Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 17 grudnia 2025 10:21
  • Data zakończenia: 17 grudnia 2025 10:22

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie powinno się wykorzystać, aby rozszerzyć zasięg sieci bezprzewodowej w obiekcie?

A. Przełącznik zarządzalny
B. Wzmacniacz sygnału
C. Modem bezprzewodowy
D. Bezprzewodową kartę sieciową
Bezprzewodowa karta sieciowa jest elementem, który pozwala urządzeniom na łączenie się z siecią bezprzewodową, lecz sama w sobie nie zwiększa zasięgu tej sieci. To urządzenie działa na poziomie końcowym, umożliwiając komunikację, ale nie wpływa na zasięg sygnału. Z kolei modem bezprzewodowy, pomimo że jest kluczowy dla dostarczania internetu do lokalnej sieci, również nie ma na celu zwiększania zasięgu sygnału. Jego zadaniem jest przetwarzanie sygnałów przychodzących z dostawcy usług internetowych i udostępnianie ich w sieci lokalnej. Przełącznik zarządzalny to urządzenie stosowane głównie w sieciach przewodowych do zarządzania ruchem danych i nie ma związku z siecią bezprzewodową, więc nie spełnia żadnej roli w kontekście zwiększania zasięgu sieci Wi-Fi. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to mylenie funkcji różnych komponentów sieciowych oraz niedostateczna znajomość zasad działania sieci bezprzewodowych. Aby poprawnie zrozumieć, które urządzenia mają realny wpływ na zasięg sieci, warto zgłębić podstawy architektury sieci komputerowych i ich komponentów.

Pytanie 2

Który z protokołów funkcjonuje w warstwie aplikacji modelu ISO/OSI, umożliwiając wymianę informacji kontrolnych między urządzeniami sieciowymi?

A. SNMP
B. SMTP
C. DNS
D. POP3
SNMP (Simple Network Management Protocol) to protokół, który działa w warstwie aplikacji modelu ISO/OSI i jest kluczowy dla zarządzania sieciami. Umożliwia wymianę informacji kontrolnych pomiędzy urządzeniami sieciowymi, takimi jak routery, przełączniki czy serwery. Protokół ten jest wykorzystywany do monitorowania i zarządzania sprzętem sieciowym, co pozwala administratorom na zbieranie danych o stanie urządzeń, wydajności, czy ewentualnych błędach. Przykładem zastosowania SNMP może być sytuacja, gdy zdalny serwer monitorujący zbiera informacje o obciążeniu CPU i ilości dostępnej pamięci RAM na urządzeniach w sieci. Dzięki SNMP administratorzy mogą szybko reagować na problemy, optymalizować konfiguracje oraz planować rozbudowę infrastruktury sieciowej. Standardy SNMP, takie jak SNMPv2 czy SNMPv3, wprowadzają dodatkowe funkcje, jak większe bezpieczeństwo i wydajność, co czyni ten protokół niezbędnym w zarządzaniu nowoczesnymi sieciami komputerowymi.

Pytanie 3

Aby komputer stacjonarny mógł współdziałać z urządzeniami używającymi złącz pokazanych na ilustracji, konieczne jest wyposażenie go w interfejs

Ilustracja do pytania
A. Fire Wire
B. Display Port
C. DVI-A
D. HDMI
Display Port to taki cyfrowy interfejs, który głównie służy do przesyłania obrazu z komputera do monitora. Ma tę fajną zaletę, że potrafi przesyłać wideo w bardzo wysokiej rozdzielczości, a przy tym również dźwięk, co sprawia, że jest super uniwersalny dla nowoczesnych urządzeń multimedialnych. Zgodność ze standardami VESA to kolejna rzecz, dzięki której można go używać z wieloma różnymi sprzętami. Dodatkowo, Display Port ma opcję synchronizacji dynamicznej obrazu, co jest mega ważne dla graczy i dla tych, którzy zajmują się edycją wideo. W zawodowych środowiskach często wybiera się właśnie Display Port, bo obsługuje wyższe rozdzielczości i częstotliwości odświeżania niż starsze złącza. A to, że można połączyć kilka monitorów za pomocą jednego kabla, to już w ogóle bajka, bo znacznie ułatwia życie i porządek z kablami. Wybierać Display Port to pewny krok w stronę lepszej jakości obrazu i dźwięku oraz dobrą inwestycję na przyszłość, bo technologie się rozwijają, a ten interfejs sobie z tym poradzi.

Pytanie 4

Ilustracja pokazuje schemat fizycznej topologii będącej kombinacją topologii

Ilustracja do pytania
A. siatki i gwiazdy
B. pierścienia i gwiazdy
C. magistrali i gwiazdy
D. siatki i magistrali
Topologia magistrali i gwiazdy to takie dwie popularne opcje w sieciach komputerowych, które mają swoje plusy i minusy. Topologia magistrali jest fajna, bo wszystkie urządzenia są podłączone do jednego kabla, co sprawia, że jest to tańsze i prostsze w zrobieniu. Ale z drugiej strony, jak ten kabel się uszkodzi, to cała sieć może leżeć. Dlatego teraz rzadziej się to stosuje. Z kolei topologia gwiazdy jest lepsza w tym względzie, bo każde urządzenie ma swoje połączenie z centralnym punktem, takim jak switch. To sprawia, że jak jeden kabel padnie, to reszta działa dalej, więc to bardziej niezawodne. Łącząc te dwie topologie, można stworzyć hybrydę, gdzie główne węzły są połączone magistralą, a segmenty urządzeń w gwiazdę. To daje większą elastyczność i lepszą skalowalność. Widziałem, że takie rozwiązania są popularne w firmach, gdzie ciągłość pracy i łatwość zarządzania są super ważne.

Pytanie 5

Przynależność komputera do konkretnej wirtualnej sieci nie może być ustalona na podstawie

A. znacznika ramki Ethernet 802.1Q
B. numeru portu przełącznika
C. nazwa komputera w sieci lokalnej
D. adresu MAC karty sieciowej komputera
Istnieją różne aspekty, które determinują przynależność komputera do konkretnej wirtualnej sieci, a zrozumienie tych elementów jest kluczowe dla skutecznego zarządzania siecią. Wiele osób może mylnie sądzić, że hostname, czyli nazwa komputera w sieci lokalnej, odgrywa istotną rolę w określaniu przynależności do VLAN. Jednakże, wygląda to inaczej w praktyce. Hostname jest bardziej użyteczny w kontekście identyfikacji urządzeń w sieci na poziomie aplikacyjnym, ale w kontekście wirtualnych sieci, nie ma wpływu na przekazywanie pakietów. Z drugiej strony, znacznik ramki Ethernet 802.1Q, który jest odpowiedzialny za oznaczanie VLAN, oraz adres MAC karty sieciowej, który identyfikuje urządzenie w lokalnej sieci, odgrywają fundamentalne role w procesie filtrowania i kierowania ruchu. Poprawnie skonfigurowane przełączniki analizują tagi VLAN w ramkach Ethernet, aby określić, do którego VLANu należy dany pakiet. Co więcej, numer portu przełącznika, do którego fizycznie podłączony jest komputer, również warunkuje przynależność do konkretnego VLANu. W typowych środowiskach biurowych różne działy mogą być przypisane do różnych VLANów dla lepszej separacji i bezpieczeństwa, co czyni te pojęcia kluczowymi w zarządzaniu infrastrukturą sieciową. Ignorowanie tych technicznych niuansów może prowadzić do poważnych błędów w konfiguracji sieci oraz problemów z komunikacją i dostępem do zasobów.

Pytanie 6

Ile adresów można przypisać urządzeniom działającym w sieci o adresie IP 192.168.20.0/26?

A. 30
B. 62
C. 4
D. 126
Wybór błędnych odpowiedzi może wynikać z mylnych obliczeń dotyczących liczby adresów IP w danej sieci. Na przykład liczba 4 sugeruje, że ktoś może błędnie zakładać, że można przydzielić tylko kilka adresów, co jest niezgodne z zasadą maskowania podsieci. Tego typu podejście prowadzi do zrozumienia, że w każdej podsieci musimy brać pod uwagę nie tylko adresy dostępne dla urządzeń, ale także adres sieciowy oraz adres rozgłoszeniowy, które nie mogą być używane jako przypisane adresy IP. Z kolei odpowiedź 30 może być wynikiem niewłaściwego liczenia, które nie uwzględnia wszystkich dostępnych adresów w podsieci. Możliwe, że ktoś odjął więcej adresów niż jest to wymagane. Podobnie, liczba 126 nie ma uzasadnienia w kontekście podanej maski /26, co sugeruje brak zrozumienia, jak działa podział adresów IP w sieciach. W rzeczywistości tylko w większych podsieciach można przydzielić taką liczbę adresów, ale nie przy masce /26. Prawidłowe zrozumienie zasad podziału sieci oraz obliczeń związanych z adresowaniem IP jest kluczowe dla efektywnego zarządzania sieciami. Błędy te mogą prowadzić do nieefektywnego wykorzystania dostępnych adresów IP oraz problemów z ich przydzielaniem, co jest niezgodne z najlepszymi praktykami w zarządzaniu sieciami.

Pytanie 7

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. wysyłania wiadomości na forum dyskusyjne
B. transmisji głosu w sieci
C. przesyłania wiadomości e-mail
D. przeprowadzania rozmów za pomocą interfejsu tekstowego
Internet Relay Chat (IRC) to protokół, który umożliwia użytkownikom prowadzenie rozmów w czasie rzeczywistym za pomocą tekstowych wiadomości. W odróżnieniu od innych form komunikacji, takich jak e-mail czy transmisja głosu, IRC opiera się na architekturze klient-serwer, gdzie użytkownicy łączą się z serwerem IRC, a następnie mogą uczestniczyć w kanałach tematyką, które ich interesują. Praktycznym zastosowaniem IRC jest organizowanie dyskusji na tematy techniczne, grupowych projektów programistycznych czy też wspólnych gier. Warto również zauważyć, że IRC wspiera wiele standardów, takich jak RFC 1459, które definiują jego podstawowe zasady działania. Dobre praktyki w korzystaniu z IRC obejmują przestrzeganie regulaminów kanałów, dbałość o kulturę dyskusji oraz efektywne zarządzanie dostępem do informacji, co przyczynia się do pozytywnej atmosfery w społecznościach online. IRC, mimo spadku popularności na rzecz nowoczesnych komunikatorów, wciąż jest wykorzystywany w niektórych środowiskach technicznych i gamingowych.

Pytanie 8

Który port stosowany jest przez protokół FTP (File Transfer Protocol) do przesyłania danych?

A. 20
B. 53
C. 69
D. 25
Porty 25, 53 i 69 nie są wykorzystywane do transmisji danych w protokole FTP, co może być mylące dla osób początkujących w obszarze sieci komputerowych. Port 25 jest standardowo używany przez protokół SMTP (Simple Mail Transfer Protocol), który służy do wysyłania wiadomości e-mail. W wyniku tego, wiele osób może błędnie kojarzyć ten port z funkcjami transferu danych, jednak w rzeczywistości jego przeznaczeniem jest obsługa poczty elektronicznej. Port 53 jest przypisany do protokołu DNS (Domain Name System), który odpowiada za tłumaczenie nazw domen na adresy IP. Zrozumienie tego, że porty są przypisane do różnych protokołów oraz ich specyficznych funkcji, jest kluczowe dla efektywnej pracy z siecią. Port 69, z drugiej strony, jest używany przez TFTP (Trivial File Transfer Protocol), który jest uproszczoną wersją FTP, ale nie obsługuje pełnej funkcjonalności, jaką oferuje FTP, takiej jak autoryzacja czy transfer w trybie binarnym. Pomieszanie tych portów może prowadzić do błędów w konfigurowaniu serwerów i aplikacji, co z kolei negatywnie wpływa na przepływ danych i bezpieczeństwo systemów. Dlatego istotne jest, aby mieć świadomość, które porty są przypisane do odpowiednich protokołów, aby uniknąć błędów w zarządzaniu siecią.

Pytanie 9

W hierarchicznym modelu sieci, komputery należące do użytkowników są składnikami warstwy

A. szkieletowej
B. rdzenia
C. dostępu
D. dystrybucji
Odpowiedzi wskazujące na warstwy szkieletową, dystrybucji oraz rdzenia są niepoprawne, ponieważ każda z nich ma inną rolę w hierarchicznej architekturze sieci. Warstwa szkieletowa, będąca najwyższym poziomem, odpowiada za szybkie przesyłanie dużych ilości danych między różnymi lokalizacjami, ale nie zajmuje się bezpośrednią interakcją z użytkownikami. Jest to warstwa, która łączy różne segmenty sieci, zapewniając przepustowość i niezawodność komunikacji, lecz nie angażuje się w końcowe łączenie użytkowników. Warstwa dystrybucji ma na celu agregację ruchu z warstwy dostępu oraz realizację polityk routingu i kontroli dostępu. W praktyce ta warstwa decyduje o kierowaniu ruchu w sieci oraz może implementować funkcje takie jak QoS (Quality of Service), jednak również nie jest to poziom, gdzie użytkownicy mają bezpośredni dostęp do zasobów sieciowych. Z kolei warstwa rdzenia to odpowiedzialna za główne połączenia w sieci, zapewniając wysoką wydajność i szybkość, ale nie angażując się w interakcję z końcowymi urządzeniami. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi na to pytanie często wynikają z mylenia roli warstw w architekturze sieciowej oraz braku zrozumienia, jak poszczególne warstwy współdziałają, aby zapewnić użytkownikom dostęp do zasobów sieciowych. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania oraz zarządzania infrastrukturą sieciową.

Pytanie 10

Magistrala PCI-Express wykorzystuje do transmisji danych metodę komunikacji

A. asynchronicznej Simplex.
B. synchronicznej Full duplex.
C. synchronicznej Half duplex.
D. asynchronicznej Full duplex.
Rozważając metody komunikacji w kontekście magistrali PCI-Express, łatwo wpaść w pułapkę myślenia o tradycyjnych rozwiązaniach znanych z wcześniejszych standardów, takich jak PCI czy AGP. Często można spotkać się z przekonaniem, że transmisja w takich systemach oparta jest na trybie synchronicznym, bo przecież zegar systemowy steruje całością – jednak PCIe działa trochę inaczej. Synchronizacja nie jest tu realizowana klasycznie jak w busach równoległych, a raczej przez bardziej złożone mechanizmy sygnalizacji szeregowej. Warianty typu Simplex czy Half duplex wydają się logiczne, bo w wielu sieciach komputerowych (np. Ethernet starszych generacji) rzeczywiście ogranicza nas jedna ścieżka dla obu kierunków transmisji lub konieczność naprzemiennego nadawania i odbioru. Jednak PCI-Express to rozwiązanie, gdzie na każdą linię (tzw. lane) przypadają osobne ścieżki dla wysyłania i odbierania sygnałów, co pozwala na pełną, dwukierunkową komunikację bez wzajemnych blokad. Brak asynchroniczności natomiast skutkowałby koniecznością bardzo ścisłej synchronizacji po stronie obu urządzeń, co ograniczałoby szybkość i skalowalność. Typowy błąd to utożsamianie „pełnego dupleksu” wyłącznie z transmisją synchroniczną. W rzeczywistości w PCIe nie ma jednego globalnego zegara, a komunikacja odbywa się za pomocą tzw. kodowania 8b/10b lub 128b/130b (w nowszych wersjach), z autonegocjacją parametrów sygnału. Z mojego doświadczenia wynika, że takie nieporozumienia biorą się z prób przenoszenia wiedzy ze starszych architektur na nowe technologie, co nie zawsze ma sens. Dla praktyka informatyków i elektroników kluczowe jest zapamiętanie, że PCIe korzysta z pełnego dupleksu na fizycznych, wydzielonych ścieżkach i nie wymaga ścisłego zsynchronizowania obu końców magistrali w tradycyjny sposób. Tylko takie podejście umożliwia współczesne prędkości i niezawodność transmisji.

Pytanie 11

Aby połączyć projektor multimedialny z komputerem, złącze, którego NIEDOZWOLONO użyć to

A. HDMI
B. USB
C. SATA
D. D-SUB
Złącza HDMI, USB i D-SUB są standardami, które można używać do podłączania projektorów multimedialnych, co może prowadzić do błędnych wniosków na temat funkcji złącza SATA. HDMI jest najbardziej uniwersalnym złączem, które przesyła zarówno obraz, jak i dźwięk w wysokiej jakości. Jego popularność wynika z faktu, że obsługuje wysoką rozdzielczość oraz dodatkowe funkcje, takie jak ARC (Audio Return Channel) czy CEC (Consumer Electronics Control), co czyni je idealnym wyborem do projektorów. Z kolei USB, które kiedyś służyło głównie do przesyłania danych lub zasilania, zyskuje na znaczeniu w kontekście przesyłania sygnału wideo, szczególnie dzięki nowoczesnym projektorom, które potrafią współpracować z urządzeniami mobilnymi. D-SUB, mimo że jest starszym standardem, jest nadal powszechnie stosowane w szkołach i biurach, gdzie starsze urządzenia wymagają tego typu połączeń. Myślenie, że SATA może być używane w tym kontekście, wynika z nieporozumienia dotyczącego funkcji tego złącza. SATA nie jest zaprojektowane do przesyłania sygnału wideo; zamiast tego, skupia się na transferze danych pomiędzy dyskami a płytą główną. Zrozumienie przeznaczenia różnych typów złącz jest kluczowe, aby uniknąć takich pomyłek i uzyskać odpowiednią jakość obrazu, która jest niezbędna do efektywnego korzystania z projektora multimedialnego.

Pytanie 12

Ile podsieci obejmują komputery z adresami: 192.168.5.12/25, 192.168.5.200/25 oraz 192.158.5.250/25?

A. 3
B. 2
C. 4
D. 1
Wielu użytkowników może mieć trudności z prawidłowym przypisaniem adresów IP do podsieci, co jest kluczowym aspektem w zarządzaniu sieciami komputerowymi. W przypadku podanej sytuacji, niektórzy mogą pomyśleć, że wszystkie trzy adresy IP mogą znajdować się w jednej podsieci. Takie myślenie może wynikać z nadmiernego uproszczenia zasad dotyczących maski podsieci. Nie uwzględniając maski /25, można błędnie wnioskować, że adresy 192.168.5.12 i 192.168.5.200 są w tej samej podsieci, ponieważ są blisko siebie w zakresie adresów. Jest to jednak mylące, ponieważ ich maski podsieci wskazują, że są w różnych podsieciach. Dodatkowo, mylenie podsieci z adresami IP, które różnią się tylko ostatnim oktetem, jest powszechnym błędem. Podobnie, przyznanie, że adres 192.158.5.250 może znajdować się w tej samej podsieci co dwa pozostałe adresy, jest błędne, ponieważ pierwszy oktet w tym adresie jest różny i wskazuje na zupełnie inną sieć. Każdy adres IP w sieci musi być oceniany w kontekście jego maski podsieci, aby właściwie określić, do której podsieci przynależy. Rozumienie tego zagadnienia jest niezbędne do skutecznego planowania i zarządzania infrastrukturą sieciową.

Pytanie 13

Zgodnie z normą EIA/TIA T568B, żyły pary odbiorczej w skrętce są pokryte izolatorem w kolorze

A. niebieskim i niebiesko-białym
B. pomarańczowym i pomarańczowo-białym
C. brązowym i biało-brązowym
D. zielonym i biało-zielonym
Wybór innych kolorów żył pary odbiorczej wskazuje na nieporozumienie związane z obowiązującymi standardami okablowania sieciowego. Odpowiedzi takie jak "brązowym i biało-brązowym", "niebieskim i niebiesko-białym" oraz "pomarańczowym i pomarańczowo-białym" odnoszą się do innych par przewodów w strukturze skrętki. Każda para kolorów ma swoje przyporządkowanie według standardu EIA/TIA T568B, a ich zrozumienie jest kluczowe dla prawidłowego działania sieci. Pary brązowa, niebieska i pomarańczowa są odpowiedzialne za inne funkcje w transmisji danych. Na przykład, para niebieska jest często używana w komunikacji Ethernet do przesyłania sygnałów danych, ale nie pełni roli pary odbiorczej. Powszechnym błędem jest mylenie kolorów par i ich funkcji, co może prowadzić do błędów w instalacji i obniżenia wydajności sieci. Niezrozumienie roli poszczególnych par kolorów może skutkować zakłóceniami sygnału, a w niektórych przypadkach nawet całkowitym brakiem łączności. Dlatego istotne jest, aby osoby zajmujące się instalacjami sieciowymi dokładnie zapoznały się z tymi standardami oraz praktykami ich stosowania, aby uniknąć typowych pułapek i osiągnąć optymalną wydajność sieci.

Pytanie 14

Jaki jest maksymalny promień zgięcia przy montażu kabla U/UTP kat 5e?

A. osiem średnic kabla
B. dwie średnice kabla
C. cztery średnice kabla
D. sześć średnic kabla
Odpowiedź, że dopuszczalny promień zgięcia podczas instalacji kabla U/UTP kat 5e wynosi osiem średnic kabla, jest zgodna z obowiązującymi standardami przemysłowymi. Zgodnie z wytycznymi IEEE i TIA/EIA, promień zgięcia kabla powinien wynosić co najmniej osiem razy średnica kabla, aby zapewnić optymalną wydajność sygnałową i minimalizować ryzyko uszkodzeń. Przykładowo, jeżeli średnica kabla U/UTP kat 5e wynosi około 5 mm, promień zgięcia powinien wynosić co najmniej 40 mm. Przestrzeganie tych wytycznych jest kluczowe w kontekście instalacji kabli, zwłaszcza w środowiskach, gdzie narażone są na różne naprężenia mechaniczne. Właściwy promień zgięcia zapobiega degradacji sygnału, co jest niezbędne dla utrzymania jakości transmisji danych w sieciach komputerowych. Ponadto, stosowanie się do tych standardów pozytywnie wpływa na trwałość instalacji oraz bezpieczeństwo systemu, co jest istotne w kontekście regulacji dotyczących instalacji elektrycznych i telekomunikacyjnych.

Pytanie 15

Standard IEEE 802.11b dotyczy typu sieci

A. światłowodowych
B. bezprzewodowych
C. przewodowych
D. telefonicznych
Norma IEEE 802.11b to standard bezprzewodowych sieci lokalnych (WLAN), który umożliwia komunikację w paśmie 2,4 GHz z maksymalną przepustowością do 11 Mbps. Jest to jeden z pierwszych standardów, które zyskały popularność w zastosowaniach domowych i biurowych. Dzięki technologii radiowej, IEEE 802.11b pozwala na łączenie urządzeń bez użycia kabli, co znacząco zwiększa elastyczność i mobilność użytkowników. W praktyce, standard ten jest powszechnie stosowany w routerach Wi-Fi oraz w różnych urządzeniach mobilnych, takich jak laptopy i smartfony. Ważnym aspektem jest to, że 802.11b korzysta z technologii DSSS (Direct Sequence Spread Spectrum), co zapewnia większą odporność na zakłócenia. W obliczu rosnącego zapotrzebowania na szybkie i wydajne połączenia bezprzewodowe, nowsze standardy, takie jak 802.11g czy 802.11n, oferują wyższe prędkości i lepszą wydajność, jednak 802.11b wciąż pozostaje istotnym punktem odniesienia w rozwoju technologii WLAN.

Pytanie 16

Jak wielu hostów można maksymalnie zaadresować w sieci lokalnej, mając do dyspozycji jeden blok adresów klasy C protokołu IPv4?

A. 512
B. 254
C. 255
D. 510
Wybór odpowiedzi 255, 510 lub 512 jest wynikiem nieporozumienia dotyczącego adresacji w sieciach klasy C. Adresy IPv4 w klasie C mają 24 bity przeznaczone na identyfikację sieci oraz 8 bitów na identyfikację hostów, co daje łącznie 256 adresów. Osoby, które wybrały odpowiedź 255, mogą mieć na myśli całkowitą liczbę dostępnych adresów, ale nie uwzględniają faktu, że dwa adresy są zarezerwowane: jeden dla adresu sieci i jeden dla adresu rozgłoszeniowego. W przypadku odpowiedzi 510 i 512, widoczna jest ignorancja podstawowych zasad dotyczących adresacji IP. Oznaczenia te sugerują, że użytkownicy nie rozumieją, że maksymalna liczba adresów IP, które można przydzielić hostom, jest ograniczona przez rezerwacje dla specjalnych adresów. W praktyce, przydzielanie adresów IP musi uwzględniać również dynamikę sieci, w tym zmiany w liczbie urządzeń podłączonych do sieci. Te zagadnienia są kluczowe w projektowaniu i zarządzaniu sieciami lokalnymi, a ich nieprawidłowe rozumienie może prowadzić do problemów z dostępnością usług czy konfliktami adresów. Stąd ważne jest, aby administratorzy sieci dokładnie rozumieli zasady adresacji IP zgodne z normami RFC, co pozwoli efektywnie zarządzać zasobami sieciowymi.

Pytanie 17

Który adres IP jest zaliczany do klasy B?

A. 100.10.10.2
B. 134.192.16.1
C. 198.15.10.112
D. 96.15.2.4
Adresy IP z pozostałych opcji nie są przypisane do klasy B, co może być źródłem nieporozumień wśród osób uczących się o adresacji IP. Na przykład, adres 96.15.2.4 należy do klasy A, ponieważ jego pierwszy oktet (96) znajduje się w zakresie od 1 do 126. Klasa A jest przeznaczona dla bardzo dużych sieci, gdzie możliwe jest przydzielenie ponad 16 milionów adresów IP. Adres 100.10.10.2 również należy do klasy A, co może być mylące, ponieważ podobnie jak w przypadku 96.15.2.4, jego pierwszy oktet (100) jest w tym samym zakresie. Klasa A składa się z adresów, które często są używane przez globalne organizacje, ponieważ ich struktura sieciowa wymaga dużej ilości adresów. Z kolei adres 198.15.10.112 należy do klasy C, która obejmuje zakres od 192.0.0.0 do 223.255.255.255. Klasa C jest stosowana w mniejszych sieciach, gdzie zwykle przypisuje się od 2 do 254 adresów IP. Osoby mogą mylnie interpretować klasy adresów IP, skupiając się na wartości liczbowej pierwszego oktetu, nie zdając sobie sprawy z ich klasyfikacji oraz zastosowań w praktyce. Zrozumienie różnic pomiędzy klasami A, B i C jest niezbędne do efektywnego zarządzania sieciami, co jest kluczowe w kontekście projektowania i administrowania infrastrukturą sieciową.

Pytanie 18

Aby połączyć projektor multimedialny z komputerem, należy unikać użycia złącza

A. USB
B. HDMI
C. D-SUB
D. SATA
No, wybór złączy D-SUB, HDMI czy USB do podłączenia projektora to dość powszechny błąd, który często wynika z nieporozumień. D-SUB, czyli VGA, to analogowe złącze, które dobrze przesyła sygnał wideo, więc można je używać z projektorami bez problemu. HDMI to nowoczesny standard, który przesyła zarówno wideo, jak i audio w formacie cyfrowym, więc daje lepszą jakość. USB, mimo że może być wykorzystywane do niektórych urządzeń wideo, nie jest standardowym złączem dla projektorów. Wiele osób myli te interfejsy, myśląc, że każde złącze ma te same funkcje, przez co można podłączyć sprzęt niewłaściwie. Ważne jest, żeby wiedzieć, że nie każde złącze nadaje się do przesyłania sygnału wideo i audio. Złącze SATA, które wspomniałeś w teście, służy tylko do przesyłania danych między dyskiem a płytą główną, więc w przypadku projektorów to nie ma większego sensu. Wiedza o tym, jakie standardy są prawidłowe w podłączaniu sprzętu multimedialnego, może uratować cię przed problemami z jakością obrazu i dźwięku podczas prezentacji.

Pytanie 19

Na schemacie przedstawiono podstawowe informacje dotyczące ustawień karty sieciowej. Do jakiej klasy należy adres IP przypisany do tej karty?

Ilustracja do pytania
A. Klasa B
B. Klasa D
C. Klasa A
D. Klasa C
Adresy IP klasy A obejmują zakres od 1.0.0.0 do 126.0.0.0 co charakteryzuje się pierwszym bitem ustawionym na 0 i umożliwia posiadanie bardzo dużej liczby hostów Klasa A jest idealna dla gigantycznych sieci takich jak te wykorzystywane przez korporacje międzynarodowe lub dostawców usług internetowych Adresacja klasy A nie jest adekwatna do przedstawionego adresu 192.168.56.1 ponieważ znajduje się on poza zakresem tej klasy Klasa B natomiast obejmuje adresy od 128.0.0.0 do 191.255.0.0 Pierwsze dwa bity klasy B są ustawione na 10 co pozwala na posiadanie średniej liczby hostów często używanej w średniej wielkości organizacjach Także w tym przypadku adres 192.168.56.1 nie pasuje do tej klasy ze względu na jego wartość początkową Klasa D służy do multicastingu co oznacza że jej adresy nie są używane do konwencjonalnego adresowania hostów Adresy IP w tej klasie zaczynają się od 224 do 239 i są wykorzystywane głównie do przesyłania danych do wielu odbiorców jednocześnie Wybór klasy D jako klasy do której należy adres 192.168.56.1 jest również błędny gdyż nie jest to adres przeznaczony do tego typu komunikacji Analizując zakresy adresów i funkcje każdej klasy IP można zauważyć że nieprawidłowe wybory wynikają z niezrozumienia charakterystyki zakresów i przeznaczenia poszczególnych klas adresów IP co jest kluczowe dla poprawnej konfiguracji i zarządzania siecią

Pytanie 20

Wykonane polecenia, uruchomione w interfejsie CLI rutera marki CISCO, spowodują ```Router#configure terminal Router(config)#interface FastEthernet 0/0 Router(config-if)#ip address 10.0.0.1 255.255.255.0 Router(config-if)#ip nat inside```

A. pozwolenie na ruch z sieci o adresie 10.0.0.1
B. konfiguracja interfejsu zewnętrznego z adresem 10.0.0.1/24 dla NAT
C. konfiguracja interfejsu wewnętrznego z adresem 10.0.0.1/24 dla NAT
D. zdefiniowanie zakresu adresów wewnętrznych 10.0.0.1 ÷ 255.255.255.0
Odpowiedzi sugerujące dopuszczenie ruchu pochodzącego z sieci o adresie 10.0.0.1, określenie puli adresów wewnętrznych 10.0.0.1 ÷ 255.255.255.0 oraz ustawienie interfejsu zewnętrznego o adresie 10.0.0.1/24 dla technologii NAT prezentują istotne nieporozumienia w zakresie działania NAT oraz klasyfikacji interfejsów w ruterach Cisco. Przede wszystkim, NAT (Network Address Translation) jest technologią, której głównym celem jest umożliwienie komunikacji pomiędzy siecią wewnętrzną a zewnętrzną poprzez translację adresów IP. W tej konfiguracji interfejs FastEthernet 0/0 został oznaczony jako 'ip nat inside', co jednoznacznie wskazuje na jego rolę jako interfejsu wewnętrznego, a nie zewnętrznego. Oznaczenie interfejsu jako 'inside' jest kluczowe, ponieważ ruch przychodzący z tego interfejsu będzie podlegał translacji, co jest niezbędne do prawidłowego działania NAT. Poza tym, odpowiedzi sugerujące puli adresów wewnętrznych są mylące, ponieważ maska 255.255.255.0 wskazuje na zakres adresów od 10.0.0.1 do 10.0.0.254, jednak nie jest to sposób na określenie puli w kontekście NAT. NAT działa na zasadzie translacji, gdzie adresy wewnętrzne zamieniane są na adresy publiczne w momencie wysyłania pakietów do sieci zewnętrznej, co nie ma nic wspólnego z określaniem zakresów adresowych wewnętrznych. Zrozumienie tych zasad jest kluczowe w kontekście prawidłowej konfiguracji oraz zabezpieczeń sieciowych, dlatego takie nieścisłości mogą prowadzić do poważnych błędów w implementacji.

Pytanie 21

Aby użytkownik laptopa z systemem Windows 7 lub nowszym mógł korzystać z drukarki przez sieć WiFi, musi zainstalować drukarkę na porcie

A. LPT3
B. WSD
C. COM3
D. Nul
Wybór portów Nul, LPT3 i COM3 do instalacji drukarki w systemie Windows jest nieprawidłowy z kilku powodów. Port Nul to wirtualny port, który nie może być używany do komunikacji z urządzeniem zewnętrznym, a jego funkcja polega głównie na przekierowywaniu danych do 'nikąd', co czyni go bezużytecznym w kontekście drukowania. Porty LPT3 oraz COM3 są portami równoległymi i szeregowymi, odpowiednio, które w przeszłości były używane do podłączenia drukarek, ale w dobie nowoczesnych technologii, takich jak USB i WiFi, ich zastosowanie stało się bardzo ograniczone. Współczesne drukarki zazwyczaj nie są wyposażone w złącza równoległe, a ich podłączenie przez port szeregowy wymaga specjalnych kabli i adapterów, co wprowadza dodatkowe komplikacje. Typowym błędem myślowym jest zakładanie, że starsze standardy komunikacji są wciąż aktualne w kontekście nowoczesnych urządzeń. Przy wyborze odpowiedniego portu do podłączenia drukarki niezbędne jest zrozumienie nowoczesnych protokołów komunikacyjnych oraz ich zastosowania w klasycznych systemach operacyjnych, co pozwoli uniknąć frustracji i problemów z konfiguracją.

Pytanie 22

Firma zamierza zrealizować budowę lokalnej sieci komputerowej, która będzie zawierać serwer, drukarkę oraz 10 stacji roboczych, które nie mają kart bezprzewodowych. Połączenie z Internetem umożliwia ruter z wbudowanym modemem ADSL oraz czterema portami LAN. Które z poniższych urządzeń sieciowych jest konieczne, aby sieć działała prawidłowo i miała dostęp do Internetu?

A. Przełącznik 16 portowy
B. Access Point
C. Wzmacniacz sygnału bezprzewodowego
D. Przełącznik 8 portowy
Wybór innych urządzeń sieciowych, takich jak Access Point, wzmacniacz sygnału bezprzewodowego czy przełącznik 8 portowy, nie odpowiada na warunki przedstawione w pytaniu, co prowadzi do nieporozumień w zakresie budowy lokalnej sieci komputerowej. Access Point jest urządzeniem przeznaczonym do tworzenia sieci bezprzewodowej, a w opisywanym przypadku wszystkie stacje robocze są podłączone za pomocą kabli, co czyni to urządzenie zbędnym. Wzmacniacz sygnału bezprzewodowego również nie jest odpowiedni, ponieważ nie ma w tej sieci elementów bezprzewodowych do wzmocnienia. Z kolei przełącznik 8 portowy, mimo że może teoretycznie podłączyć wszystkie urządzenia, nie pozostawia miejsca na przyszłe rozszerzenia, co jest istotne w planowaniu sieci. Dobrą praktyką w budowie sieci jest wybieranie urządzeń z odpowiednią ilością portów oraz funkcjami, które pozwolą na łatwe dostosowywanie się do zmieniających się potrzeb organizacji. Zastosowanie niewłaściwych urządzeń może prowadzić do ograniczonej przepustowości, problemów z wydajnością oraz trudności w zarządzaniu siecią, co może wpłynąć negatywnie na codzienne funkcjonowanie firmy. Warto zatem dokładnie rozważyć wymagania sieci oraz przyszłe potrzeby przed dokonaniem wyboru sprzętu.

Pytanie 23

Osoba korzystająca z komputera, która testuje łączność sieciową używając polecenia ping, uzyskała wynik przedstawiony na rysunku. Jakie może być źródło braku reakcji serwera przy pierwszej próbie, zakładając, że adres domeny wp.pl to 212.77.100.101?

C:\Users\Komputer 2>ping wp.pl
Żądanie polecenia ping nie może znaleźć hosta wp.pl. Sprawdź nazwę i ponów próbę.
C:\Users\Komputer 2>ping 212.77.100.101

Badanie 212.77.100.101 z 32 bajtami danych:
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248

Statystyka badania ping dla 212.77.100.101:
    Pakiety: Wysłane = 4, Odebrane = 4, Utracone = 0 (0% straty).
Szacunkowy czas błądzenia pakietów w milisekundach:
    Minimum = 28 ms, Maksimum = 28 ms, Czas średni = 28 ms
A. Nieustawiony adres domyślnej bramy w konfiguracji karty sieciowej.
B. Nieprawidłowy adres IP przypisany do karty sieciowej.
C. Brak przypisanego serwerowi DHCP adresu karty sieciowej.
D. Nieobecność adresów serwera DNS w ustawieniach karty sieciowej
Jak widać, brak serwera DNS w ustawieniach karty sieciowej sprawił, że komputer nie mógł pingować domeny. DNS, czyli Domain Name System, to coś w stylu tłumacza dla internetu - zamienia nazwy domen na adresy IP. Jak go nie skonfigurujesz, to komputer nie wie, gdzie ma szukać, co kończy się błędem. W drugim przypadku, gdy podałeś adres IP bezpośrednio, komunikacja poszła gładko, bo ominąłeś ten cały proces rozpoznawania. Prawidłowe ustawienie DNS to klucz do sprawnego korzystania z internetu. Lepiej korzystać z zaufanych serwerów DNS od operatorów albo publicznych, jak Google DNS (8.8.8.8), bo zapewniają one lepszą szybkość i stabilność. Pamiętaj, że dobra konfiguracja DNS to nie tylko kwestia wydajności, ale też bezpieczeństwa sieci, żeby uniknąć opóźnień i problemów z dostępem do stron, co jest całkiem ważne, szczególnie w biznesie.

Pytanie 24

Grupa, w której członkom można nadawać uprawnienia jedynie w obrębie tej samej domeny, co domena nadrzędna lokalnej grupy domeny, nosi nazwę grupa

A. globalna
B. lokalna komputera
C. uniwersalna
D. lokalna domeny
Wybór innych typów grup może prowadzić do nieporozumień dotyczących zarządzania dostępem i uprawnieniami w środowisku domeny. Grupa uniwersalna, na przykład, jest używana do zarządzania użytkownikami i grupami w wielu domenach, co sprawia, że nie nadaje się do przypisywania uprawnień tylko w obrębie jednej domeny. Grupy uniwersalne są bardziej elastyczne, ale są projektowane głównie do współpracy między różnymi domenami, co nie odpowiada wymaganiu dotyczącym ograniczenia do jednej domeny. Grupa globalna ma na celu przypisywanie użytkowników i uprawnień w obrębie jednej domeny, ale wymaga, aby członkowie tej grupy byli również z tej samej domeny, co oznacza, że nie można ich używać do zarządzania dostępem do zasobów specyficznych dla lokalnych grup. Grupa lokalna komputera z kolei jest ograniczona do jednego komputera, co sprawia, że nie jest użyteczna w kontekście zarządzania uprawnieniami w ramach całej domeny. Te rozróżnienia ilustrują, dlaczego wybranie niewłaściwego rodzaju grupy może prowadzić do błędnych konfiguracji i problemów z dostępem do zasobów, co jest niezgodne z najlepszymi praktykami w zakresie zarządzania IT.

Pytanie 25

W sieci lokalnej, aby chronić urządzenia sieciowe przed przepięciami oraz różnicami napięć, które mogą wystąpić w trakcie burzy lub innych wyładowań atmosferycznych, należy zastosować

A. ruter
B. przełącznik
C. urządzenie typu NetProtector
D. sprzętową zaporę sieciową
Urządzenie typu NetProtector jest kluczowym elementem ochrony sieci LAN przed skutkami przepięć i różnic potencjałów, które mogą wystąpić w wyniku wyładowań atmosferycznych. Te urządzenia, znane również jako ograniczniki przepięć, są zaprojektowane do odprowadzania nadmiaru energii do ziemi, chroniąc w ten sposób wrażliwe sprzęty sieciowe, takie jak routery, przełączniki, serwery i inne urządzenia końcowe. Przykładowo, w przypadku burzy, kiedy może dojść do pojawienia się przepięć, NetProtektor działa jako pierwsza linia obrony, minimalizując ryzyko uszkodzeń. W praktyce, wdrażanie takich urządzeń jest rekomendowane przez organizacje zajmujące się standardami bezpieczeństwa, takie jak IEC (Międzynarodowa Komisja Elektrotechniczna) oraz NFPA (Krajowe Stowarzyszenie Ochrony Przeciwpożarowej). Dobrą praktyką jest zainstalowanie NetProtectora na każdym etapie sieci, a także regularne przeprowadzanie ich konserwacji i wymiany, aby zapewnić stałą ochronę.

Pytanie 26

Jakie polecenie w systemie Windows powinno zostać użyte, aby uzyskać wynik zbliżony do tego na załączonym obrazku?

TCP    192.168.0.14:57989    185.118.124.154:http   ESTABLISHED
TCP    192.168.0.14:57997    fra15s17-in-f8:http    ESTABLISHED
TCP    192.168.0.14:58010    fra15s11-in-f14:https  TIME_WAIT
TCP    192.168.0.14:58014    wk-in-f156:https       ESTABLISHED
TCP    192.168.0.14:58015    wk-in-f156:https       TIME_WAIT
TCP    192.168.0.14:58016    104.20.87.108:https    ESTABLISHED
TCP    192.168.0.14:58022    ip-2:http              TIME_WAIT
A. ping
B. ipconfig
C. netstat
D. tracert
Polecenie netstat w systemie Windows służy do wyświetlania aktywnych połączeń sieciowych oraz tabel routingu i statystyk interfejsów. Jest niezwykle przydatne dla administratorów sieci oraz osób zajmujących się bezpieczeństwem IT, ponieważ pozwala monitorować aktywność sieciową na poziomie systemu operacyjnego. W wyniku działania netstat można uzyskać szczegółowe informacje na temat połączeń TCP i UDP, takich jak adresy IP lokalnych i zdalnych hostów, używane porty oraz stan połączenia. Na przykład stan ESTABLISHED oznacza, że połączenie jest aktywne, podczas gdy TIME_WAIT wskazuje na zakończenie połączenia TCP, które czeka na upływ określonego czasu przed całkowitym zamknięciem. Netstat jest również użyteczny w identyfikacji nieautoryzowanych połączeń lub usług nasłuchujących na nieznanych portach, co może być pierwszym krokiem w analizie potencjalnego naruszenia bezpieczeństwa. Polecenie to można również rozszerzyć o różne przełączniki, takie jak -a do wyświetlania wszystkich połączeń i portów nasłuchujących, -n do prezentowania adresów w formie numerycznej, co może przyspieszyć analizę, oraz -o do pokazania identyfikatorów procesów, co ułatwia identyfikację aplikacji związanych z danym połączeniem. Zrozumienie i wykorzystanie netstat jest zgodne z najlepszymi praktykami w zarządzaniu siecią, umożliwiając skuteczne monitorowanie i zabezpieczanie infrastruktury IT.

Pytanie 27

Podstawowym celem użycia przełącznika /renew w poleceniu ipconfig w systemie Windows jest

A. wystąpienie o odpowiedź z określonego adresu IP w celu diagnozy połączenia sieciowego
B. pokazywanie informacji o adresie MAC karty sieciowej
C. odnowienie dynamicznego adresu IP poprzez interakcję z serwerem DHCP
D. pokazywanie danych dotyczących adresu IP
Zrozumienie roli komendy 'ipconfig /renew' w zarządzaniu adresami IP w systemie Windows jest kluczowe dla prawidłowego funkcjonowania sieci. Wiele osób myli tę komendę z innymi funkcjami, co prowadzi do nieprawidłowych wniosków. Wyświetlanie informacji o adresie IP to funkcjonalność komendy 'ipconfig' bez dodatkowych parametrów, a nie '/renew', co może prowadzić do błędnego podejścia do monitorowania stanu adresacji IP. Kolejna nieprawidłowa koncepcja to mylenie tej komendy z diagnostyką połączenia sieciowego, co można osiągnąć za pomocą narzędzi takich jak 'ping' lub 'tracert', które służą do testowania i diagnozowania połączeń. Z kolei wyświetlanie informacji o adresie MAC karty sieciowej jest również odrębną funkcjonalnością, która nie ma związku z odnawianiem adresu IP. Często użytkownicy popełniają błąd w myśleniu, że komenda '/renew' może być używana do bezpośredniego sprawdzenia stanu sieci, co nie jest jej przeznaczeniem. Rozumienie właściwych zastosowań każdego z poleceń i ich roli w konfiguracji i diagnostyce sieci jest kluczowe, aby skutecznie zarządzać środowiskiem sieciowym, a także unikać problemów związanych z niepoprawnym przypisywaniem adresów IP w dynamicznych konfiguracjach.

Pytanie 28

Możliwość bezprzewodowego połączenia komputera z siecią Internet za pomocą tzw. hotspotu będzie dostępna po zainstalowaniu w nim karty sieciowej posiadającej

A. moduł WiFi
B. złącze USB
C. gniazdo RJ-45
D. interfejs RS-232C
Wybór interfejsu RS-232C jako odpowiedzi na pytanie o bezprzewodowy dostęp do Internetu wskazuje na niezrozumienie podstawowych koncepcji komunikacji sieciowej. RS-232C to standard szeregowy stosowany głównie w starych urządzeniach, takich jak modemy czy drukarki, który nie obsługuje komunikacji bezprzewodowej. Jest to interfejs skoncentrowany na przesyłaniu danych za pomocą kabli, co jest sprzeczne z ideą hotspotów, które opierają się na transmisji radiowej. Zastosowanie złącza USB w tym kontekście mogłoby być mylące, ponieważ choć niektóre urządzenia USB mogą pełnić funkcję kart sieciowych WiFi, to samo złącze nie jest wystarczające do zapewnienia bezprzewodowego dostępu. Gniazdo RJ-45, z kolei, to standardowe złącze Ethernet, które umożliwia połączenia przewodowe, ale także nie ma zastosowania w bezprzewodowych połączeniach. Typowym błędem myślowym jest mylenie technologii przewodowej z bezprzewodową oraz nieznajomość specyfikacji i standardów, które rządzą tymi różnymi typami komunikacji. Kluczowe jest zrozumienie, że w celu uzyskania bezprzewodowego dostępu do Internetu konieczne jest posiadanie odpowiedniego modułu, który jest w stanie obsłużyć sygnał radiowy.

Pytanie 29

Jakie urządzenie umożliwia zwiększenie zasięgu sieci bezprzewodowej?

A. Konwerter mediów
B. Wzmacniacz sygnału
C. Przełącznik zarządzalny
D. Modem VDSL
Modem VDSL, przełącznik zarządzalny oraz konwerter mediów to urządzenia, które pełnią różne funkcje w infrastrukturze sieciowej, jednak żadne z nich nie są przeznaczone do zwiększania zasięgu sygnału bezprzewodowego. Modem VDSL jest odpowiedzialny za konwersję sygnału cyfrowego na sygnał analogowy, co pozwala na przesył danych przez linie telefoniczne. Jego głównym celem jest zapewnienie dostępu do internetu, a nie wzmocnienie sygnału bezprzewodowego. Przełącznik zarządzalny z kolei służy do zarządzania ruchem danych w sieci lokalnej, umożliwiając efektywne rozdzielanie i kierowanie pakietów danych między różnymi urządzeniami, ale nie wpływa na zasięg sygnału Wi-Fi. Konwerter mediów jest urządzeniem, które zmienia format sygnału, na przykład z miedzi na światłowód, co również nie ma związku z bezprzewodowym przesyłem danych. Często mylone są funkcje tych urządzeń, co prowadzi do błędnych wniosków na temat ich zastosowań. Aby skutecznie zwiększyć zasięg sieci bezprzewodowej, należy zainwestować w odpowiednie rozwiązania, takie jak wzmacniacze sygnału lub punkty dostępowe, które są dedykowane do tego celu, a nie polegać na urządzeniach, których podstawowe funkcje nie obejmują wzmocnienia sygnału Wi-Fi.

Pytanie 30

Która z poniższych opcji nie jest wykorzystywana do zdalnego zarządzania stacjami roboczymi?

A. program Wireshark
B. program TeamViewer
C. program UltraVNC
D. pulpit zdalny
Zdalne zarządzanie stacjami roboczymi jest kluczowym aspektem współczesnego IT, a dostęp do komputerów znajdujących się w różnych lokalizacjach staje się codziennością. TeamViewer, pulpit zdalny oraz UltraVNC są przykładami narzędzi, które umożliwiają takie zarządzanie. TeamViewer pozwala na zdalne sterowanie komputerem, umożliwiając użytkownikowi wykonywanie operacji, tak jakby siedział przed tym komputerem. Pulpit zdalny to technologia wbudowana w systemy operacyjne, która zapewnia zdalny dostęp do graficznego interfejsu użytkownika. UltraVNC działa na podobnej zasadzie, umożliwiając zdalne połączenie i interakcję z interfejsem innego komputera. Te narzędzia są niezwykle przydatne w kontekście wsparcia technicznego, zarządzania systemami i administracji IT. Wiele osób myli funkcje Wiresharka z funkcjami tych programów, co prowadzi do błędnych wniosków. Wireshark, mimo że jest potężnym narzędziem, skupia się na analizie i monitorowaniu ruchu sieciowego, a nie na zdalnym dostępie do komputerów. Typowym błędem jest założenie, że każde narzędzie związane z siecią może także pełnić funkcje zdalnego zarządzania, podczas gdy rzeczywistość pokazuje, że każdy z tych programów ma swoje unikalne zastosowania i właściwości. Dlatego ważne jest, aby znać różnice między nimi, aby wykorzystać je w odpowiednich kontekstach.

Pytanie 31

Aby zrealizować alternatywę logiczną z negacją, konieczne jest zastosowanie funktora

A. OR
B. EX-OR
C. NOR
D. NAND
Wybór innych operatorów logicznych, takich jak EX-OR, NAND lub OR, jest nieprawidłowy w kontekście realizacji alternatywy logicznej z negacją. EX-OR, znane również jako operator ekskluzywnej alternatywy, zwraca wartość prawdziwą tylko wtedy, gdy dokładnie jeden z jego argumentów jest prawdziwy. To oznacza, że nie realizuje pełnej alternatywy w połączeniu z negacją, ponieważ nie uwzględnia sytuacji, w której oba argumenty są fałszywe. Operator NAND, z drugiej strony, jest negacją koniunkcji, co oznacza, że zwraca wartość fałszywą tylko wtedy, gdy oba argumenty są prawdziwe. Choć NAND jest bardzo przydatny w praktyce, nie spełnia wymagań dotyczących realizacji alternatywy z negacją. Operator OR zwraca wartość prawdziwą, gdy przynajmniej jeden z argumentów jest prawdziwy, jednak nie zapewnia negacji w sposób, który umożliwiałby realizację wyrażenia NOR. Uzycie bramek NAND i OR może prowadzić do nieporozumień w kontekście projektowania układów cyfrowych, ponieważ mogą one nie oddać zamierzonego zachowania w sytuacjach, gdzie wymagane jest zarówno łączenie wartości, jak i ich negacja. Umiejętność rozróżnienia tych operatorów oraz zrozumienie ich zastosowania jest niezbędne, aby unikać błędów w projektach elektronicznych oraz w logice cyfrowej.

Pytanie 32

Planowanie wykorzystania przestrzeni na dysku komputera do gromadzenia i udostępniania informacji takich jak pliki oraz aplikacje dostępne w sieci, a także ich zarządzanie, wymaga skonfigurowania komputera jako

A. serwer aplikacji
B. serwer DHCP
C. serwer plików
D. serwer terminali
Konfiguracja komputera jako serwera aplikacji, serwera DHCP lub serwera terminali nie odpowiada na potrzeby związane z centralnym przechowywaniem i udostępnianiem plików w sieci. Serwer aplikacji służy do hostowania aplikacji, co oznacza, że skupia się na ich uruchamianiu i zarządzaniu, a nie na przechowywaniu plików. Tego rodzaju serwery są wykorzystywane w architekturze klient-serwer, gdzie klient korzysta z zasobów dostarczanych przez serwer aplikacji, jednak nie oferują one zintegrowanego systemu do zarządzania danymi. Serwer DHCP (Dynamic Host Configuration Protocol) służy do automatycznego przydzielania adresów IP urządzeniom w sieci, co jest kluczowe dla komunikacji w sieci lokalnej, ale nie ma on nic wspólnego z przechowywaniem plików. Wreszcie, serwer terminali umożliwia zdalny dostęp do aplikacji i zasobów na serwerze, ale również nie jest przeznaczony do zarządzania plikami w sposób, w jaki robią to serwery plików. Błędem jest mylenie funkcji tych serwerów z ich zastosowaniem w kontekście przechowywania danych. Właściwe zrozumienie ról pełnionych przez różne typy serwerów jest kluczowe w projektowaniu infrastruktury IT, aby spełniała specyficzne potrzeby organizacji. W praktyce, wybór odpowiedniego serwera zależy od wymagań dotyczących przechowywania, dostępu i bezpieczeństwa danych, co powinno być zawsze podstawą decyzji projektowych.

Pytanie 33

W celu zapewnienia jakości usługi QoS, w przełącznikach warstwy dostępu stosuje się mechanizm

A. nadawania wyższych priorytetów niektórym typom danych
B. zapobiegającego występowaniu pętli w sieci
C. zastosowania kilku portów jako jednego logicznego połączenia jednocześnie
D. określania liczby urządzeń, które mogą łączyć się z danym przełącznikiem
Mechanizmy mające na celu zapewnienie jakości usług (QoS) różnią się znacząco w zależności od zastosowanych technologii oraz specyfiki sieci. Wybór odpowiedzi, które koncentrują się na takich kwestiach jak liczba urządzeń łączących się z przełącznikiem czy zapobieganie powstawaniu pętli, nie odnoszą się bezpośrednio do fundamentalnych zasad zarządzania ruchem danych w sieci. Odpowiedź dotycząca liczby urządzeń sugeruje, że ograniczenie liczby podłączonych klientów może mieć wpływ na QoS, jednak nie wpływa to bezpośrednio na priorytetyzację danych, która jest kluczowa dla utrzymania wysokiej jakości usług w warunkach dużego obciążenia sieci. Również koncepcja wykorzystywania kilku portów jako jednego łącza logicznego, chociaż może poprawić przepustowość, nie ma wpływu na to, które dane są przesyłane w sposób priorytetowy. Kluczowym błędem jest zrozumienie, że QoS dotyczy nie tylko zarządzania szerokością pasma, ale przede wszystkim sposobu traktowania różnych typów ruchu. Mechanizmy zapobiegające pętli, takie jak STP (Spanning Tree Protocol), są istotne dla stabilności sieci, ale nie dotyczą zarządzania priorytetami danych. W rezultacie wybór odpowiedzi, które nie odnosi się do nadawania priorytetów danym, prowadzi do niepełnego zrozumienia istoty QoS oraz jej zastosowania w praktyce, co jest kluczowym elementem w projektowaniu i utrzymywaniu nowoczesnych sieci komputerowych.

Pytanie 34

Jakie urządzenie powinno być użyte do segmentacji domeny rozgłoszeniowej?

A. Ruter
B. Hub
C. Switch
D. Mostek
Wybór mostu, przełącznika lub koncentratora do podziału domeny rozgłoszeniowej nie jest odpowiedni, ponieważ każde z tych urządzeń działa na niższych warstwach modelu OSI i nie ma zdolności do zarządzania ruchem między różnymi domenami rozgłoszeniowymi. Most, który operuje na warstwie drugiej, jest zaprojektowany do łączenia dwóch segmentów sieci w ramach tej samej domeny rozgłoszeniowej, co oznacza, że stosuje filtrację na poziomie adresów MAC, ale nie jest w stanie segregować ruchu między różnymi sieciami. Podobnie przełącznik, który również działa na poziomie drugiej warstwy, umożliwia szybkie przesyłanie danych w obrębie lokalnej sieci, ale nie jest w stanie ograniczyć rozgłoszeń do określonego segmentu, co prowadzi do zwiększonego ruchu w sieci. Koncentrator, będący urządzeniem działającym na warstwie fizycznej, z kolei, po prostu powiela sygnał na wszystkie porty, co jeszcze bardziej zaostrza problem z rozgłoszeniami, zamiast go rozwiązywać. Takie podejście prowadzi do typowych błędów myślowych, gdzie użytkownicy mogą sądzić, że każde urządzenie sieciowe ma zdolność do zarządzania ruchem, co jest niezgodne z rzeczywistością. Przykłady zastosowania tych urządzeń w sieciach niskoskalowych, takich jak małe biura, mogą wprowadzać w błąd, ponieważ w mniejszych środowiskach, gdzie liczba urządzeń jest ograniczona, rozróżnienie między tymi technologiami może być mniej widoczne, jednak w większych infrastrukturach niezbędne jest korzystanie z ruterów do efektywnego zarządzania ruchem między różnymi segmentami sieci.

Pytanie 35

Program firewall nie zapewnia ochrony przed

A. atakami generującymi zwiększony ruch w sieci
B. szpiegowaniem oraz kradzieżą poufnych informacji użytkownika
C. wirusami rozprzestrzeniającymi się za pomocą poczty elektronicznej
D. uzyskaniem dostępu do komputera przez hakerów
Wiele osób myśli, że firewalle załatwiają wszystko, ale to nie do końca tak działa. Często mylą je z programami antywirusowymi. Firewalle pilnują, żeby nikt nie wchodził do systemu bez pozwolenia i czasem blokują dziwny ruch w sieci, ale nie potrafią prześwietlić plików z e-maili pod kątem wirusów. Są różne rodzaje ataków, jak DDoS, które firewalle mogą ograniczać, ale wirusy z e-maili mogą przebić się przez nie. Nawet przy włączonym firewallu hakerzy mogą zyskać dostęp, jeśli wykorzystają jakieś luki w oprogramowaniu lub zainstalują złośliwe oprogramowanie poprzez załączniki. A wykradanie danych to też coś, czym zajmuje się złośliwe oprogramowanie – i firewall tego nie zablokuje. Dlatego najlepiej połączyć firewalle z programami antywirusowymi i na bieżąco aktualizować wszystko, co mamy, a także uczyć się, jak rozpoznawać zagrożenia.

Pytanie 36

Jaką najwyższą liczbę urządzeń można przypisać w sieci z adresacją IPv4 klasy C?

A. 2024
B. 65534
C. 254
D. 126
Wybór odpowiedzi 126, 2024 lub 65534 wynika z nieprecyzyjnego zrozumienia podstaw adresacji IPv4 oraz struktury klas adresowych. Odpowiedź 126 może być mylnie postrzegana jako poprawna z uwagi na to, że w sieci IPv4 klasy A, która ma znacznie większy zakres adresowania, liczba hostów jest rzeczywiście wyższa, ale klasa C oferuje znacznie większe możliwości. Z kolei 2024 to całkowita liczba, którą można uzyskać poprzez zsumowanie adresów z różnych klas lub mylne obliczenia, co jest błędne w kontekście pojedynczej klasy C. W przypadku 65534, ta liczba jest związana z klasą B, która pozwala na znacznie większą ilość urządzeń, jednak klasy C mają ograniczenie do 254. Typowe błędy myślowe to brak rozróżnienia pomiędzy różnymi klasami adresów IP oraz nieznajomość podstawowych zasad rezerwacji adresów w każdej z klas. W efekcie, używanie niepoprawnych wartości prowadzi do nieefektywnego projektowania sieci, co może powodować problemy z komunikacją i zarządzaniem adresami IP. Dlatego tak ważne jest zrozumienie zasad funkcjonowania IPv4 oraz ich praktyczne zastosowanie.

Pytanie 37

Ile par kabli w standardzie 100Base-TX jest używanych do transmisji danych w obie strony?

A. 1 para
B. 4 pary
C. 2 pary
D. 3 pary
W przypadku błędnych odpowiedzi, pojawia się często nieporozumienie dotyczące liczby par przewodów używanych w standardzie 100Base-TX. Niektórzy mogą uznawać, że jedna para jest wystarczająca do komunikacji, jednak to podejście nie uwzględnia koncepcji pełnodupleksu. Użycie jednej pary oznaczałoby transmisję danych w trybie półdupleksowym, co ograniczałoby jednoczesne przesyłanie informacji w obu kierunkach. Takie ograniczenie byłoby nieefektywne w kontekście nowoczesnych aplikacji sieciowych, które wymagają wysokiej wydajności i niskich opóźnień. Warto zauważyć, że w standardach Ethernet liczba przewodów ma krytyczne znaczenie dla wydajności sieci. Przyjęcie, że do prawidłowej komunikacji wystarczą trzy pary lub wszystkie cztery, jest również mylące, ponieważ w standardzie 100Base-TX tylko dwie pary są zarezerwowane do transmisji danych. Pozostałe pary, chociaż mogą być wykorzystywane w innych standardach, nie mają zastosowania w tym kontekście. Rozumienie architektury sieci i standardów transmisji danych jest kluczowe dla efektywnego projektowania i wdrażania rozwiązań sieciowych.

Pytanie 38

Użytkownicy w sieci lokalnej mogą się komunikować między sobą, lecz nie mają możliwości połączenia z serwerem WWW. Wynik polecenia ping z komputerów do bramy jest pozytywny. Który element sieci nie może być źródłem problemu?

Ilustracja do pytania
A. Kabel między ruterem a przełącznikiem
B. Kabel między ruterem a serwerem WWW
C. Przełącznik.
D. Router.
Router pełni kluczową rolę w komunikacji sieciowej, kierując ruch między różnymi sieciami, w tym lokalną siecią użytkowników i zewnętrznymi sieciami, takimi jak Internet. Jeśli użytkownicy nie mogą połączyć się z serwerem WWW, potencjalną przyczyną mogą być problemy z trasowaniem, konfiguracją NAT lub regułami zapory na routerze. Kabel łączący router z przełącznikiem jest kluczowym elementem, ponieważ umożliwia przesyłanie danych między urządzeniami lokalnymi a siecią zewnętrzną. Awaria tego kabla mogłaby skutkować całkowitym brakiem łączności, jednak w scenariuszu opisanym w pytaniu komunikacja wewnętrzna działa poprawnie. Kabel między routerem a serwerem WWW jest również krytyczny dla nawiązania połączenia z serwerem. Jeśli jest uszkodzony lub źle podłączony, użytkownicy mogą doświadczać problemów z dostępem do zasobów serwera. Typowy błąd polega na założeniu, że lokalna komunikacja wewnętrzna gwarantuje, że cała infrastruktura sieciowa działa poprawnie. W rzeczywistości każdy segment sieci pełni unikalną rolę, a problemy mogą wystąpić nawet przy częściowej sprawności systemu. Kluczowe jest rozumienie roli poszczególnych komponentów sieci oraz ich wzajemnych zależności, co pozwala na szybką diagnostykę i rozwiązanie problemów komunikacyjnych.

Pytanie 39

Protokół, który zajmuje się identyfikowaniem i usuwaniem kolizji w sieciach Ethernet, to

A. WINS
B. NetBEUI
C. CSMA/CD
D. IPX/SPX
CSMA/CD, czyli Carrier Sense Multiple Access with Collision Detection, to protokół stosowany w sieciach Ethernet, którego głównym celem jest zarządzanie dostępem do medium transmisyjnego oraz wykrywanie i eliminowanie kolizji. Protokół ten działa na zasadzie detekcji, co oznacza, że urządzenia nasłuchują medium, zanim rozpoczną transmisję danych. W przypadku stwierdzenia kolizji, urządzenia przerywają wysyłanie danych, a następnie implementują algorytm backoff, który losowo opóźnia ponowną próbę wysłania danych. Taki mechanizm pozwala na efektywniejsze wykorzystanie medium i minimalizację utraty danych. Przykładem zastosowania CSMA/CD są tradycyjne sieci Ethernet, w których kilka urządzeń współdzieli ten sam kanał komunikacyjny. Zgodność z tym protokołem jest jedną z fundamentalnych zasad standardów IEEE 802.3, co podkreśla jego znaczenie w branży. Pomimo że CSMA/CD zostało w dużej mierze zastąpione przez przełączniki Ethernet, które eliminują problem kolizji, znajomość tego protokołu jest istotna dla zrozumienia ewolucji technologii sieciowej i podstaw działania sieci lokalnych.

Pytanie 40

Na ilustracji przedstawiono sieć komputerową w danej topologii

Ilustracja do pytania
A. magistrali
B. gwiazdy
C. mieszanej
D. pierścienia
Topologia pierścienia jest jednym z podstawowych rodzajów organizacji sieci komputerowych. Charakteryzuje się tym że każde urządzenie jest połączone z dwoma innymi tworząc zamknięty krąg. Dane przesyłane są w jednym kierunku co minimalizuje ryzyko kolizji pakietów. Ta topologia jest efektywna pod względem zarządzania ruchem sieciowym i pozwala na łatwe skalowanie. Dzięki temu można ją znaleźć w zastosowaniach wymagających wysokiej niezawodności takich jak przemysłowe sieci automatyki. W praktyce często stosuje się protokół Token Ring w którym dane przesyłane są za pomocą specjalnego tokena. Umożliwia to równomierne rozłożenie obciążenia sieciowego oraz zapobiega monopolizowaniu łącza przez jedno urządzenie. Choć topologia pierścienia może być bardziej skomplikowana w implementacji niż inne topologie jak gwiazda jej stabilność i przewidywalność działania czynią ją atrakcyjną w specyficznych zastosowaniach. Dodatkowo dzięki fizycznej strukturze pierścienia łatwo można identyfikować i izolować problemy w sieci co jest cenne w środowiskach wymagających ciągłości działania. Standardy ISO i IEEE opisują szczegółowe wytyczne dotyczące implementacji tego typu sieci co pozwala na zachowanie kompatybilności z innymi systemami oraz poprawę bezpieczeństwa i wydajności działania.