Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 stycznia 2026 17:31
  • Data zakończenia: 24 stycznia 2026 17:33

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego, to

Ilustracja do pytania
A. zgrzewanie.
B. spawanie.
C. klejenie.
D. lutowanie.
Lutowanie jest standardową metodą łączenia podzespołów elektronicznych na płytkach obwodów drukowanych (PCB). Proces ten polega na użyciu stopu lutowniczego, który po podgrzaniu w płynnej formie wypełnia szczeliny między elementami a płytką, a następnie po schłodzeniu tworzy trwałe połączenie. Zaletą lutowania jest jego zdolność do zapewnienia nie tylko solidnego połączenia elektrycznego, ale również wytrzymałości mechanicznej, co jest kluczowe w zastosowaniach elektronicznych. W praktyce lutowanie stosowane jest w produkcji urządzeń elektronicznych, takich jak komputery, telewizory czy telefony. Istnieją różne techniki lutowania, w tym lutowanie ręczne, lutowanie na fali czy lutowanie w piecu, które są dostosowane do różnych potrzeb produkcyjnych i typów urządzeń. Warto zaznaczyć, że lutowanie powinno być przeprowadzane zgodnie z normami IPC (Institute for Printed Circuits), które określają wymagania dotyczące jakości i niezawodności połączeń lutowanych.

Pytanie 2

Który z przedstawionych na rysunkach podzespołów urządzenia pneumatycznego zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania sprężonym powietrzem?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź B jest poprawna, ponieważ filtr z regulatorem ciśnienia pełni kluczową rolę w układzie zasilania sprężonym powietrzem. Filtr usuwa zanieczyszczenia, takie jak cząstki stałe, krople wody i oleju, co jest istotne dla zachowania prawidłowego funkcjonowania urządzeń pneumatycznych. Regulacja ciśnienia jest niezbędna, aby uniknąć uszkodzeń systemu spowodowanych nadmiernym ciśnieniem. Przykładem praktycznego zastosowania jest przemysł motoryzacyjny, gdzie sprężone powietrze wykorzystuje się do zasilania narzędzi pneumatycznych. W tym kontekście, filtr z regulatorem ciśnienia zapewnia nie tylko bezpieczeństwo, ale także efektywność operacyjną, redukując ryzyko awarii sprzętu. Normy takie jak ISO 8573-1 definiują wymagania jakości powietrza sprężonego, co potwierdza znaczenie filtracji i regulacji w każdym systemie pneumatycznym. Przestrzeganie dobrych praktyk w zakresie konserwacji tych elementów pozwala na dłuższą żywotność i niezawodność urządzeń.

Pytanie 3

Na podstawie przedstawionej tabliczki znamionowej pompy hydraulicznej określ jej maksymalną wydajność.

Ilustracja do pytania
A. 1,20 kW
B. 0,75 kW
C. 43 m
D. 4,50 m3/h
Odpowiedź 4,50 m3/h jest na pewno trafna, bo maksymalna wydajność pompy hydraulicznej jest jasno podana na tabliczce znamionowej. To ważne, żeby wiedzieć, ile cieczy pompa może przepompować w danym czasie, bo ma to ogromne znaczenie w różnych zastosowaniach przemysłowych. Na przykład w hydraulice, gdzie potrzebna jest konkretna ilość płynów do napędzania maszyn, znajomość wydajności pompy pozwala na jej lepsze dobranie. Stabilność tej wydajności w różnych warunkach też jest kluczowa. Dobrze zaprojektowany system hydrauliczny, bazujący na danych z tabliczki, może naprawdę poprawić efektywność energetyczną i wydłużyć żywotność maszyn. To, jak rozumiemy te kwestie, jest istotne zarówno dla projektantów, jak i dla operatorów maszyn.

Pytanie 4

Układ sterowania pneumatycznego przedstawiony na schemacie zawiera

A. trzy siłowniki dwustronnego działania.
B. dwa siłowniki dwustronnego działania.
C. dwa siłowniki jednostronnego działania.
D. jeden siłownik dwustronnego i jeden siłownik jednostronnego działania.
Poprawna odpowiedź wskazuje, że w układzie sterowania pneumatycznego znajduje się jeden siłownik dwustronnego działania oraz jeden siłownik jednostronnego działania. Siłownik dwustronnego działania, który jest wyposażony w dwa kanały do zasilania, pozwala na ruch tłoka w obu kierunkach, co czyni go niezwykle wszechstronnym w zastosowaniach, gdzie wymagana jest precyzyjna kontrola ruchu. Z kolei siłownik jednostronnego działania wykorzystuje sprężynę do powrotu tłoka do pozycji wyjściowej po zakończeniu ruchu roboczego, co jest praktyczne w układach, gdzie nie jest potrzebne zasilanie w obu kierunkach. Tego typu siłowniki są powszechnie stosowane w automatyce przemysłowej, na przykład w systemach pakowania, gdzie realizują cykle operacyjne z minimalnym zużyciem energii. Kluczowe standardy, takie jak ISO 4414, zalecają odpowiednie stosowanie siłowników w oparciu o wymagania aplikacji, co przyczynia się do zwiększenia efektywności i niezawodności systemów pneumatycznych.

Pytanie 5

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Tworzą przeszkodę optyczną
B. Zbierają energię w polu magnetycznym
C. Tworzą przeszkodę elektryczną
D. Zbierają energię w polu elektrycznym
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 6

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy w mechanizmie przedstawionym na rysunku?

Ilustracja do pytania
A. Nakrętka koronowa.
B. Podkładka dystansująca.
C. Pierścień Segera.
D. Zawleczka zabezpieczająca.
Pierścień Segera to kluczowy element zabezpieczający łożysko przed wysunięciem z obudowy w mechanizmach maszynowych. Zamontowany w rowku na zewnętrznej powierzchni łożyska lub wału, pierścień ten blokuje ruch łożyska w kierunku osiowym, co jest szczególnie ważne w zastosowaniach, gdzie występują znaczne siły działające na łożysko. W przemyśle maszynowym, na przykład w silnikach elektrycznych czy przekładniach, obecność pierścieni Segera minimalizuje ryzyko uszkodzenia łożyska oraz zwiększa trwałość całego systemu. Dobrą praktyką jest regularne sprawdzanie stanu pierścieni zabezpieczających w celu zapewnienia niezawodności działania urządzeń. Zgodnie z normami ISO, stosowanie odpowiednich elementów zabezpieczających jest kluczowe dla bezpieczeństwa i wydajności mechanizmów, co podkreśla znaczenie stosowania pierścieni Segera w projektach inżynieryjnych. W praktyce, nieodpowiedni dobór lub brak pierścienia Segera może prowadzić do awarii, a w konsekwencji do przestojów w pracy maszyn, co generuje dodatkowe koszty.

Pytanie 7

Rurka Bourdona stanowi część

A. filtru powietrza
B. manometru
C. reduktora ciśnienia
D. smarownicy
Rurka Bourdona jest kluczowym elementem manometru, który służy do pomiaru ciśnienia gazów i cieczy. Działa na zasadzie deformacji, gdy ciśnienie wewnętrzne powoduje, że elastyczna rurka zmienia swój kształt. Zmiana ta jest następnie przekształcana na wskazanie na skali manometru, co pozwala na dokładny pomiar ciśnienia. Rurki Bourdona są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, petrochemiczny, a także w systemach HVAC. Zgodnie z normami, takimi jak ISO 5171, manometry powinny być kalibrowane regularnie, aby zapewnić ich dokładność i zgodność z wymaganiami. Przykładem praktycznego zastosowania może być monitorowanie ciśnienia w kotłach parowych, gdzie precyzyjny pomiar jest kluczowy dla bezpieczeństwa i efektywności działania systemu. W ogólności, zastosowanie rurki Bourdona w manometrach jest nie tylko powszechne, ale także ściśle związane z zapewnieniem odpowiednich standardów bezpieczeństwa i jakości w różnych aplikacjach przemysłowych.

Pytanie 8

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7
A. 3 x 3 mm
B. 6 x 6 mm
C. 5 x 5 mm
D. 4 x 4 mm
Najczęściej popełnianym błędem przy wyborze wymiarów wpustu pryzmatycznego jest nieprawidłowe dopasowanie jego rozmiaru do średnicy wału. Wiele osób może pomyśleć, że wymiary 3 x 3 mm, 5 x 5 mm lub 6 x 6 mm będą odpowiednie dla wału o średnicy 12 mm, co jest błędne. Takie rozumowanie wynika często z niepełnego zrozumienia podstawowych zasad projektowania połączeń mechanicznych. W rzeczywistości, każdy wpust jest projektowany według określonych norm, które określają, jakie wymiary powinny być stosowane dla różnych średnic wałów. Zastosowanie zbyt małych wymiarów, takich jak 3 x 3 mm, prowadzi do niewystarczającego przenoszenia momentu obrotowego, co może skutkować ich uszkodzeniem oraz niestabilnością całego mechanizmu. Podobnie, zbyt duże wymiary, takie jak 5 x 5 mm lub 6 x 6 mm, mogą uniemożliwić odpowiednie osadzenie wpustu na wale, co również prowadzi do luzów i potencjalnych uszkodzeń. Kluczowym aspektem jest zrozumienie, że dobór wymiarów wpustu nie jest tylko kwestią estetyki, ale jest to fundamentalna zasada konstrukcji mechanicznych, która ma bezpośredni wpływ na efektywność i bezpieczeństwo urządzeń. Dlatego tak ważne jest, aby stosować się do tabel i specyfikacji producentów, aby dokonać właściwego wyboru wymiarów wpustu pryzmatycznego.

Pytanie 9

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór redukcyjny, manometr, smarownica
B. sprężarka, filtr, zawór redukcyjny, manometr
C. filtr, zawór dławiący, manometr, smarownica
D. sprężarka, filtr, manometr, smarownica
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 10

W celu uzupełnienia smaru w łożysku przedstawionym na rysunku należy użyć

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Aby skutecznie uzupełnić smar w łożysku, kluczowe jest wykorzystanie odpowiednich narzędzi, takich jak smarownica, co potwierdza poprawność odpowiedzi D. Smarownice, w porównaniu do innych narzędzi, oferują precyzyjne i kontrolowane dozowanie smaru, co jest istotne dla efektywności i trwałości łożysk. Właściwe smarowanie łożysk jest nie tylko kwestią wydajności, ale także wpływa na bezpieczeństwo całego mechanizmu, w którym się znajdują. W praktyce, stosowanie smarownic jest zgodne z najlepszymi praktykami w zakresie konserwacji maszyn, ponieważ pozwala na minimalizowanie ryzyka przepełnienia lub niedoboru smaru, co może prowadzić do uszkodzenia łożysk. Regularne stosowanie smarownic w ramach planowanych przeglądów technicznych nie tylko zapewnia długotrwałą wydajność, ale również zmniejsza koszty związane z naprawami, co jest zgodne z zasadami zarządzania majątkiem i efektywności operacyjnej w branży. Z tego powodu, znajomość i umiejętność stosowania smarownicy jest kluczowa dla każdej osoby zajmującej się konserwacją maszyn.

Pytanie 11

Którego klucza należy użyć do zamocowania przedmiotu w uchwycie tokarki?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Klucz imbusowy, oznaczony literą B, jest kluczowym narzędziem w procesie mocowania przedmiotów w uchwytach tokarskich. Jego unikalny kształt sześciokątny pozwala na efektywne wkręcanie i odkręcanie śrub z gniazdem sześciokątnym, co jest powszechnie stosowane w obrabiarkach. Użycie klucza imbusowego zapewnia pewne i stabilne mocowanie, co jest kluczowe w precyzyjnej obróbce materiałów. W praktyce, klucz imbusowy pozwala na łatwe dostosowanie siły dokręcania, co jest ważne w celu uniknięcia uszkodzeń zarówno śruby, jak i elementu mocowanego. W przemyśle metalowym oraz w warsztatach rzemieślniczych klucze imbusowe są niezbędne, ponieważ wiele maszyn i narzędzi korzysta z takich rozwiązań. Zastosowanie klucza imbusowego zgodnie z najlepszymi praktykami zwiększa bezpieczeństwo pracy i precyzję wykonywanych operacji, co wpływa na jakość końcowego produktu.

Pytanie 12

Określ prawidłową kolejność dokręcania śrub lub nakrętek części podzespołu, przedstawionej na rysunku.

Ilustracja do pytania
A. 6,2,4,3,5,1
B. 2,5,3,6,4,1
C. 1,6,2,3,4,5
D. 5,1,3,4,6,2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa kolejność dokręcania śrub lub nakrętek w podzespołach mechanicznych ma kluczowe znaczenie dla zapewnienia stabilności i trwałości połączenia. Wybór kolejności 2,5,3,6,4,1 jest zgodny z zasadą równomiernego rozkładu siły nacisku, co jest istotne w zapobieganiu skrzywieniu elementów. W praktyce stosowanie kolejności krzyżowej lub gwiazdowej, takich jak ta, minimalizuje ryzyko nierównomiernego docisku, co z kolei przyczynia się do dłuższej żywotności podzespołu. Przykładem może być montaż silnika, gdzie odpowiednie dokręcenie głowicy cylindrów w ustalonej kolejności jest kluczowe dla zachowania szczelności i efektywności pracy silnika. Zgodnie z normami branżowymi, takimi jak ISO 16047, prawidłowe dokręcanie śrub powinno być wykonywane z użyciem momentomierza, aby zapewnić, że zastosowane siły są zgodne z wartościami producenta. Zapewnienie, że siły są równomiernie rozłożone, nie tylko zwiększa integrację konstrukcji, ale także zmniejsza ryzyko awarii w trakcie użytkowania.

Pytanie 13

Cewkę zaworu elektromagnetycznego o napięciu znamionowym 24 V AC i częstotliwości 50 Hz, której rezystancja jest równa jej reaktancji, podłączono do napięcia stałego o wartości 24 V. Ile razy wzrosną straty mocy w cewce zaworu, w wyniku takiego podłączenia, w stosunku do strat mocy w znamionowych warunkach pracy?

Ilustracja do pytania
A. 4
B. 1,5
C. 2
D. √2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cewka zaworu elektromagnetycznego zaprojektowana do pracy przy napięciu 24 V AC i częstotliwości 50 Hz ma określone parametry, które uwzględniają rezystancję oraz reaktancję. W warunkach pracy AC, całkowita impedancja cewki, będąca sumą rezystancji i reaktancji, skutkuje zmniejszonym prądem. Gdy jednak cewka jest podłączona do napięcia stałego o wartości 24 V, impedancja staje się równa tylko rezystancji, co prowadzi do zwiększonego prądu w obwodzie. W związku z tym, straty mocy wzrastają, ponieważ moc strat jest proporcjonalna do kwadratu prądu. W praktyce, cewki elektromagnetyczne są projektowane tak, aby działały w określonych warunkach, a zmiana ich źródła zasilania może prowadzić do nieodpowiednich warunków pracy, co może prowadzić do przegrzania lub uszkodzenia elementów. Dlatego istotne jest, aby zawsze stosować się do specyfikacji producenta oraz uwzględniać charakterystykę obwodu, aby uniknąć niepożądanych skutków, takich jak zwiększone straty mocy czy zmniejszona żywotność urządzenia.

Pytanie 14

Element oznaczony na schemacie symbolem 4N35 to

Ilustracja do pytania
A. fototranzystor.
B. transoptor.
C. optotriak.
D. fototyrystor.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "transoptor" jest poprawna, ponieważ element oznaczony symbolem 4N35 rzeczywiście jest transoptorem. Transoptory to kluczowe komponenty w systemach elektronicznych, które służą do izolacji galwanicznej pomiędzy obwodami. Składają się one z diody emitującej światło (LED) oraz fototranzystora, który reaguje na światło emitowane przez diodę. Dzięki temu, sygnały elektryczne mogą być przekazywane bezpośrednio z jednego obwodu do drugiego bez fizycznego połączenia, co zabezpiecza obwody przed zakłóceniami oraz uszkodzeniami spowodowanymi różnicą potencjałów. Transoptory są szeroko stosowane w różnych aplikacjach, takich jak zasilacze impulsowe, interfacing mikroprocesorów z układami wysokiego napięcia oraz w systemach automatyki, gdzie wymagana jest izolacja sygnałów. Znajomość działania i zastosowań transoptorów, jak 4N35, jest istotna dla każdego inżyniera pracującego w dziedzinie elektroniki, ponieważ pozwala to na projektowanie bardziej niezawodnych oraz bezpiecznych układów elektronicznych.

Pytanie 15

Które sprzęgło należy zastosować do połączenia napędu z maszyną, jeżeli ich wały nie są współosiowe i mają przenosić duże obciążenia przy dużych prędkościach obrotowych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprzęgło elastyczne, które wybrano jako odpowiedź A, jest kluczowym elementem w połączeniach napędowych, zwłaszcza w sytuacjach, gdy wały nie są idealnie współosiowe. Dzięki swojej konstrukcji, sprzęgło elastyczne potrafi absorbowanie przesunięć osiowych, kątowych oraz promieniowych, co jest absolutnie niezbędne w aplikacjach przemysłowych, gdzie występują duże obciążenia oraz wysokie prędkości obrotowe. Przykłady zastosowania takiego sprzęgła można znaleźć w przemyśle motoryzacyjnym, gdzie elastyczne sprzęgła pozwalają na kompensację drgań oraz niewspółosiowości wałów napędowych, co znacznie zwiększa trwałość całego układu napędowego. W kontekście dobrych praktyk, inżynierowie często polegają na sprzęgłach elastycznych, aby zminimalizować ryzyko uszkodzenia komponentów związanych z nadmiernym obciążeniem. Dodatkowo, zgodnie z normami ISO 2372, systemy napędowe powinny być projektowane z uwzględnieniem takich rozwiązań, aby zapewnić ich długowieczność oraz niezawodność w trudnych warunkach eksploatacyjnych.

Pytanie 16

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm
A. Temperatura otwarcia 18°C, amplituda -1°C
B. Temperatura otwarcia 18°C, amplituda 17°C
C. Temperatura otwarcia -1°C, amplituda 18°C
D. Temperatura otwarcia 18°C, amplituda 19°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 17

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. prasy krawędziowej
B. frezarki uniwersalnej
C. przecinarki plazmowej
D. szlifierki narzędziowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 18

Wskaż tabliczkę znamionową urządzenia napędowego przeznaczonego do zasilania napięciem stałym.

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tabliczka znamionowa urządzenia napędowego zasilanego napięciem stałym, oznaczona jako C, zawiera kluczowe informacje dotyczące parametrów operacyjnych silnika. Napis 'D.C. SERIES MOTOR' jasno wskazuje, że jest to silnik prądu stałego, co jest istotne w kontekście doboru urządzeń do określonych aplikacji przemysłowych. Silniki prądu stałego charakteryzują się lepszą regulacją prędkości oraz momentu obrotowego w porównaniu do silników prądu przemiennego, co czyni je idealnym wyborem w zastosowaniach wymagających precyzyjnego sterowania. W przemyśle automatyki i robotyki, silniki te są często wykorzystywane w napędach, gdzie wymagana jest zmiana prędkości czy kierunku obrotów. Ponadto, znajomość rodzajów zasilania jest kluczowa dla bezpieczeństwa i efektywności energetycznej w projektowaniu systemów napędowych. Zgodnie z normami IEC, każda tabliczka znamionowa powinna zawierać informacje o napięciu, częstotliwości oraz typie prądu, co pozwala na prawidłowe użytkowanie i serwisowanie urządzeń.

Pytanie 19

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa
A. kompresor olejowy.
B. pompę hydrauliczną.
C. silnik elektryczny.
D. silnik hydrauliczny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Parametry przedstawione w tabeli jednoznacznie wskazują na pompę hydrauliczną. Wydajność 21 l/min, prędkość obrotowa 1500 obr./min oraz zakres obrotów od 800 do 3500 obr./min są typowe dla tego typu urządzeń. Pompy hydrauliczne są kluczowymi elementami w układach hydraulicznych, wykorzystywanych w różnych aplikacjach przemysłowych, takich jak maszyny budowlane, rolnicze oraz w systemach automatyki. Objętość geometryczna 14 cm3/obr. i ciśnienie nominalne 25 MPa są również charakterystyczne dla hydrauliki. Dobre praktyki obejmują regularne monitorowanie tych parametrów, co pozwala na optymalizację wydajności i zapobieganie awariom. W przypadku pomp hydraulicznych, ich dobór do konkretnego zastosowania jest kluczowy, aby zapewnić efektywność systemu oraz jego niezawodność. Warto również zwrócić uwagę na normy branżowe, które regulują parametry działania pomp hydraulicznych, co potwierdza znaczenie tych wartości w prawidłowym ich funkcjonowaniu.

Pytanie 20

Którą sprężarkę zalicza się do grupy sprężarek wyporowych?

Ilustracja do pytania
A. Sprężarkę śrubową.
B. Turbosprężarkę.
C. Sprężarkę osiową.
D. Sprężarkę promieniową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężarka osiowa jest klasyfikowana jako sprężarka wyporowa, ponieważ działa na zasadzie przemieszczania objętości gazu w zamkniętej komorze, co pozwala na uzyskanie wysokich ciśnień. W sprężarkach osiowych wirnik obraca się wzdłuż osi, co umożliwia przekazywanie energii kinetycznej na sprężany gaz. W praktyce sprężarki osiowe są często wykorzystywane w dużych zastosowaniach przemysłowych, takich jak w silnikach lotniczych czy w systemach klimatyzacyjnych, gdzie wymagane są duże przepływy powietrza przy stosunkowo niskim ciśnieniu. Zgodnie z najlepszymi praktykami branżowymi, sprężarki osiowe charakteryzują się efektywnością energetyczną i niezawodnością, co czyni je idealnym rozwiązaniem w aplikacjach, gdzie stabilność i wydajność są kluczowe. Dodatkowo, stosowanie sprężarek osiowych w połączeniu z systemami kontroli procesów pozwala na optymalizację zużycia energii oraz zwiększenie ogólnej rentowności operacji przemysłowych.

Pytanie 21

Na którym rysunku przedstawiono proces gięcia stali przez przeciąganie?

Ilustracja do pytania
A. Na rysunku 1.
B. Na rysunku 2.
C. Na rysunku 3.
D. Na rysunku 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gięcie stali przez przeciąganie, przedstawione na rysunku 4, jest kluczowym procesem w obróbce metali, który polega na formowaniu materiału poprzez jego przeciąganie przez narzędzie. W tym przypadku narzędzie ma kształt litery 'V', co pozwala na uzyskanie precyzyjnego zakrzywienia. Tego rodzaju proces jest szeroko stosowany w przemyśle, zwłaszcza w produkcji elementów konstrukcyjnych, takich jak belki czy ramy. Gięcie przez przeciąganie jest efektywne, ponieważ pozwala na zachowanie integralności materiału oraz osiągnięcie wysokiej jakości powierzchni. Warto również wspomnieć, że zgodnie z normami ISO dla obróbki blach, techniki gięcia muszą uwzględniać nie tylko geometrię, ale również właściwości mechaniczne materiału, co ma bezpośredni wpływ na trwałość i funkcjonalność finalnego produktu. Przykładem zastosowania tej metody może być produkcja części dla branży motoryzacyjnej, gdzie precyzyjne gięcie stali jest niezbędne do zapewnienia odpowiedniego dopasowania i wytrzymałości elementów.

Pytanie 22

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. Q
C. I
D. T

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 23

W przenośniku taśmowym zastosowano napęd mechatroniczny, którego schemat blokowy przedstawiono na rysunku. Który element umożliwiający programowe zmiany prędkości obrotowej silników napędowych oznaczono znakiem zapytania?

Ilustracja do pytania
A. Mostek typu H.
B. Prostownik sterowany.
C. Softstart.
D. Przemiennik częstotliwości.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przemiennik częstotliwości, znany także jako falownik, jest kluczowym elementem w układach napędu elektrycznego, umożliwiającym precyzyjne kontrolowanie prędkości obrotowej silników. W kontekście przenośnika taśmowego, pozwala on na dostosowanie prędkości taśmy do zmieniających się warunków pracy, co jest niezbędne w wielu aplikacjach przemysłowych, gdzie obciążenie i wymagania transportowe mogą się różnić. Dzięki zastosowaniu przemiennika, operatorzy mogą optymalizować zużycie energii, unikając nadmiernego zużycia prądu w momentach, gdy pełna moc nie jest wymagana. W praktyce, regulacja częstotliwości zasilania silnika elektrycznego przekłada się na proporcjonalną zmianę jego prędkości obrotowej, co pozwala na osiągnięcie wyspecjalizowanych parametrów pracy. W standardach branżowych, takich jak IEC 61800, przemienniki częstotliwości są uznawane za efektywne urządzenia do zarządzania energią i zwiększania efektywności energetycznej systemów napędowych, co czyni ich nieodzownym elementem nowoczesnych systemów automatyki.

Pytanie 24

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Zawór spustowy.
B. Smarownica.
C. Osuszacz powietrza.
D. Filtr.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przedstawiony na rysunku jednoznacznie wskazuje na smarownicę, która odgrywa kluczową rolę w utrzymaniu sprawności mechanizmów. Smarownice są stosowane w wielu branżach, w tym w motoryzacji, produkcji maszyn oraz w przemyśle lotniczym. Użycie smarów zmniejsza tarcie między ruchomymi elementami, co skutkuje zmniejszeniem zużycia, a tym samym wydłużeniem żywotności urządzeń. W praktyce, smarownice mogą być zintegrowane z systemami automatycznego smarowania, co pozwala na precyzyjne dawkowanie smaru, minimalizując ryzyko zarówno niedosmarowania, jak i przesmarowania. Zastosowanie symboli graficznych w dokumentacji technicznej jest zgodne z normami ISO, co ułatwia identyfikację urządzeń i ich funkcji. Przykłady zastosowań smarownic obejmują smarowanie łożysk, przekładni oraz innych elementów mechanicznych, gdzie kluczowe jest utrzymanie niskiego poziomu tarcia i zapobieganie uszkodzeniom.

Pytanie 25

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Ultradźwiękowy
B. Hallotronowy
C. Tensometryczny
D. Pojemnościowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 26

Śrubę mikrometryczną do pomiaru głębokości otworów przedstawia rysunek

Ilustracja do pytania
A. B
B. C
C. D
D. A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Śruba mikrometryczna do pomiaru głębokości otworów jest niezwykle precyzyjnym narzędziem, które znajduje zastosowanie w różnych dziedzinach inżynieryjnych i technicznych. Odpowiedź B jest poprawna, ponieważ przedstawia narzędzie, które posiada płaską podstawę oraz wysuwany pręt pomiarowy, co jest kluczowe dla dokładnego pomiaru głębokości otworów. Tego rodzaju sprzęt jest wykorzystywany w procesach produkcyjnych oraz w laboratoriach, gdzie precyzja pomiarów ma ogromne znaczenie. Dzięki możliwości dokładnego pomiaru głębokości, śruba mikrometryczna pozwala na kontrolę wymiarów elementów, co jest istotne w kontekście zachowania tolerancji wymiarowej określonej w normach ISO. Przykładem zastosowania może być pomiar głębokości otworów w metalowych częściach maszyn, gdzie każdy milimetr ma znaczenie dla poprawności montażu i działania mechanizmów. Warto zaznaczyć, że posługiwanie się tym narzędziem wymaga nie tylko wiedzy teoretycznej, ale także praktycznych umiejętności, co czyni je niezbędnym w pracy technika czy inżyniera.

Pytanie 27

Jak nazywa się element przedstawiony na rysunku?

Ilustracja do pytania
A. Mimośród.
B. Śruba.
C. Blachowkręt.
D. Konfirmat.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element przedstawiony na rysunku to konfirmat, który jest kluczowym elementem w branży meblarskiej, szczególnie w kontekście łączenia płyt wiórowych oraz MDF. Konfirmaty są używane w produkcji mebli oraz w konstrukcjach, gdzie wymagana jest wysoka wytrzymałość połączenia. Dzięki swojej budowie, konfirmaty charakteryzują się szeroką główką z gniazdem na klucz imbusowy oraz gwintem na całej długości, co zapewnia stabilne i mocne połączenie. W praktyce, konfirmaty stosuje się do łączenia elementów mebli, takich jak blaty, boki czy tylne ściany szafek, co pozwala na uzyskanie estetycznego i trwałego efektu. Ich stosowanie jest zgodne z dobrymi praktykami branżowymi oraz standardami jakości produkcji mebli. Ponadto, konfirmaty mogą być używane w połączeniu ze specjalnymi kołkami, co dodatkowo zwiększa ich wytrzymałość i odporność na odkształcenia. Wiedza na temat konfirmatów jest istotna dla wszystkich, którzy zajmują się konstrukcją mebli, a ich właściwy dobór i zastosowanie wpływa na jakość końcowego produktu.

Pytanie 28

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 100 lx
B. 300 lx
C. 600 lx
D. 800 lx

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Natężenie oświetlenia na poziomie 800 lx jest zalecane w miejscach, gdzie wykonywane są precyzyjne prace, takich jak laboratoria, warsztaty czy strefy montażowe. Tego rodzaju oświetlenie zapewnia wystarczającą ilość światła, co jest kluczowe dla dokładności i jakości wykonania zadań. Zbyt niskie natężenie oświetlenia może prowadzić do zmęczenia wzroku, obniżenia wydajności i zwiększonego ryzyka błędów. Przykład zastosowania tej zasady można zaobserwować w branży elektronicznej, gdzie montaż drobnych komponentów wymaga wyjątkowej precyzji. Zgodnie z normami takimi jak PN-EN 12464-1, specyfikującymi wymagania dotyczące oświetlenia miejsc pracy, natężenie oświetlenia na poziomie 800 lx jest odpowiednie dla miejsc wymagających koncentracji oraz dokładności. Należy również pamiętać o równomiernym rozkładzie światła, co jest równie istotne dla eliminacji cieni, które mogą utrudniać widoczność detali. Wysokiej jakości oświetlenie to klucz do efektywności i bezpieczeństwa w miejscu pracy.

Pytanie 29

Określ prawidłową kolejność dokręcania śrub lub nakrętek części podzespołu, przedstawionego na rysunku.

Ilustracja do pytania
A. 6, 2, 4, 3, 5, 1
B. 2, 5, 3, 6, 4, 1
C. 5, 1, 3, 4, 6, 2
D. 1, 6, 2, 3, 4, 5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa kolejność dokręcania śrub lub nakrętek w podzespole jest kluczowa dla zapewnienia równomiernego dociśnięcia części, co może zapobiec ich odkształceniu oraz zapewnić stabilność i bezpieczeństwo konstrukcji. W przypadku dokręcania elementów, takich jak bloki silników czy podzespoły mechaniczne, stosuje się zazwyczaj schemat krzyżowy, który polega na naprzemiennym dociąganiu śrub w różnych miejscach. W tym wypadku zaczynamy od śruby 2, następnie przechodzimy do przeciwległej śruby 5, co pozwala na zminimalizowanie naprężeń wewnętrznych. Kolejność 3, 6, 4, 1 uzupełnia proces, rozkładając siłę dociągu w sposób optymalny. Taka praktyka jest zgodna z zaleceniami inżynieryjnymi i standardami, które postulują, aby równomiernie rozłożyć siłę dociągu w celu zwiększenia żywotności i niezawodności podzespołów. Znajomość tych zasad jest niezbędna w pracach mechanicznych i montażowych, aby uniknąć problemów z uszczelnieniem, odkształceniem elementów czy ich awarią.

Pytanie 30

Które narzędzia należy zastosować podczas wymiany rezystora R1 przedstawionego na rysunku?

Ilustracja do pytania
A. Wkrętak i szczypce.
B. Lutownicę i odsysacz.
C. Szczypce i pilnik.
D. Pilnik i zaciskarkę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór lutownicy i odsysacza jest kluczowy przy wymianie rezystora na płytce drukowanej. Lutownica jest niezbędna do rozlutowania końcówek rezystora, co umożliwia jego usunięcie z obwodu. Dobrej jakości lutownica z regulowaną temperaturą pozwala na precyzyjne wykonanie tej operacji, co minimalizuje ryzyko uszkodzenia ścieżek na płytce. Odsysacz, z kolei, służy do efektywnego usunięcia cyny z lutowanych połączeń. To ważne, aby zapewnić czyste miejsce do montażu nowego rezystora, co przyczynia się do poprawności i niezawodności całego układu. Dodatkowo, stosowanie odsysacza cyny jest zgodne z najlepszymi praktykami w elektronice, które zalecają eliminację resztek lutowia przed montażem nowych elementów. Warto również pamiętać, że w sytuacjach, gdzie wymiana elementów elektronicznych jest częsta, takie narzędzia stają się integralną częścią wyposażenia każdego elektronika, a umiejętność ich użycia jest kluczowa dla zachowania wysokiej jakości napraw i modyfikacji.

Pytanie 31

Na rysunku przedstawiono zawór rozdzielający przystosowany do sterowania

Ilustracja do pytania
A. elektrycznego.
B. mechanicznego.
C. pneumatycznego.
D. hydraulicznego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór rozdzielający przedstawiony na rysunku jest przeznaczony do systemów pneumatycznych, co można potwierdzić po symbolice oraz oznaczeniach na urządzeniu. W praktyce, zawory pneumatyczne są kluczowymi komponentami w wielu aplikacjach przemysłowych, w tym w automatyce oraz produkcji. Ich główną funkcją jest kontrolowanie przepływu powietrza w systemach, co pozwala na precyzyjne sterowanie napędem pneumatycznym. Zawory te są zaprojektowane do pracy w warunkach, gdzie maksymalne ciśnienie robocze wynosi 10 barów, co jest typowe dla systemów pneumatycznych, a ich konstrukcja musi spełniać odpowiednie normy, takie jak ISO 6431 czy ISO 15744, dotyczące wymagań dla elementów pneumatycznych. Stosowanie zaworów pneumatycznych w aplikacjach takich jak pakowanie, montaż czy manipulacja materiałami przyczynia się do zwiększenia efektywności procesów produkcyjnych. Systemy pneumatyczne są szczególnie cenione za swoją szybkość, niezawodność oraz stosunkowo niskie koszty operacyjne, co czyni je popularnym wyborem w nowoczesnym przemyśle.

Pytanie 32

Jeśli w układzie na rysunku wyłącznik znajdzie się w pozycji I, to w rezystorze wydziela się moc o wartości około

Ilustracja do pytania
A. 0,72 W
B. 3,5 W
C. 0 W
D. 5,8 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,72 W jest na pewno poprawna, bo można ją obliczyć przy użyciu wzoru P = U * I. Tutaj P to moc, U to napięcie, a I to prąd. Jak wyłącznik jest w pozycji I, to napięcie wynosi 12 V, a rezystancja to 200 Ω. Z prawa Ohma wiadomo, że prąd I można obliczyć jako I = U/R, czyli I = 12 V / 200 Ω = 0,06 A. Potem, żeby znaleźć moc, podstawiamy wartości do wzoru: P = 12 V * 0,06 A = 0,72 W. Takie obliczanie mocy jest standardem w elektryce, bo dokładność jest ważna dla bezpieczeństwa i efektywności systemów. Zrozumienie tych obliczeń to podstawa dla każdego, kto zajmuje się elektroniką. Dobrze znać te zasady, bo mogą pomóc w optymalizacji projektów i wykrywaniu problemów z komponentami. W praktyce często używa się tego w różnych systemach, nie tylko w podstawowej elektronice, ale i w bardziej zaawansowanych układach zasilania.

Pytanie 33

Na rysunku przedstawiono tabliczkę znamionową

Ilustracja do pytania
A. silnika synchronicznego.
B. prądnicy prądu stałego.
C. silnika indukcyjnego.
D. przetwornicy jednotwornikowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ta odpowiedź jest prawidłowa, ponieważ tabliczka znamionowa przedstawiona na rysunku zawiera informacje charakterystyczne dla silników indukcyjnych. Silniki te są szeroko stosowane w przemyśle, szczególnie w zastosowaniach wymagających dużej mocy, jak w napędach maszyn przemysłowych. Wartości, takie jak moc 20 kW, napięcie 400 V oraz prąd 42,5 A, są typowe dla silników indukcyjnych, które często działają w zakresie napięć trójfazowych. Częstotliwość 50 Hz wskazuje na standardowy zasilacz w Europie, co dodatkowo potwierdza zastosowanie silnika w warunkach przemysłowych. Współczynnik mocy (cos φ) oraz liczba biegunów (P) są również kluczowymi parametrami, które wpływają na efektywność energetyczną silnika. W praktyce, silniki indukcyjne znajdują zastosowanie w pompach, wentylatorach, kompresorach oraz wielu innych urządzeniach, gdzie wymagana jest wysoka niezawodność i trwałość. Wiedza o charakterystyce tabliczki znamionowej jest kluczowa dla inżynierów i techników, by prawidłowo dobierać silniki do konkretnych zastosowań.

Pytanie 34

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. uziemić urządzenie.
B. odłączyć urządzenie od źródła zasilania.
C. zdjąć obudowę.
D. zweryfikować stan izolacji.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 35

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. wysokiej temperatury oleju
B. niskiej ściśliwości oleju
C. wysokiego ciśnienia oleju
D. niskiej temperatury oleju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysoka temperatura oleju hydraulicznego prowadzi do zmniejszenia jego lepkości. Wzrost temperatury powoduje, że cząsteczki oleju zaczynają się poruszać szybciej, co skutkuje łatwiejszym przepływem i zmniejszeniem oporu. Zjawisko to jest szczególnie istotne w systemach hydraulicznych, gdzie odpowiednia lepkość oleju jest kluczowa dla efektywności działania układów. Na przykład, w maszynach budowlanych lub przemysłowych, gdzie olej hydrauliczny pełni rolę siły napędowej, jego właściwa lepkość zapewnia skuteczne przekazywanie mocy i minimalizuje ryzyko awarii elementów układu. W wielu standardach, takich jak ISO 6743-4, określają się wymagania dotyczące lepkości olejów hydraulicznych w zależności od temperatury pracy, co pozwala na dobór odpowiednich produktów do konkretnych zastosowań. W praktyce, monitorowanie temperatury oleju oraz jego lepkości jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania układów hydraulicznych.

Pytanie 36

Którym z przedstawionych przyrządów pomiarowych można zmierzyć głębokość uskoku?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Głębokościomierz, który został wskazany jako poprawna odpowiedź, jest specjalistycznym przyrządem pomiarowym wykorzystywanym w geodezji oraz inżynierii lądowej do precyzyjnego pomiaru głębokości uskoku, rowków oraz innych wgłębień. Dzięki swojej konstrukcji, głębokościomierz pozwala na uzyskanie dokładnych wartości głębokości, co jest niezwykle istotne w pracach budowlanych i geologicznych. W praktyce, pomiar za pomocą głębokościomierza jest często wykorzystywany podczas wykonywania odwiertów, badań gruntowych oraz oceny stanu technicznego różnych obiektów. Dobre praktyki w stosowaniu tego przyrządu obejmują kalibrację przed każdym użyciem, co zapewnia wiarygodność uzyskiwanych danych. Zastosowanie głębokościomierza w terenie wymaga także znajomości zasad bezpieczeństwa oraz umiejętności interpretacji wyników w kontekście konkretnego projektu. Prawidłowe posługiwanie się tym narzędziem przyczynia się do zwiększenia efektywności działań inżynieryjnych oraz precyzyjnego planowania inwestycji.

Pytanie 37

Symbolem K1 oznaczono

Ilustracja do pytania
A. silnik pneumatyczny.
B. pompę hydrauliczną.
C. sprężarkę.
D. pompę próżniową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa hydrauliczna z symbolem K1 to naprawdę ważny element w systemach hydraulicznych. Działa tak, że zamienia energię mechaniczną na hydrauliczną, co jest mega istotne przy zasilaniu różnych mechanizmów. Widziałem to na różnych budowach czy w maszynach do podnoszenia, gdzie pompy hydrauliczne są w użyciu. Warto też zwrócić uwagę, że najczęściej pompa jest zasilana przez silnik elektryczny (symbol M), co sprawia, że wszystko działa sprawnie i niezawodnie. Jak patrzymy na schematy, to umiejętność rozpoznawania tych symboli jest kluczowa, zwłaszcza dla inżynierów. Ostatnio czytałem, że nowoczesne systemy hydrauliczne mogą być zintegrowane z elektronicznym sterowaniem, co dodatkowo zwiększa ich precyzję. Bez znajomości tych symboli i ich funkcji trudno byłoby pracować w tej branży.

Pytanie 38

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. dwustronnej pracy, bez amortyzacji.
B. jednostronnej pracy.
C. dwustronnej pracy.
D. różnicowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 39

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania
A. Sterownika PLC.
B. Czujnika optycznego.
C. Silnika.
D. Falownika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 40

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. ferromagnetyki
B. diamagnetyki
C. antyferromagnetyki
D. paramagnetyki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.