Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 20 stycznia 2026 19:25
  • Data zakończenia: 20 stycznia 2026 19:27

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaka jest średnica wałka zmierzona suwmiarką, której noniusz przedstawiono na rysunku?

Ilustracja do pytania
A. 3,10 mm
B. 3,65 mm
C. 3,20 mm
D. 3,85 mm
Poprawna odpowiedź to 3,85 mm, co wynika z dokładnego odczytu suwmiarki. Na głównej skali suwmiarki widzimy wartość 3 mm, a następnie analizujemy noniusz. Kluczowym krokiem jest zlokalizowanie linii noniusza, która pokrywa się z linią głównej skali. W tym przypadku jest to 8,5, co oznacza dodatkowe 0,85 mm. Łącząc te wartości, otrzymujemy 3,85 mm. Użycie suwmiarki jest standardową praktyką w precyzyjnym pomiarze wymiarów, co jest szczególnie istotne w inżynierii i produkcji, gdzie dokładność ma kluczowe znaczenie. Stosowanie suwmiarki wymaga umiejętności interpretacji odczytów oraz znajomości zasad pomiarów, co zapewnia wysoką jakość wyrobów oraz minimalizację błędów produkcyjnych.

Pytanie 2

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. średnicówki mikrometrycznej
C. czujnika zegarowego
D. suwmiarki
Suwmiarka, choć jest narzędziem pomiarowym, nie jest odpowiednia do precyzyjnego pomiaru bicia wirującej tarczy. Jej głównym przeznaczeniem jest pomiar długości, szerokości i wysokości z dokładnością do dwóch miejsc po przecinku. W przypadku pomiarów dynamicznych, takich jak bicie, suwmiarka ma zbyt niską czułość. Mikrometr jest narzędziem o jeszcze wyższej dokładności, jednak jego zastosowanie ogranicza się głównie do pomiarów liniowych i nie jest przystosowany do rejestrowania dynamicznych zmian, takich jak te, które występują podczas obrotu tarczy. Średnicówka mikrometryczna, podobnie jak mikrometr, służy do pomiarów średnic, co również nie sprawdza się w kontekście pomiaru bicia. Narzędzia te mogą prowadzić do pomyłek, ponieważ ich konstrukcja nie pozwala na uchwycenie dynamiki ruchu i nie są przystosowane do pomiarów w czasie rzeczywistym. Dlatego stosowanie ich do pomiaru nierówności osiowej może wprowadzać w błąd i prowadzić do nieprawidłowych wyników, co jest sprzeczne z zasadami dobrej praktyki inżynieryjnej. W kontekście precyzyjnych pomiarów mechanicznych, zawsze należy wybierać narzędzia zaprojektowane specjalnie do danego celu, co pozwoli uniknąć niepotrzebnych błędów i zapewnić wysoką jakość pracy.

Pytanie 3

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. temperaturę
B. naprężenie
C. smarowanie
D. bicie osiowe
Smarowanie nie jest kluczowym czynnikiem w przypadku pasków zębatych, ponieważ ich konstrukcja z reguły nie wymaga dodatkowego smarowania. Paski zębate często wykonane są z materiałów, które nie tylko eliminują potrzebę smarowania, ale także mogą być wrażliwe na substancje smarne, co może prowadzić do ich degradacji. Wycieki smaru mogą także zanieczyścić inne elementy układu napędowego, prowadząc do poważnych awarii. Podobnie bicie osiowe, czyli niepożądane przesunięcie osiowe wału, nie jest istotnym czynnikiem, który należy kontrolować w przypadku pasków zębatych. Tego typu wibracje mogą wprawdzie wpływać na efektywność przeniesienia napędu, jednakże kluczowym aspektem jest kontrola naprężenia, które odpowiada za właściwe zazębienie zębatki. Z kolei sprawdzanie temperatury, mimo że jest istotne w wielu zastosowaniach, w kontekście pasków zębatych nie jest najważniejsze, ponieważ temperatura sama w sobie nie jest wskaźnikiem stanu zużycia paska. Zrozumienie, jakie czynniki są kluczowe dla efektywności systemu napędowego, a które są mniej istotne, jest podstawą skutecznego zarządzania oraz utrzymania urządzeń mechatronicznych. Praktyczne podejście do konserwacji i monitorowania stanu elementów napędowych wymaga analizy rzeczywistych potrzeb aplikacji oraz standardów branżowych, co prowadzi do bardziej efektywnego eksploatowania maszyn.

Pytanie 4

Który element silnika oznaczono cyfrą 1?

Ilustracja do pytania
A. Stojan.
B. Komutator.
C. Wirnik.
D. Zacisk.
Element oznaczony cyfrą 1 na zdjęciu to komutator, który jest kluczowym komponentem w silnikach prądu stałego. Jego główną funkcją jest zmiana kierunku przepływu prądu w uzwojeniu wirnika, co pozwala na stałe obracanie się wirnika w jednym kierunku. Komutator składa się z segmentów wykonanych z miedzi, które są oddzielone od siebie materiałem izolacyjnym. Taki układ zapewnia, że podczas obrotu wirnika prąd zmienia kierunek w odpowiednich momentach, co jest niezbędne do utrzymania ciągłego ruchu. Dobrze zaprojektowany komutator zwiększa efektywność silnika oraz jego żywotność, co jest kluczowe w zastosowaniach przemysłowych. W standardach branżowych, takich jak IEC 60034, podkreśla się znaczenie jakości materiałów używanych do produkcji komutatorów, aby zminimalizować straty energii i zapewnić długotrwałą pracę urządzenia. W praktyce, komutatory są również poddawane regularnym przeglądom i konserwacji, aby utrzymać ich sprawność operacyjną, co stanowi dobre praktyki w zarządzaniu sprzętem elektrycznym.

Pytanie 5

Na rysunku przedstawiono fragment urządzenia z zamontowaną smarowniczką (kalamitką). Które z przedstawionych na rysunkach urządzeń należy zastosować do smarowania?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór odpowiedzi B, C lub D wskazuje na niepełne zrozumienie funkcji smarowniczki (kalamitki) oraz zastosowania odpowiednich narzędzi do smarowania. Urządzenia oznaczone literami B, C i D nie są przeznaczone do użycia ze smarowniczkami, co może prowadzić do nieefektywnego smarowania lub uszkodzenia mechanizmów. Odpowiedź B może sugerować zastosowanie innego narzędzia, które nie jest dostosowane do wprowadzania smaru pod ciśnieniem, co jest kluczowe dla prawidłowego działania smarowniczki. Odpowiedzi C i D mogą odnosić się do narzędzi, które może być używane w innych kontekstach smarowania, jednak nie są one zgodne z wymaganiami dla smarowniczek, które wymagają specyficznych właściwości. Wybierając niewłaściwe urządzenie, można narazić urządzenie na nadmierne zużycie lub awarię, co jest sprzeczne z najlepszymi praktykami w zakresie konserwacji maszyn. Dlatego kluczowe jest, aby znać nie tylko rodzaje narzędzi, ale także ich przeznaczenie oraz techniki smarowania, które są zgodne z zaleceniami producentów i standardami branżowymi.

Pytanie 6

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
B. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
C. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
D. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 7

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Wygładzanie
B. Gratowanie
C. Powiercanie
D. Szlifowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 8

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 6 V
B. 3 V
C. 5 V
D. 15 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 9

Który zawór został przedstawiony na rysunku?

Ilustracja do pytania
A. 5/2 sterowany jednostronnie pneumatycznie.
B. 3/2 sterowany jednostronnie elektrycznie.
C. 2/2 sterowany dwustronnie elektrycznie.
D. 3/2 sterowany jednostronnie pneumatycznie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór przedstawiony na rysunku to zawór 3/2 sterowany jednostronnie elektrycznie. Oznaczenie 3/2 wskazuje, że zawór posiada trzy porty: jedno wejście i dwa wyjścia, co jest powszechnie stosowane w aplikacjach pneumatycznych i hydraulicznych. Sterowanie elektryczne umożliwia precyzyjne i zdalne zarządzanie przepływem medium, co jest kluczowe w nowoczesnych systemach automatyki przemysłowej. Przykładem zastosowania takiego zaworu jest automatyzacja procesów produkcyjnych, gdzie kontrola nad siłownikami pneumatycznymi wymaga szybkiej reakcji i dokładności. W praktyce, zastosowanie zaworu 3/2 z elektrycznym sterowaniem może znacząco zwiększyć efektywność operacyjną maszyn oraz obniżyć ryzyko awarii poprzez zdalne monitorowanie stanu systemu. Zgodnie z normami ISO 1219, symbole zaworów powinny być jednolite i czytelne, co również potwierdza prawidłowość identyfikacji tego zaworu.

Pytanie 10

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. USB
B. IRDA
C. RS 232
D. RS 485

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.

Pytanie 11

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
B. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
C. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
D. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 12

Do kondensatora podłączono napięcie zmienne U = 10 V, f = 50 Hz i zmierzono prąd I = 314 mA płynący przez kondensator. Pojemność kondensatora jest równa (skorzystaj z podanego wzoru na reaktancję kondensatora)
$$ X_c = \frac{1}{2 \pi \cdot f \cdot C} $$

A. C = 1,0 mF
B. C = 0,03 mF
C. C = 3,14 mF
D. C = 0,1 mF

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć pojemność kondensatora, można skorzystać z wzoru na reaktancję kondensatora, który jest opisany równaniem: Xc = 1 / (2 * π * f * C), gdzie Xc to reaktancja, f to częstotliwość, a C to pojemność. W tym przypadku, znając prąd I oraz napięcie U, można obliczyć reaktancję kondensatora, korzystając z prawa Ohma: U = I * Xc, co pozwala na przekształcenie wzoru do postaci Xc = U / I. Następnie, podstawiając wartości z treści zadania, uzyskujemy Xc = 10 V / 0,314 A = 31,83 Ω. Po przekształceniu wzoru na pojemność, otrzymujemy C = 1 / (2 * π * f * Xc). Podstawiając wartości częstotliwości f = 50 Hz oraz Xc = 31,83 Ω, uzyskuje się C = 0,1 mF. Wiedza o pojemności kondensatorów jest kluczowa w wielu dziedzinach inżynierii, w tym w projektowaniu układów elektronicznych, gdzie kondensatory są stosowane w filtrach, układach zasilających oraz w obwodach rezonansowych. Zrozumienie ich parametrów pozwala na właściwy dobór komponentów do konkretnych zastosowań.

Pytanie 13

Na schemacie strzałką oznaczono zawór

Ilustracja do pytania
A. szybkiego spustu.
B. zwrotny nie obciążony.
C. podwójnego sygnału.
D. ograniczający ciśnienie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że strzałką oznaczono zawór podwójnego sygnału, jest trafna ponieważ zawór ten pełni istotną rolę w systemach automatyki i pneumatyki. Jest to zawór typu AND, co oznacza, że wymaga aktywacji dwóch sygnałów wejściowych, aby umożliwić przepływ medium, takiego jak powietrze. W praktyce oznacza to, że jeśli jeden z sygnałów jest nieaktywny, przepływ nie będzie możliwy, co może być kluczowe w przypadku zastosowań wymagających wysokiego poziomu bezpieczeństwa. Zawory podwójnego sygnału są powszechnie stosowane w instalacjach, gdzie niezawodność systemu jest kluczowa, takich jak automatyka przemysłowa czy systemy bezpieczeństwa. Przykładem ich zastosowania może być system kontroli ciśnienia, gdzie aktywacja dwóch czujników temperatury i ciśnienia jest niezbędna do prawidłowego działania. Dobrą praktyką w projektowaniu systemów automatyki jest stosowanie zaworów logicznych w układach, które wymagają więcej niż jednego warunku dla uruchomienia, co zwiększa bezpieczeństwo i niezawodność operacyjną systemu.

Pytanie 14

Na której ilustracji przedstawiono prawidłowe ułożenie przewodu hydraulicznego?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ilustracja 2 przedstawia prawidłowe ułożenie przewodu hydraulicznego, które jest zgodne z zasadami ergonomii i bezpieczeństwa w systemach hydraulicznych. Prawidłowe ułożenie przewodu zapewnia, że jego naturalne zakrzywienia nie powodują nadmiernych naprężeń oraz uszkodzeń materiału. W praktyce, prawidłowe ułożenie przewodów hydraulicznych jest kluczowe dla zapewnienia ich długowieczności i niezawodności. Przewody powinny być instalowane w taki sposób, aby unikać ostrych kątów, które mogą prowadzić do pęknięć lub zgięć, a także do zwiększenia ryzyka awarii systemu. W branży hydraulicznej stosuje się różne normy, takie jak ISO 4413, które określają wymagania dotyczące systemów hydraulicznych, w tym właściwego ułożenia przewodów. Dodatkowo, zgodność z zasadami montażu, takimi jak odpowiednia długość przewodu oraz jego mocowanie, są niezbędne do optymalizacji działania całego systemu. Dobre praktyki w tej dziedzinie obejmują również regularne inspekcje oraz konserwację, co pozwala na wcześniejsze wykrywanie potencjalnych problemów i minimalizację ryzyka awarii.

Pytanie 15

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. podatne.
B. samonastawne.
C. przegubowe.
D. sztywne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprzęgło podatne jest kluczowym elementem w wielu zastosowaniach inżynieryjnych, szczególnie tam, gdzie wymagane jest przenoszenie momentu obrotowego przy jednoczesnym kompensowaniu niewielkich odchyleń. Tego typu sprzęgła są wykorzystywane w silnikach elektrycznych, przekładniach oraz systemach napędowych, gdzie elastyczność połączenia jest istotna dla redukcji drgań. Dzięki zastosowaniu elementów elastycznych, sprzęgła podatne pozwalają na zminimalizowanie wpływu obciążeń dynamicznych na komponenty mechaniczne. W praktyce, sprzęgła te są zgodne z normami ISO 9001, zapewniając wysoką jakość wykonania i niezawodność. Przykładem zastosowania sprzęgieł podatnych mogą być układy napędowe w pojazdach elektrycznych, gdzie dążenie do minimalizacji drgań i hałasu ma kluczowe znaczenie dla komfortu użytkowania. W kontekście standardów inżynieryjnych, sprzęgła podatne wykazują właściwości, które są zgodne z dobrymi praktykami w projektowaniu systemów mechanicznych, co czyni je idealnym rozwiązaniem w nowoczesnych konstrukcjach.

Pytanie 16

Którą metodę kontroli temperatury pracy silnika przedstawiono na rysunku?

Ilustracja do pytania
A. Segera.
B. Termometryczną.
C. Ultradźwiękową.
D. Termowizyjną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Termowizyjna" jest poprawna, ponieważ na zdjęciu przedstawiony jest aparat termowizyjny, który jest wykorzystywany do pomiaru temperatury w sposób bezkontaktowy. Technologia ta polega na detekcji promieniowania podczerwonego emitowanego przez obiekty, co pozwala na uzyskanie obrazu termicznego. Dzięki temu rozwiązaniu można w szybki sposób ocenić temperaturę różnych części silnika, co jest niezwykle istotne dla zapewnienia jego prawidłowego funkcjonowania oraz zapobiegania awariom. Metoda ta jest szczególnie przydatna w zastosowaniach przemysłowych, gdzie monitorowanie temperatury w czasie rzeczywistym pozwala na wczesne wykrywanie problemów, takich jak przegrzewanie się komponentów. Użycie kamer termograficznych jest zgodne z najlepszymi praktykami w dziedzinie diagnostyki maszyn, co czyni ją standardem w przemyśle wytwórczym i eksploatacyjnym. Przykłady zastosowań obejmują inspekcje w zakładach energetycznych, motoryzacyjnych czy w przemyśle lotniczym.

Pytanie 17

Jakie jest zastosowanie przedstawionego na rysunku elementu?

Ilustracja do pytania
A. Zamiana prądu przemiennego na prąd jednokierunkowy.
B. Zamiana prądu przemiennego na prąd stały.
C. Filtrowanie zakłóceń napięcia sieciowego.
D. Obniżanie napięcia sieciowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mostek prostowniczy, przedstawiony na rysunku, jest kluczowym elementem w konwersji prądu przemiennego (AC) na prąd stały (DC). Jego podstawowym zastosowaniem jest prostowanie sygnałów AC, co jest niezbędne w wielu aplikacjach elektronicznych. Na przykład, w zasilaczach do komputerów czy urządzeń elektronicznych, mostek prostowniczy jest często pierwszym krokiem w procesie przetwarzania energii elektrycznej. Dzięki czterem diodom, które są skonfigurowane w formie mostka, prąd przemienny przepływający przez ten element jest przekształcany w prąd jednokierunkowy, co pozwala na jego późniejsze wykorzystanie w obwodach wymagających napięcia stałego. Przykładem zastosowania mostka prostowniczego jest zasilanie silników prądu stałego, gdzie wymagany jest stabilny i jednorodny przepływ prądu. Zgodnie z najlepszymi praktykami w branży, odpowiednia dioda powinna być dobrana na podstawie maksymalnego napięcia i natężenia prądu, co zapewnia niezawodność i długowieczność urządzenia.

Pytanie 18

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 7,5 V
B. 3,0 V
C. 10,0 V
D. 4,5 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 19

Jakiego rodzaju sprzęgła należy użyć do połączenia dwóch wałów przedstawionych na rysunku?

Ilustracja do pytania
A. Łubkowego.
B. Kołnierzowego.
C. Tulejowego.
D. Oldhama.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprzęgło Oldhama jest idealnym rozwiązaniem do połączenia wałów, które mogą być przesunięte względem siebie osiowo, co jest kluczowe w wielu zastosowaniach inżynieryjnych i przemysłowych. Jego konstrukcja pozwala na przenoszenie momentu obrotowego przy jednoczesnym zminimalizowaniu skutków przesunięcia osiowego. W praktyce, sprzęgła Oldhama znajdują zastosowanie w napędach, gdzie wały mogą być ustawione w różnych płaszczyznach, na przykład w robotyce czy automatyce. Ponadto, sprzęgła te charakteryzują się niskim zużyciem, co zwiększa ich trwałość oraz redukuje potrzebę konserwacji. Dobre praktyki inżynieryjne zalecają ich użycie w systemach, gdzie występują wibracje lub cykliczne obciążenia, ponieważ ich konstrukcja umożliwia tłumienie drgań. Przykładowo, w systemach napędowych samochodów elektrycznych czy maszyn CNC, sprzęgła Oldhama są powszechnie stosowane, co potwierdza ich wszechstronność i efektywność w różnych aplikacjach przemysłowych.

Pytanie 20

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 2 bar, pABS = 1 bar
B. pNAD = 3 bar, pABS = 3 bar
C. pNAD = 3 bar, pABS = 4 bar
D. pNAD = 1 bar, pABS = 2 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ ciśnienie względne powietrza w zbiorniku wynoszące +3 bary oznacza, że wartość nadciśnienia (pNAD) wynosi 3 bary. Ciśnienie absolutne (pABS) oblicza się jako sumę ciśnienia atmosferycznego i ciśnienia względnego. W standardowych warunkach na poziomie morza ciśnienie atmosferyczne wynosi około 1 bara. Dlatego pABS = pNAD + pATM = 3 bary + 1 bar = 4 bary. Wiedza ta jest kluczowa w różnych zastosowaniach inżynieryjnych, takich jak projektowanie układów pneumatycznych i hydraulicznych, gdzie zachowanie ciśnienia jest kluczowe dla efektywności i bezpieczeństwa urządzeń. Przykładowo, w systemach pneumatycznych nadciśnienie jest wykorzystywane do napędu siłowników, a znajomość prawidłowych wartości ciśnień pozwala na optymalne ich zaprojektowanie zgodnie z normami ASME oraz ISO, co zapewnia ich prawidłowe funkcjonowanie i bezpieczeństwo użytkowania.

Pytanie 21

Moc wyjściowa zasilacza przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 240 W
B. 120 W
C. 12 W
D. 24 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moc wyjściowa zasilacza wynosi 120 W, co można obliczyć przy użyciu wzoru P = U x I, gdzie P to moc, U to napięcie, a I to natężenie prądu. W tym przypadku mamy zasilacz o napięciu wyjściowym 12 V i natężeniu 10 A. Po podstawieniu wartości otrzymujemy P = 12 V x 10 A = 120 W. Zrozumienie tej zależności jest kluczowe w praktyce, szczególnie w kontekście zastosowań elektronicznych, gdzie dobór odpowiedniego zasilacza ma istotne znaczenie dla stabilności pracy urządzeń. W przemyśle elektronicznym stosuje się standardy, takie jak IEC 61000, które regulują kwestie związane z zasilaniem urządzeń. Prawidłowy dobór mocy zasilacza pozwala na uniknięcie uszkodzeń urządzeń oraz zapewnia ich wydajną pracę. Wysokiej jakości zasilacze są niezbędne w projektach, gdzie stabilność zasilania jest kluczowa, na przykład w systemach audio czy komputerowych.

Pytanie 22

Na podstawie wyników pomiarów rezystancji zestyków przycisków S1 i S2 przedstawionych w tabeli można wnioskować, że

Pomiar rezystancji zestyku w Ω
przycisku zwiernego S1przycisku rozwiernego S2
przed wciśnięciem przyciskupo wciśnięciu przyciskuprzed wciśnięciem przyciskupo wciśnięciu przycisku
00
A. przycisk S1 jest uszkodzony, przycisk S2 jest sprawny.
B. oba przyciski są uszkodzone.
C. oba przyciski są sprawne.
D. przycisk S1 jest sprawny, przycisk S2 jest uszkodzony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na podstawie analizy wyników pomiarów rezystancji zestyków przycisków S1 i S2, można jednoznacznie stwierdzić, że odpowiedź wskazująca na uszkodzenie obu przycisków jest prawidłowa. Przycisk S1, będący przyciskiem zwiernym, powinien wykazywać rezystancję bliską 0 Ω po wciśnięciu. W przypadku, gdy jego rezystancja wynosi nieskończoność, oznacza to, że mechanizm zwierny nie funkcjonuje prawidłowo. Analogicznie, przycisk S2 powinien mieć rezystancję nieskończoną przed wciśnięciem, jednak wartość 0 Ω wskazuje, że styk jest w ciągłym połączeniu, co również potwierdza jego uszkodzenie. Tego typu analizy są kluczowe w diagnostyce elektronicznej, ponieważ pozwalają na szybkie zidentyfikowanie i rozwiązanie problemów w układach sterowania. Dobre praktyki branżowe wymagają regularnego testowania komponentów w celu zapewnienia ich niezawodności i bezpieczeństwa operacyjnego. W przypadku awarii, niezbędna jest wymiana uszkodzonych elementów, a także dokładne sprawdzenie pozostałych komponentów w celu zapobieżenia dalszym problemom. Zrozumienie tych zasad jest istotne dla każdego technika zajmującego się serwisowaniem urządzeń elektronicznych.

Pytanie 23

Przedstawiony na rysunku czujnik Pt100 jest przeznaczony do pomiaru

Ilustracja do pytania
A. ciśnienia cieczy.
B. temperatury cieczy.
C. przepływu w cieczy.
D. poziomu cieczy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik Pt100 jest jednym z najpowszechniej stosowanych czujników temperatury w przemyśle i laboratoriach. Jego zasada działania opiera się na zmianie rezystancji platyny w funkcji temperatury, co czyni go bardzo dokładnym i stabilnym rozwiązaniem. Przy 0°C rezystancja wynosi dokładnie 100 omów, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur, zazwyczaj od -200°C do 850°C. Czujniki te są stosowane w wielu aplikacjach, od monitorowania procesów przemysłowych, przez systemy HVAC, aż po laboratoria naukowe. Warto podkreślić, że stosowanie czujników Pt100 jest zgodne z międzynarodowymi standardami, takimi jak IEC 60751, co zapewnia ich wysoką jakość i niezawodność. Dzięki ich precyzyjności i stabilności, czujniki te są często wybierane do zastosowań wymagających dokładnych danych temperaturowych, co w praktyce może wpływać na wydajność i bezpieczeństwo różnych procesów.

Pytanie 24

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm
A. Temperatura otwarcia 18°C, amplituda 17°C
B. Temperatura otwarcia 18°C, amplituda -1°C
C. Temperatura otwarcia 18°C, amplituda 19°C
D. Temperatura otwarcia -1°C, amplituda 18°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 25

Który symbol oznacza czujnik ultradźwiękowy?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol przedstawiony przy odpowiedzi C reprezentuje czujnik ultradźwiękowy, który jest stosowany w wielu aplikacjach technicznych, zwłaszcza w automatyce oraz systemach pomiarowych. Czujniki ultradźwiękowe działają na zasadzie emisji fal dźwiękowych o wysokiej częstotliwości, które odbijają się od obiektów i wracają do sensora. Dzięki temu możliwe jest określenie odległości do obiektu oraz detekcja przeszkód. W praktyce wykorzystuje się je w robotyce do unikania kolizji oraz w systemach alarmowych do monitorowania przestrzeni. Istotnym standardem, który odnosi się do tego typu czujników, jest norma IEC 60947-5-2, definiująca wymagania dotyczące czujników zbliżeniowych. Wiedza na temat symboliki czujników jest kluczowa dla inżynierów i techników, aby prawidłowo interpretować schematy oraz dokumentację techniczną, co ma bezpośrednie przełożenie na skuteczność projektowania i utrzymania systemów automatyki.

Pytanie 26

Parametr określający zakres roboczy działania siłownika to

A. maksymalne ciśnienie
B. średnica cylindra
C. skok siłownika
D. teoretyczna siła pchająca

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skok siłownika jest kluczowym parametrem w określaniu obszaru roboczego działania siłownika. Definiuje on maksymalną odległość, na jaką tłok siłownika może się poruszać, co bezpośrednio wpływa na zakres ruchu, który siłownik może wykonać. W praktyce oznacza to, że im większy skok, tym większa możliwość wykonania zadań, takich jak podnoszenie, przesuwanie czy wciskanie elementów. Przykładem może być zastosowanie siłowników hydraulicznych w maszynach budowlanych, gdzie skok siłownika wpływa na wysokość podnoszenia ładunków. W branży automatyki przemysłowej odpowiedni dobór skoku siłownika do aplikacji ma kluczowe znaczenie, aby zapewnić efektywność i precyzję operacji. W standardach branżowych, takich jak ISO 6020, zwraca się uwagę na konieczność odpowiedniego doboru skoku siłownika w kontekście jego zastosowania oraz oczekiwanych parametrów roboczych, co przekłada się na zwiększoną efektywność systemów automatyzacji.

Pytanie 27

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. woltomierz
B. omomierz
C. induktor
D. amperomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru oporu elektrycznego. Jest niezastąpiony w diagnostyce instalacji elektrycznych, szczególnie do sprawdzania, czy przewód elektryczny nie jest przerwany. Gdy przewód jest przerwany, jego opór będzie nieskończonością, co omomierz zarejestruje. Dzięki temu można szybko zlokalizować uszkodzenia w instalacji. W praktyce, omomierze są często wykorzystywane do weryfikacji ciągłości obwodów w różnych zastosowaniach, od prostych napraw domowych po skomplikowane instalacje przemysłowe. Zgodnie ze standardami bezpieczeństwa elektrycznego, regularne testowanie oporu przewodów umożliwia zapobieganie potencjalnym awariom oraz zwiększa bezpieczeństwo użytkowników. Dodatkowo, omomierze są używane do pomiaru rezystancji izolacji, co jest kluczowe w utrzymaniu właściwego stanu technicznego instalacji. Zatem, korzystając z omomierza, można nie tylko wykryć przerwy w przewodach, ale również ocenić ich stan ogólny.

Pytanie 28

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, zawór redukcyjny, manometr
B. filtr powietrza, zawór redukcyjny z manometrem, smarownica
C. manometr, filtr powietrza, smarownica
D. smarownica, filtr powietrza, manometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 29

Który typ oprogramowania należy zastosować do utworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. CAM
B. SCADA
C. CAQ
D. CAD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
SCADA (Supervisory Control and Data Acquisition) jest kluczowym typem oprogramowania wykorzystywanym w automatyzacji procesów przemysłowych, szczególnie w kontekście monitorowania i kontrolowania systemów w czasie rzeczywistym. W przypadku przedstawionego procesu mieszania w zbiornikach, SCADA zapewnia nie tylko wizualizację stanu procesów, ale również interfejs do zarządzania nimi. Przykładem zastosowania SCADA jest monitorowanie poziomów cieczy w zbiornikach, gdzie dane są zbierane z różnych czujników, a operatorzy mogą wprowadzać zmiany w procesie, zapewniając jego efektywność i bezpieczeństwo. SCADA wspiera też analizy historyczne, co pozwala na optymalizację procesów i podejmowanie lepszych decyzji operacyjnych. Dodatkowo, systemy SCADA są zgodne z normami IEC 61131-3, które określają standardy programowania w systemach automatyki, co czyni je niezawodnymi narzędziami w przemyśle.

Pytanie 30

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 10,0 V
C. 4,5 V
D. 7,5 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 31

Zadaniem czujnika kontaktronowego zamontowanego na siłowniku jest sygnalizacja

Ilustracja do pytania
A. położenia tłoka siłownika.
B. przekroczenia wartości temperatury cylindra.
C. miejsca nieszczelności siłownika.
D. przekroczenia wartości ciśnienia roboczego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik kontaktronowy zamontowany na siłowniku pełni kluczową rolę w sygnalizacji położenia tłoka, co jest istotne w wielu aplikacjach automatyzacji i mechaniki. Działa na zasadzie reakcji na pole magnetyczne, które generowane jest przez magnes umieszczony na tłoku. Gdy tłok przesuwa się wzdłuż cylindra, magnes zbliża się do kontaktronu, co powoduje zamknięcie lub otwarcie obwodu elektrycznego, sygnalizując tym samym aktualne położenie tłoka. Dzięki zastosowaniu czujników kontaktronowych, operatorzy maszyn mogą zdalnie monitorować położenie tłoka, co zwiększa bezpieczeństwo i efektywność procesów przemysłowych. Przykładem praktycznego zastosowania są systemy automatyki przemysłowej, gdzie precyzyjne pozycjonowanie tłoków jest kluczowe dla synchronizacji ruchu różnych elementów maszyn. Standardy branżowe, takie jak ISO 13849 dotyczące bezpieczeństwa maszyny, podkreślają znaczenie monitorowania położenia elementów roboczych w kontekście bezpieczeństwa operacji, co czyni czujniki kontaktronowe niezbędnym elementem nowoczesnych systemów automatyki.

Pytanie 32

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być wciągane do osłon jako ostatnie
B. być układane jak najdalej od przewodów silnoprądowych
C. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
D. być wciągane do osłon jako pierwsze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układanie przewodów magistrali Profibus jak najdalej od przewodów silnoprądowych jest kluczowe dla zapewnienia niezawodności i integralności sygnału w systemach automatyki przemysłowej. Przewody silnoprądowe emitują pole elektromagnetyczne, które może zakłócać transmisję danych w kablach magistrali, prowadząc do błędów komunikacyjnych i spadku wydajności systemu. Dobre praktyki montażowe, zgodne z normami, takimi jak IEC 61158, zalecają trzymanie przynajmniej 30 centymetrów odstępu pomiędzy przewodami sygnałowymi a przewodami zasilającymi. Ponadto, umieszczając przewody w odpowiednich osłonach, można zminimalizować ryzyko uszkodzeń mechanicznych oraz wpływu czynników zewnętrznych, co ma istotne znaczenie w trudnych warunkach przemysłowych. Przykładowo, w zakładach produkcyjnych, w których występuje intensywna obecność maszyn elektrycznych, przestrzeganie tych zasad zapewnia stabilność działania systemu sterowania oraz minimalizuje ryzyko awarii, co przekłada się na zwiększenie efektywności produkcji.

Pytanie 33

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. iskra prowadząca do pożaru lub wybuchu
B. odłamki rozrywanych maszyn
C. przenoszenie wibracji na pracownika
D. nadmierny hałas generowany przez pracujące urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 34

Na ilustracji przedstawiono sprzęgło

Ilustracja do pytania
A. pierścieniowe.
B. jednokierunkowe.
C. elastyczne palcowe.
D. elastyczne kłowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "elastyczne kłowe" jest prawidłowa, ponieważ na ilustracji rzeczywiście przedstawiono sprzęgło tego typu. Sprzęgła elastyczne kłowe składają się z dwóch elementów, które są połączone za pomocą elastycznych kłów, co umożliwia przenoszenie momentu obrotowego przy zachowaniu zdolności do kompensowania niewielkich przemieszczeń. Czerwony element z tworzywa sztucznego, widoczny na ilustracji, jest kluczowy dla tego mechanizmu, ponieważ jego elastyczność pozwala na zminimalizowanie wstrząsów oraz ochronę przed nadmiernym zużyciem wałów. Te sprzęgła są szeroko stosowane w różnych aplikacjach przemysłowych, w tym w napędach elektrycznych, gdzie konieczna jest elastyczność w przenoszeniu momentu obrotowego, a także w maszynach, które wymagają precyzyjnego pozycjonowania. Standardy ISO oraz dobre praktyki inżynieryjne zalecają ich stosowanie w aplikacjach, gdzie wymagana jest wysoka niezawodność i długowieczność komponentów. Warto pamiętać, że elastyczne sprzęgła kłowe są także istotnym elementem w systemach automatyki, gdzie precyzja i elastyczność są kluczowe dla sprawnego działania.

Pytanie 35

Na rysunku przedstawiono

Ilustracja do pytania
A. przekaźnik czasowy.
B. układ antyprzepięciowy.
C. zabezpieczenie przeciążeniowe.
D. wyłącznik silnikowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przykładem prawidłowej odpowiedzi jest przekaźnik czasowy, którego główną funkcją jest zarządzanie czasem w procesach automatyki. Urządzenie to umożliwia opóźnienie włączenia lub wyłączenia obwodów elektrycznych, co jest kluczowe w wielu aplikacjach przemysłowych. Przekaźniki czasowe znajdują zastosowanie w automatyzacji procesów, takich jak zarządzanie oświetleniem, wentylacją czy włączanie urządzeń w odpowiednich przedziałach czasowych. Dzięki regulowanym pokrętłom do ustawiania czasu, operatorzy mogą dostosować czas działania urządzenia do specyficznych potrzeb systemu. Standardy branżowe, takie jak IEC 60947-5-1, definiują wymagania dla takich urządzeń, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Znajomość i umiejętność prawidłowego używania przekaźników czasowych jest fundamentalna w projektowaniu układów automatyki, co pozwala na efektywne wykorzystanie zasobów i redukcję kosztów operacyjnych.

Pytanie 36

Przedstawione narzędzie służy do

Ilustracja do pytania
A. ściągania izolacji z przewodów.
B. zarabiania łączówek telekomunikacyjnych.
C. zaciskania końcówek kablowych elektrycznych.
D. zaciskania opasek kablowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "ściągania izolacji z przewodów" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu to ściągacz izolacji, które służy do precyzyjnego usuwania izolacji z przewodów elektrycznych. Narzędzia te są standardowym wyposażeniem w pracach elektrycznych, stosowanym w instalacjach domowych oraz przemysłowych. ściągacze izolacji posiadają regulowane szczęki, co umożliwia dostosowanie ich do różnych średnic przewodów, co jest kluczowe w zapewnieniu efektywności i bezpieczeństwa pracy. Używanie tego narzędzia pozwala na uniknięcie uszkodzeń przewodów, co jest szczególnie istotne w kontekście zachowania wysokich standardów bezpieczeństwa zgodnych z normami IEC 60364. Warto również nadmienić, że prawidłowe ściąganie izolacji ma na celu nie tylko ułatwienie dalszych prac, ale również zapewnienie optymalnego przewodzenia prądu, co jest kluczowe dla funkcjonowania instalacji elektrycznych.

Pytanie 37

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Usuwania izolacji z przewodów elektrycznych.
B. Cięcia przewodów pneumatycznych.
C. Łączenia przewodów hydraulicznych.
D. Gięcia przewodów elektrycznych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie przedstawione na rysunku to nożyk do przewodów z tworzyw sztucznych, które są powszechnie wykorzystywane w instalacjach pneumatycznych. Jego konstrukcja umożliwia precyzyjne cięcie różnych typów przewodów pneumatycznych, co jest niezwykle istotne w branży automatyki i pneumatyki. Przewody te często stosowane są w systemach transportu sprężonego powietrza, gdzie ich integralność i odpowiednie dopasowanie mają kluczowe znaczenie dla sprawności całego układu. Dzięki zastosowaniu tego narzędzia, możliwe jest uzyskanie gładkich krawędzi bez uszkodzenia struktury materiału, co minimalizuje ryzyko przecieków i awarii. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w branży, cięcie przewodów powinno być przeprowadzane w sposób zabezpieczający przed odkształceniem ich końców, co zapewnia prawidłowe działanie systemów pneumatycznych. Dobrej jakości nożyk do przewodów jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami pneumatycznymi.

Pytanie 38

Którego narzędzia należy użyć do wymiany łącznika przedstawionego na rysunku?

Ilustracja do pytania
A. Klucza oczkowego.
B. Klucza płaskiego.
C. Wkrętaka płaskiego.
D. Szczypców uniwersalnych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie wkrętaka płaskiego do wymiany łącznika elektrycznego zamontowanego na szynie DIN jest najlepszym rozwiązaniem ze względu na specyfikę konstrukcji łącznika. Tego rodzaju łączniki zazwyczaj mają śruby mocujące, które można łatwo odkręcić za pomocą wkrętaka płaskiego. W branży elektrycznej standardem jest korzystanie z odpowiednich narzędzi, aby zapewnić bezpieczeństwo oraz efektywność pracy. Wkrętaki płaskie są zaprojektowane do pracy z płaskimi śrubami, co czyni je idealnym narzędziem do zastosowania w takich sytuacjach. Oprócz wymiany łączników, wkrętaki płaskie są również szeroko stosowane w instalacjach elektrycznych do dokręcania lub luzowania połączeń, co zwiększa ich wszechstronność. Warto również zwrócić uwagę na dobrą jakość narzędzi, aby uniknąć uszkodzenia śrub oraz zapewnić długotrwałe użytkowanie. Pracując z narzędziami, zawsze należy przestrzegać zasad BHP, aby uniknąć potencjalnych wypadków.

Pytanie 39

Wynik pomiaru wskazany przez manometr wynosi

Ilustracja do pytania
A. 7,2 bar
B. 6,7 bar
C. 6,6 bar
D. 7,1 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7,2 bar jest prawidłowa, ponieważ zgodnie z wizualną analizą manometru, wskazówka znajduje się bliżej wartości 7 bar, jednak nieco powyżej. Wartość 7,2 bar jest najbliższa rzeczywistemu pomiarowi ciśnienia, co jest kluczowe w kontekście zastosowania manometrów w różnych systemach technologicznych. Przykładowo, w instalacjach hydraulicznych czy pneumatycznych, precyzyjny pomiar ciśnienia jest niezbędny do zapewnienia prawidłowego działania systemu oraz bezpieczeństwa operacji. Prawidłowe odczyty ciśnienia mają również znaczenie w diagnostyce awarii, pozwalając na szybką identyfikację problemów. W przemyśle i inżynierii, zgodność z normami pomiarowymi (np. ISO 3767) jest niezbędna, aby zapewnić wiarygodność pomiarów. Dlatego umiejętność dokładnego odczytywania wskazania manometru ma znaczenie nie tylko teoretyczne, ale również praktyczne dla inżynierów i techników.

Pytanie 40

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. zwiększeniem prędkości obrotowej
B. wzrostem reaktancji uzwojeń
C. spadkiem reaktancji uzwojeń
D. zmniejszeniem prędkości obrotowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.