomiaru na wyświetlaczu miernika MIC-2 wynosi '>999MΩ'. To oznacza, że miernik nie zdołał zmierzyć wartości rezystancji, ponieważ jest ona znacznie wyższa niż maksymalny zakres, co wskazuje na doskonały stan izolacji przewodu. Dla przewodów o napięciu znamionowym 300 V/300 V, zgodnie z normami bezpieczeństwa (np. PN-EN 60204-1), minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ. Przy wartości '>999MΩ' jest to więcej niż wystarczające, co świadczy o braku potencjalnych zagrożeń dla użytkowników i sprzętu. W praktyce, w przypadku instalacji elektrycznych, regularne pomiary rezystancji izolacji są niezbędne do zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Odpowiednia rezystancja izolacji zmniejsza ryzyko zwarcia oraz uszkodzenia urządzeń, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym oraz poprawnego funkcjonowania instalacji.

Pytanie 34

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 6 lat
B. 5 lat
C. 4 lata
D. 8 lat
Wybór innych okresów, takich jak 4, 6 czy 8 lat, jest błędny, ponieważ nie odzwierciedla rzeczywistych przepisów oraz norm odnoszących się do eksploatacji sieci elektrycznych w budynkach jednorodzinnych. Rekomendacja przeprowadzania badań co 4 lata opiera się na mylnym założeniu, że częstsze kontrole mogą zapewnić wyższy poziom bezpieczeństwa, co w rzeczywistości jest nieuzasadnione i może prowadzić do niepotrzebnych kosztów. Z kolei wydłużenie okresu do 6 lub 8 lat stwarza ryzyko, że istotne usterki mogą nie zostać wykryte na czas, co może skutkować poważnymi awariami. W kontekście regulacji prawnych, w Polsce ustawa Prawo energetyczne oraz normy PN-IEC określają konkretne terminy przeprowadzania badań, a ich niewłaściwe interpretowanie może prowadzić do nieprzestrzegania zasad bezpieczeństwa. Ważne jest, aby pamiętać, że regularne przeglądy nie tylko spełniają wymogi prawne, ale także przyczyniają się do dłuższej żywotności instalacji oraz redukcji ryzyka wystąpienia wypadków związanych z użytkowaniem energii elektrycznej. Ignorowanie tych zasad prowadzi do mylnych wniosków i może zagrażać bezpieczeństwu osób korzystających z instalacji elektrycznych.

Pytanie 35

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
B. zwarcie między przewodem neutralnym i ochronnym.
C. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
D. dotyk bezpośredni przewodu pod napięciem.
Błędne odpowiedzi na to pytanie dotyczą różnych aspektów funkcjonowania wyłączników różnicowoprądowych oraz nieprawidłowych połączeń w instalacjach elektrycznych. Zwarcie między przewodem neutralnym a ochronnym może prowadzić do niebezpiecznych sytuacji, jednak nie jest to przyczyna zadziałania wyłącznika różnicowoprądowego. Wyłączniki te są zaprojektowane w taki sposób, aby wykrywać różnice w prądzie przepływającym przez przewody. W przypadku zwarcia, prąd może nadal płynąć, co niekoniecznie spowoduje zadziałanie wyłącznika. Dotyk bezpośredni przewodu pod napięciem również nie jest odpowiednią odpowiedzią, ponieważ zadziałanie wyłącznika nie jest bezpośrednio związane z kontaktem z przewodem. Poza tym, pojawienie się napięcia na części metalowej, która normalnie nie przewodzi, również nie jest właściwą odpowiedzią, gdyż nie odnosi się to do mechanizmu działania wyłącznika różnicowoprądowego. W rzeczywistości, kluczowe znaczenie ma prawidłowe podłączenie przewodów w instalacjach elektrycznych, aby uniknąć sytuacji zagrażających zdrowiu i życiu, a także uszkodzeniom sprzętu. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie zagrożeń związanych z zwarciem i zadziałaniem wyłącznika, co prowadzi do niewłaściwych wniosków o przyczynach zadziałania urządzenia zabezpieczającego.

Pytanie 36

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 60 ÷ 90%
B. 0 ÷ 10%
C. 90 ÷ 100%
D. 40 ÷ 60%
Odpowiedzi wskazujące na wyższe wartości strumienia świetlnego, takie jak 40 ÷ 60%, 60 ÷ 90% oraz 90 ÷ 100%, koncentrują się na nieprawidłowych założeniach dotyczących funkcji opraw V klasy. Te klasy oprawy oświetleniowej są zaprojektowane w taki sposób, aby dostarczać minimalną ilość światła w kierunku podłogi, co jest sprzeczne z ideą intensywnego oświetlenia. Błędne założenie, że oprawy V klasy mogą emitować znaczną ilość światła w dół, wynika z nieporozumienia dotyczącego ich zastosowań oraz sposobu działania. W praktyce, oprawy te powinny być wykorzystywane w takich miejscach, gdzie kontrola nad oświetleniem jest kluczowa, a intensywne oświetlenie w dół mogłoby powodować olśnienie lub zwiększać zużycie energii. Należy również zwrócić uwagę na to, że istnieją standardy dotyczące odpowiedniego oświetlenia w budynkach, które jednoznacznie określają dopuszczalne wartości strumienia świetlnego w zależności od jego zastosowania. Stosowanie opraw z niewłaściwą klasą efektywności może prowadzić do niekorzystnych warunków pracy, a także do naruszenia przepisów dotyczących ochrony środowiska oraz efektywności energetycznej. Dlatego tak ważne jest, aby projektanci oświetlenia oraz użytkownicy byli świadomi różnic między klasami opraw, aby uniknąć błędnych decyzji projektowych.

Pytanie 37

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 500 V
B. 250 V
C. 750 V
D. 1 000 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 38

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Synchroniczną jawnobiegunową.
B. Synchroniczną z biegunami utajonymi.
C. Indukcyjną klatkową.
D. Komutatorową prądu przemiennego.
Maszyna przedstawiona na rysunku to synchroniczna maszyna jawnobiegunowa, co można zauważyć dzięki wyraźnym biegunom magnetycznym oznaczonym jako S i N. W takich maszynach, w przeciwieństwie do maszyn z biegunami utajonymi, bieguny są wyraźnie widoczne na wirniku. W kontekście zastosowań, maszyny synchroniczne jawnobiegunowe są powszechnie wykorzystywane w energetyce, na przykład w generatorach prądu przemiennego w elektrowniach. Ich główną zaletą jest możliwość utrzymania stałej prędkości obrotowej niezależnie od obciążenia, co czyni je idealnymi do zastosowań wymagających wysokiej stabilności. Dodatkowo, maszyny te cechują się wysoką sprawnością i zdolnością do pracy w szerokim zakresie prędkości, co sprawia, że są wykorzystywane w aplikacjach takich jak napędy elektryczne w transporcie czy w przemyśle. Wiedza na temat maszyn synchronicznych jawnobiegunowych jest kluczowa dla inżynierów zajmujących się projektowaniem systemów energetycznych, ponieważ ich zrozumienie pozwala na efektywne wykorzystanie takich maszyn w różnych konfiguracjach sieciowych.

Pytanie 39

Który element przedstawionego na rysunku układu zasilania i sterowania silnikiem indukcyjnym steruje przełączeniem układu styczników łączących uzwojenia silnika w gwiazdę i w trójkąt?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Przekaźnik czasowy.
C. Przycisk sterujący zwrotny NC.
D. Przycisk sterujący zwrotny NO.
Przekaźnik czasowy pełni kluczową rolę w układzie zasilania i sterowania silnikiem indukcyjnym, umożliwiając płynne przełączanie uzwojeń silnika między połączeniem w gwiazdę a w trójkąt. Dzięki zastosowaniu przekaźnika czasowego, możemy zminimalizować prądy rozruchowe silnika, co jest istotne dla jego długowieczności oraz efektywności energetycznej. W praktyce, przy włączaniu silnika w trybie gwiazdy, uzwojenia są połączone w sposób, który ogranicza prąd rozruchowy, a po ustabilizowaniu się obrotów, przekaźnik czasowy automatycznie przełącza układ na połączenie w trójkąt. Standardy dotyczące automatyki przemysłowej, takie jak normy IEC, zalecają stosowanie przekaźników czasowych w takich aplikacjach, aby zapewnić zgodność z wymogami bezpieczeństwa i efektywności operacyjnej. Właściwe zastosowanie przekaźników czasowych nie tylko zwiększa niezawodność układu, ale także pozwala na lepsze zarządzanie obciążeniem, co jest niezbędne w nowoczesnych systemach zasilania.

Pytanie 40

Dokonując oględzin powykonawczych zabezpieczeń w instalacji elektrycznej przedstawionej na schemacie można stwierdzić, że zamieniono miejscami bezpieczniki

Ilustracja do pytania
A. B1 z B2
B. B2 z B4
C. B3 z B2
D. B1 z B4
Odpowiedź B1 z B2 jest prawidłowa, ponieważ analiza schematu instalacji elektrycznej wyraźnie wskazuje na zamianę miejscami tych dwóch bezpieczników. Bezpiecznik B1, który ma wartość nominalną 10A, powinien być umieszczony na początku instalacji, gdzie jego zadaniem jest ochrona całego obwodu przed przeciążeniem. Z kolei bezpiecznik B2, o wartości 25A, jest przeznaczony do zabezpieczania obwodów o większym poborze mocy. Przełożenie tych miejsc prowadzi do nieodpowiedniego zabezpieczenia, co jest sprzeczne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które wymagają, aby zabezpieczenia były dobierane na podstawie charakterystyki obwodów oraz urządzeń, które mają chronić. Właściwe umiejscowienie bezpieczników jest kluczowe dla zachowania bezpieczeństwa użytkowników oraz ochrony instalacji. W praktyce, niewłaściwe dobranie wartości bezpieczników może prowadzić do ich nadmiernego przepalania lub wręcz do uszkodzenia urządzeń podłączonych do instalacji, co generuje dodatkowe koszty napraw i obniża komfort użytkowania.