Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 3 lutego 2026 21:48
  • Data zakończenia: 3 lutego 2026 21:56

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
B. Silnik nie włączy się
C. Silnik zmieni swój kierunek obrotów
D. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
Istnieje kilka nieporozumień związanych z błędnymi odpowiedziami. Zamiana kondensatora rozruchowego z kondensatorem pracy nie spowoduje uszkodzenia kondensatora 50 µF w chwili rozruchu, ponieważ kondensator ten nie jest przeznaczony do pracy w warunkach rozruchowych. Jego zadaniem jest podtrzymywanie momentu obrotowego podczas pracy silnika. Dodatkowo, zmiana kierunku wirowania silnika nie jest możliwa w tej sytuacji. Kierunek obrotów silnika indukcyjnego jednofazowego jest determinowany przez przesunięcie fazowe, które nie zostanie osiągnięte przy użyciu niewłaściwego kondensatora. Co więcej, twierdzenie, że uzwojenie pomocnicze może się uszkodzić po kilku minutach pracy, jest również błędne, ponieważ w rzeczywistości silnik po prostu nie uruchomi się, co zapobiegnie jego uszkodzeniu. Kluczowym błędem myślowym w tych odpowiedziach jest niezrozumienie zasady działania kondensatorów w silnikach jednofazowych, co prowadzi do nieprawidłowych wniosków o skutkach zamiany kondensatorów. Zastosowanie niewłaściwego kondensatora w systemach elektrycznych może prowadzić do nieodwracalnych uszkodzeń, dlatego istotne jest przestrzeganie zaleceń producentów oraz standardów branżowych przy konserwacji i naprawie urządzeń elektrycznych.

Pytanie 2

Przyrząd pokazany na zdjęciu przygotowano do bezpośredniego pomiaru

Ilustracja do pytania
A. energii elektrycznej obwodów wielkoprądowych.
B. natężenia prądu elektrycznego jednokierunkowego.
C. mocy elektrycznej prądu stałego.
D. natężenia prądu elektrycznego stałego i przemiennego.
Odpowiedzi wskazujące na pomiar mocy elektrycznej prądu stałego, energii elektrycznej obwodów wielkoprądowych oraz natężenia prądu elektrycznego stałego i przemiennego są nieprawidłowe z kilku powodów. Po pierwsze, pomiar mocy elektrycznej wymaga zastosowania innego przyrządu, jakim jest watomierz, który mierzy zarówno napięcie, jak i natężenie prądu, aby obliczyć moc w watów. To podejście nie jest zastosowane w kontekście danego pytania, gdzie skupiamy się tylko na natężeniu prądu. Przyrządy do pomiaru energii elektrycznej w obwodach wielkoprądowych, takie jak liczniki energii, są również innego typu urządzeniami, które zajmują się całkowitą energią zużytą, a nie bezpośrednim pomiarem natężenia prądu. Ponadto, natężenie prądu elektrycznego stałego i przemiennego wymaga różnych technik pomiarowych i przyrządów, ponieważ prąd przemienny (AC) zmienia kierunek, co komplikuje jego pomiar. W praktyce, mylenie tych parametrów może prowadzić do błędnych obliczeń i potencjalnych uszkodzeń urządzeń. Dlatego ważne jest, aby przed dokonaniem pomiarów zrozumieć różnice między tymi parametrami oraz zastosowane metody pomiarowe w zgodzie z normami i dobrymi praktykami w dziedzinie elektrotechniki.

Pytanie 3

Na ilustracji przedstawiono tabliczkę zaciskową typowego silnika trójfazowego z uzwojeniami stojana połączonymi w gwiazdę. Które pary zacisków po zdjęciu metalowych zwieraczy należy ze sobą zewrzeć, aby uzwojenia silnika zostały skojarzone w trójkąt?

Ilustracja do pytania
A. 1-4, 2-5, 3-6
B. 1-5, 2-6, 3-4
C. 1-5, 2-4, 3-6
D. 1-6, 2-4, 3-5
Wybór niewłaściwych par zacisków do połączenia uzwojeń silnika trójfazowego może prowadzić do wielu problemów. Osoby, które decydują się na złączenie zacisków 1-5, 2-6 i 3-4, mogą nie być świadome, że takie połączenie nie umożliwia pełnego wykorzystania uzwojeń. W pierwszym przypadku, złączenie zacisków 1-5 nie spaja właściwie końca pierwszego uzwojenia z początkiem drugiego, co uniemożliwia przepływ prądu przez właściwe ścieżki. Z kolei, łączenie 2-6 oraz 3-4 prowadzi do niewłaściwego skojarzenia uzwojeń, co może skutkować ich uszkodzeniem oraz zmniejszeniem efektywności silnika. Typowe błędy myślowe w tym kontekście mogą obejmować nieprawidłowe interpretacje schematów połączeń i brak zrozumienia podstaw działania silników trójfazowych. Zastosowanie błędnych kombinacji może również prowadzić do poniesienia dodatkowych kosztów związanych z naprawą czy wymianą uszkodzonych komponentów. Dla osiągnięcia optymalnej wydajności i bezpieczeństwa pracy silnika, kluczowe jest stosowanie się do dobrych praktyk inżynieryjnych oraz norm, które jasno określają zasady łączenia uzwojeń w silnikach elektrycznych.

Pytanie 4

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. wyłącznika
B. stycznika
C. przekaźnika
D. odłącznika
Odłącznik to urządzenie wykorzystywane do zapewnienia widocznej przerwy w obwodzie elektrycznym, co jest kluczowe z punktu widzenia bezpieczeństwa. Jego głównym zadaniem jest umożliwienie całkowitego odłączenia obwodu od źródła zasilania, co pozwala na bezpieczne przeprowadzanie prac konserwacyjnych lub naprawczych. W odróżnieniu od innych urządzeń, takich jak wyłącznik czy stycznik, odłącznik oferuje mechaniczną przerwę w obwodzie, która jest wizualnie dostępna, co pozwala operatorowi na jednoznaczne stwierdzenie, że dany układ jest odłączony od zasilania. Stosowanie odłączników jest zgodne z normami, takimi jak IEC 60947, które określają wymagania dotyczące urządzeń rozdzielczych. Przykładowe zastosowania odłączników to instalacje przemysłowe oraz systemy energetyczne, gdzie nieodzowne jest zapewnienie bezpieczeństwa pracowników podczas interwencji w obwodach elektrycznych.

Pytanie 5

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zmniejszenie mocy silnika.
B. zadziałanie wyłącznika różnicowoprądowego.
C. zmniejszenie momentu rozruchowego.
D. uszkodzenie silnika.
Silnik jednofazowy rzeczywiście wymaga kondensatora rozruchowego do prawidłowego startu. Kondensator ten wytwarza przesunięcie fazowe, co jest kluczowe dla generowania odpowiedniego momentu obrotowego. Kiedy silnik jest uruchamiany, kondensator rozruchowy tworzy pole magnetyczne, które pozwala na zainicjowanie ruchu wirnika. Bez tego kondensatora silnik nie jest w stanie wytworzyć wystarczającego momentu obrotowego, co prowadzi do problemów z uruchomieniem. W praktyce, takie silniki są powszechnie stosowane w domowych urządzeniach, takich jak wentylatory czy pompy, gdzie ich niezawodność jest kluczowa. W standardach branżowych, zgodnie z zasadami eksploatacji silników elektrycznych, konieczne jest stosowanie odpowiednich komponentów, aby zapewnić optymalne warunki pracy. Dlatego brak kondensatora rozruchowego skutkuje nie tylko trudnościami w uruchomieniu, ale także może prowadzić do uszkodzeń silnika w dłuższej perspektywie czasowej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Na którym rysunku przedstawiono łożysko toczne przeznaczone do zamontowania na wale remontowanego silnika indukcyjnego klatkowego o mocy 7,5 kW?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór odpowiedzi, która nie odnosi się do łożyska kulkowego jednorzędowego, może wynikać z niedostatecznej wiedzy na temat zastosowań różnych typów łożysk w silnikach elektrycznych. Należy zwrócić uwagę, że łożyska, takie jak te przedstawione na rysunkach A., C. i D., mogą mieć konstrukcje dostosowane do specyficznych warunków pracy, które nie są odpowiednie dla silników indukcyjnych klatkowych o mocy 7,5 kW. Na przykład, łożyska ślizgowe, które mogą być mylnie uznane za odpowiednie, wymagają zastosowania smarowania, co w przypadku silników elektrycznych może prowadzić do problemów związanych z wydajnością, takimi jak ogrzewanie i zużycie energii. Z kolei łożyska kulkowe dwu- lub wielorzędowe, choć mogą przenosić obciążenia, są często bardziej kosztowne i zajmują więcej miejsca, co czyni je nieoptymalnym rozwiązaniem w opisanym kontekście. Powszechnym błędem jest także ignorowanie specyfikacji producentów oraz norm branżowych, takich jak ISO czy ANSI, które definiują wymagania dla łożysk stosowanych w maszynach elektrycznych. Dlatego ważne jest, aby przed dokonaniem wyboru łożyska, dokładnie zapoznać się z jego specyfikacjami oraz zastosowaniem w danym kontekście. Bez tego rodzaju analizy, dokonany wybór może prowadzić do nieprawidłowego działania, zwiększonego zużycia energii oraz przedwczesnych awarii.

Pytanie 8

Pomiary okresowe urządzeń elektrycznych, określające ich stan techniczny pod względem niezawodności i bezpieczeństwa pracy, wykonuje się

A. u wytwórcy.
B. po awarii.
C. po modernizacji.
D. podczas eksploatacji.
Prawidłowo wskazano, że pomiary okresowe urządzeń elektrycznych wykonuje się podczas eksploatacji. Chodzi właśnie o takie badania, które robi się cyklicznie w trakcie normalnej pracy urządzenia, a nie jednorazowo. Zgodnie z dobrymi praktykami i wymaganiami norm (np. PN-HD 60364 dla instalacji, ale podobne podejście stosuje się do urządzeń), użytkownik lub służby utrzymania ruchu muszą regularnie sprawdzać stan techniczny, skuteczność ochrony przeciwporażeniowej, rezystancję izolacji, ciągłość przewodów ochronnych, działanie wyłączników różnicowoprądowych, stan uziemień itp. Dzięki takim okresowym pomiarom można wcześnie wykryć zużycie izolacji, przegrzewanie się zacisków, luźne połączenia, niesymetrię obciążeń, spadek rezystancji izolacji, co w praktyce przekłada się na mniejsze ryzyko porażenia prądem, pożaru albo nieplanowanego postoju linii produkcyjnej. W zakładach przemysłowych robi się to według harmonogramu: np. co rok, co trzy lata, zależnie od warunków środowiskowych i klasy urządzenia. Moim zdaniem to jest takie „przegląd techniczny” elektryki, podobnie jak okresowe badanie techniczne auta – robione wtedy, gdy auto normalnie jeździ, a nie tylko gdy się zepsuje. W wielu firmach łączy się pomiary okresowe z przeglądami prewencyjnymi, aby od razu usuwać drobne usterki, zanim przejdą w poważną awarię. Takie podejście jest zgodne z zasadami bezpiecznej eksploatacji i z typowymi instrukcjami producentów urządzeń, którzy często wprost wymagają cyklicznych pomiarów i testów, żeby zachować gwarancję i bezpieczeństwo użytkowania.

Pytanie 9

Które z wymienionych czynności nie należą do zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne?

A. Nadzorowanie urządzeń w czasie pracy.
B. Wykonywanie przeglądów niewymagających demontażu.
C. Dokonywanie oględzin wymagających demontażu.
D. Uruchamianie i zatrzymywanie urządzeń.
Prawidłowo wskazana odpowiedź to „dokonywanie oględzin wymagających demontażu”, bo taka czynność wykracza poza typowe, podstawowe zadania eksploatacyjne zwykłego pracownika obsługującego urządzenia elektryczne. Standardowa obsługa to głównie nadzorowanie pracy urządzeń, reagowanie na sygnały alarmowe, bezpieczne uruchamianie i zatrzymywanie oraz proste przeglądy wizualne bez rozbierania osłon czy obudów. Zgodnie z praktyką zakładową i wymaganiami BHP (np. wynikającymi z instrukcji eksploatacji, przepisów SEP czy ogólnych zasad prac przy urządzeniach pod napięciem), wszelkie czynności wymagające demontażu elementów konstrukcyjnych, zdejmowania osłon, ingerencji w część czynną urządzenia traktuje się już jako prace konserwacyjne, remontowe albo specjalistyczne. Takie prace powinny wykonywać osoby z wyższymi kwalifikacjami, odpowiednimi uprawnieniami eksploatacyjnymi i często z uprawnieniami do prac pod napięciem lub przy wyłączonym, zabezpieczonym urządzeniu. W praktyce wygląda to tak, że operator silnika czy rozdzielnicy kontroluje wskazania przyrządów, nasłuchuje nietypowych dźwięków, sprawdza temperaturę obudowy, kontroluje lampki sygnalizacyjne, ale nie rozbiera urządzenia, żeby zajrzeć do środka. Oględziny z demontażem obudów, zacisków, szyn prądowych to już zadanie dla ekipy utrzymania ruchu, elektryków serwisowych lub działu remontowego. Moim zdaniem to bardzo sensowny podział: minimalizuje ryzyko porażenia, zwarcia, uszkodzenia sprzętu i sprawia, że za bardziej ryzykowne czynności odpowiadają osoby faktycznie do tego przeszkolone i wyposażone w odpowiednie środki ochrony indywidualnej i procedury odłączenia, uziemienia i sprawdzenia braku napięcia.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakiego składnika nie powinien mieć kabel zasilający do głównej rozdzielnicy w strefie przemysłowej, która jest klasyfikowana jako niebezpieczna pod względem pożaru?

A. Pokrywy polietylenowej.
B. Żył z aluminium.
C. Zewnętrznego splotu włóknistego.
D. Obudowy stalowej.
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem w przypadku kabli zasilających używanych w pomieszczeniach przemysłowych o podwyższonym ryzyku pożarowym. W takich środowiskach kluczowe jest zapewnienie wysokiego poziomu ochrony przed działaniem ognia oraz substancji chemicznych. Oplot włóknisty, choć lekki i elastyczny, nie oferuje wystarczającej odporności na wysokie temperatury ani zabezpieczenia przed rozprzestrzenieniem się ognia. W praktyce, kable w takich strefach powinny posiadać pancerz stalowy, który chroni przed mechanicznymi uszkodzeniami oraz powłokę polietylenową, która zapewnia odpowiednią odporność na ogień. Zastosowanie takich materiałów jest zgodne z normami, takimi jak PN-EN 50575, która określa wymagania dotyczące kabli w kontekście ochrony przeciwpożarowej. Warto również pamiętać, że odpowiednia konstrukcja kabli zasilających może mieć kluczowe znaczenie dla bezpieczeństwa całego systemu zasilania w obiektach przemysłowych.

Pytanie 12

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Zwarcie pierścieni ślizgowych
B. Przerwa w zasilaniu jednej fazy
C. Zwiększenie napięcia zasilającego
D. Zmniejszenie obciążenia silnika
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 13

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w obwodzie twornika
B. Zwarcie w obwodzie twornika
C. Zwarcie w uzwojeniu komutacyjnym
D. Przerwa w uzwojeniu wzbudzenia
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 14

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji uzwojeń stojana
B. prądu upływu
C. prądu stanu jałowego
D. rezystancji przewodu ochronnego
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 15

W układzie przedstawionym na schemacie dokonano sprawdzenia wyłącznika pokazanego na zdjęciu. Przy której wartości prądu wskazywanej przez amperomierz nie powinien zadziałać sprawny wyłącznik?

Ilustracja do pytania
A. 20 A
B. 0,03 A
C. 40 A
D. 0,003 A
Poprawna odpowiedź to 0,003 A. Wyłącznik różnicowoprądowy, który widzimy na zdjęciu, działa na zasadzie wykrywania różnicy w prądzie pomiędzy przewodami fazowymi a neutralnymi. Jego czułość wynosi 30 mA, co oznacza, że zadziała, gdy wykryje prąd różnicowy przekraczający tę wartość. Prąd 0,003 A, czyli 3 mA, jest znacznie poniżej tej granicy, co oznacza, że nie powinien on spowodować zadziałania wyłącznika. W praktyce oznacza to, że w przypadku niewielkich wycieków prądu, jak na przykład w sytuacji, gdy urządzenie jest w trybie czuwania, wyłącznik nie zareaguje. Zastosowanie wyłączników różnicowoprądowych o odpowiednich parametrach czułości jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, gdzie nadmierny prąd roboczy może prowadzić do uszkodzeń urządzeń lub zagrożenia porażeniem elektrycznym. Z tego względu zaleca się regularne testowanie takich urządzeń oraz ich instalację zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61008 oraz PN-EN 60947.

Pytanie 16

Jak często należy przeprowadzać oględziny domowej instalacji elektrycznej?

A. 12 miesięcy
B. 35 miesięcy
C. 24 miesiące
D. 60 miesięcy
Oględziny domowej instalacji elektrycznej powinno się robić co 60 miesięcy. To, co mówią polskie normy, jak PN-IEC 60364, jest dość jasne. Regularne przeglądy są mega ważne, bo zapewniają bezpieczeństwo użytkowników i sprawiają, że instalacja działa bez problemów. W ciągu tych pięciu lat warto, żeby właściciele domów robili dokładne inspekcje. To znaczy, że powinno się nie tylko patrzeć na to, jak wygląda instalacja, ale też zmierzyć najważniejsze parametry elektryczne. Można na przykład sprawdzić przewody, gniazdka, wyłączniki, a także zobaczyć, czy zabezpieczenia działają, jak powinny. Z własnego doświadczenia wiem, że regularne przeglądy mogą zapobiegają awariom i pomagają zaoszczędzić na rachunkach za prąd, co w obecnych czasach ma znaczenie. Ciekawe, że przepisy mogą się różnić, zwłaszcza w budynkach publicznych, gdzie te zasady są często bardziej restrykcyjne.

Pytanie 17

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Prądu upływu w przewodzie ochronnym
B. Rezystancji izolacji przewodu ochronnego
C. Impedancji pętli zwarcia
D. Rezystancji uziomu
Odpowiedź dotycząca impedancji pętli zwarcia jest poprawna, ponieważ jest to kluczowy parametr w ocenie ciągłości przewodu ochronnego w systemie TN-S. W systemach ochrony przeciwporażeniowej, takich jak TN-S, impedancja pętli zwarcia odgrywa istotną rolę w zapewnieniu skutecznej i szybkiej reakcji zabezpieczeń na zwarcie. Wysoka jakość przewodu ochronnego wymaga, aby jego impedancja była odpowiednio niska, co pozwala na szybkie załączenie wyłącznika nadprądowego w przypadku wystąpienia zwarcia. Praktyczne zastosowanie tego pomiaru można zobaczyć w trakcie testów instalacji elektrycznych, gdzie zmierzone wartości impedancji pętli zwarcia są porównywane z wymaganiami standardów, takich jak PN-IEC 60364, które wskazują na maksymalne wartości impedancji, aby zapewnić bezpieczeństwo użytkowników. Odpowiednia analiza impedancji pętli zwarcia jest także niezbędna w procesie odbioru instalacji elektrycznych oraz w regularnych przeglądach technicznych, co wpływa na długotrwałe i bezpieczne użytkowanie instalacji elektrycznej.

Pytanie 18

Obwody SELV lub PELV stanowią ochronę

A. przez stanowisko nieprzewodzące.
B. przeciwprzepięciową.
C. przez zasilanie napięciem bezpiecznym.
D. przeciwzwarciową.
W obwodach SELV (Safety Extra-Low Voltage) i PELV (Protective Extra-Low Voltage) cała idea ochrony polega właśnie na zasilaniu obwodu napięciem bezpiecznym, czyli tak niskim, że przy normalnych warunkach dotyk części czynnych nie powinien spowodować porażenia prądem. W normach, np. PN‑HD 60364, jasno określono zakresy napięć bardzo niskich: dla obwodów AC zazwyczaj do 50 V, a w niektórych środowiskach nawet niżej. Chodzi o to, że zamiast polegać wyłącznie na izolacji czy wyłącznikach różnicowoprądowych, ogranicza się sam poziom napięcia, przez co prąd przepływający przez ciało człowieka jest zbyt mały, żeby wyrządzić poważną szkodę. SELV ma dodatkowo izolację od innych obwodów i brak połączenia z ziemią, PELV może być uziemiony, ale dalej pracuje na napięciu bezpiecznym. W praktyce takie rozwiązania stosuje się np. w sterowaniu maszyn, zasilaczach 24 V DC w szafach sterowniczych, w oświetleniu w łazienkach czy basenach, w zasilaniu elektronarzędzi do pracy w warunkach podwyższonego zagrożenia. Moim zdaniem to jedna z najlogiczniejszych form ochrony przeciwporażeniowej: nawet jeśli zawiedzie izolacja, przewód się przetrze, ktoś dotknie zacisku – napięcie nadal pozostaje na tyle niskie, że ryzyko jest zdecydowanie ograniczone. Oczywiście dalej trzeba stosować dobre praktyki: odpowiednie przekroje przewodów, separowane zasilacze, właściwe stopnie ochrony IP i zgodność z dokumentacją producenta urządzeń, ale fundamentem SELV/PELV jest właśnie zasilanie napięciem bezpiecznym.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 2,87 Ω
B. 0,71 Ω
C. 1,43 Ω
D. 4,79 Ω
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 22

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Nieszczelność kadzi transformatora
B. Niesymetryczność obciążenia
C. Praca na biegu jałowym
D. Drgania skrajnych blach rdzenia
Te drgania blach w rdzeniu transformatora to chyba główny powód, dla którego słychać to nienormalne brzęczenie, gdy on pracuje. Rdzeń składa się z cienkich blach, które są połączone, żeby zminimalizować straty energii i zjawisko histerezy. Kiedy transformator działa, zmieniające się pole magnetyczne może powodować drgania tych blach. Jak blachy nie są odpowiednio spasowane albo mają jakieś wady produkcyjne, to mogą zacząć rezonować, co prowadzi do tych nieprzyjemnych dźwięków. Moim zdaniem, żeby ograniczyć te drgania, warto regularnie konserwować transformatory i sprawdzać jakość tych blach, zwłaszcza według norm IEC 60076. Dobrze wykonany rdzeń i jego fachowy montaż mogą naprawdę wpłynąć na to, jak cicho i efektywnie pracuje transformator, co ma spore znaczenie w systemach energetycznych, gdzie hałas może być problematyczny.

Pytanie 23

Którą z przedstawionych puszek należy zamontować w celu zainstalowania pojedynczego gniazda w podtynkowej instalacji elektrycznej?

A. Puszkę 1.
Ilustracja do odpowiedzi A
B. Puszkę 2.
Ilustracja do odpowiedzi B
C. Puszkę 4.
Ilustracja do odpowiedzi C
D. Puszkę 3.
Ilustracja do odpowiedzi D
W tego typu zadaniu łatwo pomylić różne rodzaje puszek, bo wszystkie służą do instalacji elektrycznych, ale ich zastosowanie jest zupełnie inne. Puszka pokazana jako pierwsza to typowa puszka natynkowa, najczęściej rozgałęźna, o podwyższonym stopniu ochrony IP. Montuje się ją na powierzchni ściany, a nie w jej wnętrzu. Sprawdza się w garażach, piwnicach, na elewacjach czy w pomieszczeniach technicznych, gdzie instalacja jest prowadzona natynkowo w rurkach lub korytach. Do pojedynczego gniazda podtynkowego w zwykłym pokoju taka puszka jest po prostu nieodpowiednia – gniazdo nie będzie mogło być estetycznie zlicowane z tynkiem, a sama obudowa jest projektowana raczej jako rozdzielcza, a nie osprzętowa. Trzecia puszka również jest puszką rozgałęźną/natynkową, często o wysokim IP, stosowaną do łączenia przewodów w instalacjach narażonych na wilgoć lub uszkodzenia mechaniczne. Nie ma ona standardowego mocowania pod mechanizm gniazda podtynkowego, tylko przepusty kablowe i miejsce na złączki. To typowy element instalacji przemysłowej lub zewnętrznej, a nie osprzętu mieszkaniowego w tynku. Ostatnia, czwarta puszka to co prawda puszka podtynkowa, ale wielokrotna, przeznaczona do kilku modułów obok siebie – np. zestawu kilku gniazd, gniazdo + łącznik, panel sterujący itd. Użycie jej do pojedynczego gniazda jest niepraktyczne, nieekonomiczne i zwykle wygląda źle, bo maskownica jednego gniazda nie zakryje całego otworu. Typowym błędem jest kierowanie się wyłącznie kształtem lub wielkością obudowy, bez zastanowienia się, czy jest ona natynkowa czy podtynkowa, pojedyncza czy wielokrotna oraz czy ma odpowiednie elementy mocujące mechanizm gniazda. W poprawnie wykonanej instalacji podtynkowej dla pojedynczego gniazda stosuje się więc pojedynczą, okrągłą puszkę podtynkową, taką jak na zdjęciu nr 2, bo jest ona dokładnie zaprojektowana do tego zadania i spełnia wymagania norm oraz producentów osprzętu.

Pytanie 24

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników spełnia warunek prądu zadziałania IA = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC25 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P304 40-100-AC
B. P302 25-10-AC
C. P304 40-30-AC
D. P202 25-30-AC
Wybór wyłącznika różnicowoprądowego, który nie spełnia założonego zakresu prądu zadziałania, może prowadzić do poważnych problemów w systemie elektrycznym. Na przykład, wyłącznik P304 40-30-AC, który ma prąd zadziałania poza wymaganym zakresem, może nie wykrywać niebezpiecznych sytuacji, co zwiększa ryzyko porażenia prądem lub pożaru. Podobnie, wyłącznik P302 25-10-AC, ze zbyt niskim prądem zadziałania, może zadziałać w sytuacjach, które nie zagrażają bezpieczeństwu, co prowadzi do niepotrzebnych przerw w zasilaniu. Te błędy mogą wynikać z braku zrozumienia związku między nominalnym prądem różnicowym a prądem zadziałania. Kluczowym jest, aby zrozumieć, że prąd zadziałania musi być odpowiednio dobrany do wartości nominalnej wyłącznika, aby zapewnić jego skuteczność i niezawodność. Niezrozumienie tych zasad prowadzi do wyboru nieodpowiednich urządzeń, co w praktyce może skutkować poważnymi konsekwencjami. W wyborze wyłączników różnicowoprądowych należy kierować się normami oraz specyfikacjami technicznymi, aby zapewnić odpowiedni poziom ochrony w każdej instalacji elektrycznej.

Pytanie 25

Którą charakterystykę czasowo-prądową powinien mieć nadprądowy wyłącznik instalacyjny odpowiedni do zastąpienia bezpiecznika o wkładce topikowej gF?

A. Charakterystykę K
B. Charakterystykę D
C. Charakterystykę C
D. Charakterystykę B
Przy doborze wyłącznika nadprądowego jako zamiennika dla bezpiecznika topikowego gF kluczowe jest porównanie charakterystyk czasowo‑prądowych, a nie tylko samego prądu znamionowego. Wkładka gF jest wkładką pełnozakresową, stosunkowo szybką, przeznaczoną głównie do ochrony przewodów i standardowych odbiorników, bez dużych prądów rozruchowych. Z tego powodu jej naturalnym odpowiednikiem jest wyłącznik instalacyjny o charakterystyce B. Wybór charakterystyki C, D lub K wynika często z myślenia: „im większa litera, tym mocniejszy i lepszy wyłącznik”, co jest dość typowym, ale mylącym uproszczeniem. Charakterystyka C jest przewidziana dla obwodów z umiarkowanymi prądami rozruchowymi, np. małe silniki, transformatory, urządzenia z dużą pojemnością wejściową. Człon elektromagnetyczny zadziała zwykle przy 5–10·In, więc przy tym samym prądzie znamionowym wyłącznik C pozwala na większe prądy rozruchowe niż B. W instalacji, gdzie wcześniej pracowała wkładka gF, zastosowanie C może spowodować, że przy zwarciu o niezbyt dużym prądzie wyłącznik nie zadziała wystarczająco szybko, co może pogorszyć warunki ochrony przeciwporażeniowej i termicznej przewodów. Jeszcze dalej idzie charakterystyka D, stosowana do silników o ciężkim rozruchu, transformatorów mocy, urządzeń spawalniczych. Tam wymagany jest bardzo duży prąd do zadziałania członu elektromagnetycznego (10–20·In). W typowej instalacji oświetleniowo‑gniazdowej taki wyłącznik może w ogóle nie zadziałać przy zwarciu o stosunkowo niewielkim prądzie zwarciowym, bo prąd zwarciowy nie osiągnie progu elektromagnetycznego. Z mojego doświadczenia wynika, że użycie charakterystyki D „na wszelki wypadek”, żeby nie wyłączało przy rozruchu, bywa spotykanym, ale bardzo złą praktyką, jeśli nie jest poparte obliczeniami pętli zwarcia. Charakterystyka K jest przeznaczona głównie do ochrony obwodów silnikowych i odbiorników indukcyjnych, gdzie występują krótkotrwałe, ale wysokie prądy rozruchowe. Ma ona specyficzny przebieg czasowo‑prądowy, który lepiej toleruje prądy rozruchowe, a jednocześnie zapewnia odpowiednią ochronę termiczną uzwojeń silników. Nie jest to zamiennik dla szybkiej wkładki gF w zwykłych obwodach instalacyjnych. Dobieranie K w miejsce gF tylko dlatego, że „jest bardziej przemysłowa” mija się z celem i może spowodować niewystarczającą szybkość wyłączenia przy zwarciach. Podsumowując, błędne odpowiedzi wynikają zwykle z ignorowania zależności między charakterystyką czasowo‑prądową a rodzajem chronionego obwodu. Dobrą praktyką jest, żeby przy zastępowaniu wkładki gF w zwykłej instalacji odbiorczej wybierać charakterystykę B, zachować tę samą wartość prądu znamionowego i sprawdzić spełnienie wymagań norm PN‑HD 60364 dotyczących czasu samoczynnego wyłączenia zasilania oraz doboru przekrojów przewodów.

Pytanie 26

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. spisu terminów oraz zakresów testów i pomiarów kontrolnych
B. opisu doboru urządzeń zabezpieczających
C. charakterystyki technicznej instalacji
D. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
Odpowiedzi, które wskazują na wykaz terminów oraz zakresów prób i pomiarów kontrolnych, zasady bezpieczeństwa przy wykonywaniu prac oraz charakterystykę instalacji, są błędne. Wydaje mi się, że wszystkie te elementy są super ważne w instrukcjach eksploatacji instalacji elektrycznych. Wykaz terminów i prób mówi nam, jakie testy zrobić i jak często – to kluczowe dla bezpieczeństwa instalacji. Zasady bezpieczeństwa przy pracach eksploatacyjnych to coś, co wszyscy powinni znać, żeby unikać wypadków. A charakterystyka techniczna daje szczegóły na temat tego, jak działają używane urządzenia, bez tego trudno zrozumieć, jak instalacja ma działać. Z perspektywy przepisów, każdy z tych elementów jest mega ważny - wpływa to nie tylko na bezpieczeństwo, ale i na to, jak sprawnie działa cała instalacja. Nie doceniając ich znaczenia, ryzykujemy, że będziemy źle zarządzać instalacjami elektrycznymi, a to po prostu mija się z praktykami w branży.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaki będzie skutek zwiększenia rezystancji regulatora Rfr w obwodzie wzbudzenia silnika bocznikowego prądu stałego pracującego przy stałym momencie obciążającym, którego schemat układu połączeń zamieszczono na rysunku?

Ilustracja do pytania
A. Zmniejszy się prędkość obrotowa i prąd pobierany z sieci.
B. Zmniejszy się prędkość obrotowa, a prąd pobierany z sieci nie ulegnie zmianie.
C. Zwiększy się prędkość obrotowa i prąd pobierany z sieci.
D. Zwiększy się prędkość obrotowa, a prąd pobierany z sieci nie ulegnie zmianie.
Wiele z odpowiedzi sugeruje błędne zrozumienie działania silnika bocznikowego i jego obwodu wzbudzenia. Przykładowo, stwierdzenie, że prędkość obrotowa i prąd pobierany z sieci nie ulegną zmianie, ignoruje fundamentalne zasady działania silników prądu stałego. W rzeczywistości, rezystancja regulatora Rfr wpływa bezpośrednio na prąd wzbudzenia, co z kolei bezpośrednio oddziałuje na strumień magnetyczny. Zmniejszenie prądu wzbudzenia powoduje zmniejszenie strumienia magnetycznego, co prowadzi do wzrostu prędkości obrotowej, aby silnik mógł utrzymać wymagany moment obrotowy. Innym typowym błędem jest przekonanie, że zwiększona rezystancja może prowadzić do stabilizacji prądu z sieci, co jest niezgodne z zasadami dynamiki prądu w obwodach elektrycznych. W praktyce, każdy aspekt zmiany rezystancji w obwodzie wzbudzenia wpływa na charakterystyki pracy silnika, co powinno być brane pod uwagę podczas projektowania oraz eksploatacji urządzeń elektrycznych. Rzetelne zrozumienie tych zjawisk jest kluczowe dla inżynierów pracujących w dziedzinie automatyki i elektrotechniki, aby mogli podejmować odpowiednie decyzje w zakresie regulacji i optymalizacji systemów napędowych.

Pytanie 30

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Pojawienia się przepięcia.
B. Nadkompensacji sieci.
C. Podwyższenia częstotliwości ponad wartość nominalną.
D. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
Zrozumienie mechanizmów działania systemów elektroenergetycznych wymaga głębszej analizy sytuacji związanych z różnymi odpowiedziami na postawione pytanie. Stwierdzenie, że samoczynne częstotliwościowe odciążenie zadziała w przypadku przekompensowania sieci, jest mylące, ponieważ przekompensowanie oznacza, że moc bierna jest wyższa niż zapotrzebowanie. W takiej sytuacji nie dochodzi do problemów z częstotliwością, a wręcz przeciwnie, sieć staje się bardziej stabilna. Zwiększenie częstotliwości ponad wartość znamionową również nie jest sytuacją, gdzie SCO ma zastosowanie. Wysoka częstotliwość sygnalizuje, że generator dostarcza więcej mocy niż jest potrzebne, co prowadzi do ryzyka uszkodzenia sprzętu, a nie do aktywacji mechanizmów odciążających. Wreszcie, wystąpienie przepięcia, świadczy o nadmiarze napięcia, co nie jest równoznaczne ze zwiększoną mocą pobraną, a zatem również nie uruchamia samoczynnych mechanizmów odciążających. W praktyce, błędne zrozumienie tych mechanizmów prowadzi do nieefektywnego zarządzania obciążeniem w sieci, co może skutkować poważnymi konsekwencjami dla stabilności systemu energetycznego. Właściwe zarządzanie obciążeniem oraz umiejętność prognozowania zmian w zapotrzebowaniu na moc są kluczowe dla zapewnienia ciągłości dostaw energii elektrycznej.

Pytanie 31

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 0,9
B. 2,0
C. 1,2
D. 1,1
Przyglądając się innym możliwościom, mnożenie wartości znamionowego prądu silnika trójfazowego klatkowego przez 0,9 prowadziłoby do ustalenia zbyt niskiej wartości nastawy na zabezpieczeniu przeciążeniowym. Taki błąd myślenia często wynika z nieporozumienia dotyczącego charakterystyki pracy silników elektrycznych, które przy rozruchu mogą pobierać prąd znacznie wyższy od prądu znamionowego. W praktyce, ustawienie wartości zabezpieczenia poniżej prądu znamionowego może prowadzić do częstych wyłączeń, co z kolei zwiększa ryzyko przestojów w pracy urządzenia. Przykład wartości 1,2 również okazuje się niewłaściwy, ponieważ sugeruje zbyt dużą wartość zabezpieczenia, co może prowadzić do niepotrzebnego ryzyka uszkodzeń silnika oraz wystąpienia sytuacji, w których zabezpieczenie nie zareaguje w odpowiednim czasie. Ostatecznie, zastosowanie wartości 2,0 z kolei wydaje się skrajnością, gdyż tak wysoka wartość w znaczący sposób przewyższa możliwość przeciążeniową silnika, co może w dłuższej perspektywie prowadzić do jego uszkodzenia przez długotrwałe obciążenia. Zrozumienie tych zasad jest kluczowe dla optymalnego doboru zabezpieczeń oraz prawidłowego użytkowania silników w aplikacjach przemysłowych.

Pytanie 32

W przypadku pomiarów rezystancji izolacyjnej w całej instalacji elektrycznej budynku, który jest zasilany napięciem 230/400 V, powinno się je przeprowadzać przy odłączonym zasilaniu i przy

A. otwartych łącznikach i odłączonych odbiornikach
B. otwartych łącznikach i załączonych odbiornikach
C. zamkniętych łącznikach i załączonych odbiornikach
D. zamkniętych łącznikach i odłączonych odbiornikach
Prawidłowe wykonanie pomiarów rezystancji izolacji jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Odpowiedzi, które sugerują wykonywanie pomiarów przy otwartych łącznikach lub załączonych odbiornikach, wprowadzają w błąd i mogą prowadzić do poważnych zagrożeń. Otwarte łączniki mogą powodować niepełną izolację, co zafałszuje wyniki pomiarów, a także naraża technika na kontakt z napięciem, co jest niebezpieczne. Z kolei załączone odbiorniki mogą mieć własne rezystancje, które zakłócą pomiary i uniemożliwią dokładną ocenę stanu izolacji. To typowy błąd myślowy, który może wynikać z niepełnego zrozumienia zasad działania instalacji elektrycznych oraz znaczenia pomiaru izolacji. W praktyce, wykonując pomiar w niewłaściwych warunkach, technik nie będzie w stanie ocenić rzeczywistego stanu izolacji, co może prowadzić do awarii systemu, a w konsekwencji do zagrożenia dla użytkowników. Dlatego ważne jest, aby zawsze przestrzegać ustanowionych procedur oraz standardów bezpieczeństwa, takich jak PN-EN 60364, które definiują wymagania dla pomiarów w instalacjach elektrycznych.

Pytanie 33

Która z wymienionych grup parametrów dotyczy rezystora?

A. Opór czynny i moc.
B. Przenikalność elektryczna i napięcie.
C. Prąd upływu i reluktancja.
D. Opór bierny i permeancja.
W tym pytaniu łatwo się złapać na skojarzeniach z innymi elementami niż rezystor, bo pojawiają się terminy typowe dla elektrostatyki i magnetyzmu. Rezystor jest elementem, który opisujemy głównie przez opór czynny i moc znamionową, czasem jeszcze tolerancję, współczynnik temperaturowy, napięcie pracy. Parametry typu przenikalność elektryczna odnoszą się do dielektryków, czyli materiałów izolacyjnych, z których robi się kondensatory, przewody, izolatory. Przenikalność opisuje, jak materiał zachowuje się w polu elektrycznym, a nie jak opiera się przepływowi prądu stałego czy zmiennego. To typowy błąd: wrzucanie wszystkich pojęć „elektrycznych” do jednego worka, bez rozróżniania, czy chodzi o pole elektryczne, magnetyczne, czy zwykły obwód prądu. Z kolei permeancja i reluktancja to parametry obwodów magnetycznych, używane przy projektowaniu rdzeni transformatorów, dławików, elektromagnesów. Dotyczą przepływu strumienia magnetycznego w materiale ferromagnetycznym, a nie rozpraszania energii w postaci ciepła, jak w rezystorze. Prąd upływu też bardziej kojarzy się z izolacją, kondensatorami, przewodami i stanem technicznym urządzeń, gdzie ocenia się, czy izolacja nie jest uszkodzona. W rezystorach owszem, występują zjawiska upływu, ale nie jest to podstawowy, katalogowy parametr tak jak moc czy rezystancja. Z mojego doświadczenia w technikum sporo osób miesza opór bierny z pojęciem rezystancji, a to też nie to samo: opór bierny wiąże się z reaktancją kondensatorów i cewek, a rezystor idealny ma tylko opór czynny. Dopiero elementy RLC mają zarówno część czynną, jak i bierną. Dlatego wybierając właściwy opis rezystora, trzeba trzymać się podstaw: rezystancja (opór czynny) i moc znamionowa to zestaw typowy i zgodny z praktyką warsztatową oraz dokumentacją katalogową producentów elementów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Na stanowisku pracy zamontowano 2 silniki jednofazowe, każdy o parametrach: \( P_N = 0{,}75 \, \text{kW} \), \( U_N = 230 \, \text{V} \) i \( I_N = 5 \, \text{A} \). Do zasilania zastosowano przewód o przekroju \( 2{,}5 \, \text{mm}^2 \). Aby spadek napięcia \( \Delta U\% \) nie był większy niż \( 3\% \), przewód zasilający nie powinien być dłuższy niż
$$ l = \frac{U_n^2 \cdot \Delta U_{\%} \cdot \gamma_{Cu} \cdot S}{200 \cdot P} $$gdzie:
\( \gamma_{Cu} = 57 \, \text{m}/\Omega \cdot \text{mm}^2 \)

A. 17 m
B. 136 m
C. 49 m
D. 35 m
W przypadku odpowiedzi, które nie są poprawne, najczęściej wynikają one z nieprawidłowego rozumienia zasad obliczania maksymalnej długości przewodów zasilających. Wiele osób może błędnie wychodzić z założenia, że długość przewodu nie ma znaczenia w kontekście spadku napięcia, co jest mylnym podejściem. Często pomijane są parametry takie jak przekrój przewodu oraz właściwości materiału, z którego jest wykonany. Warto zauważyć, że niewłaściwe oszacowanie długości przewodu prowadzi do nieefektywności w działaniu urządzeń zasilanych. Na przykład, jeśli przewód jest zbyt długi, spadek napięcia może przekroczyć 3%, co w konsekwencji prowadzi do spadku wydajności silników oraz ich szybszego zużycia. Ponadto, istotne jest, aby pamiętać o przyjętych normach, takich jak PN-IEC 60227, które regulują kwestie związane z doborem przewodów w instalacjach elektrycznych. Osoby, które udzielają błędnych odpowiedzi, mogą nie być świadome także tego, że niektóre z tych norm przewidują dodatkowe marże bezpieczeństwa, które mogą wpływać na maksymalną długość przewodów. Zrozumienie tych aspektów jest kluczowe dla każdego, kto projektuje lub wdraża systemy zasilania, ponieważ może to bezpośrednio przekładać się na bezpieczeństwo i efektywność funkcjonowania instalacji elektrycznych.

Pytanie 36

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. Dyd 750 1x4
B. ADY 750 1x2,5
C. YDY 450/750 1x2,5
D. LYc 300/500 1x6
Odpowiedź Dyd 750 1x4 jest poprawna, ponieważ oznaczenie to odnosi się do przewodu ochronnego, który jest zgodny z wymaganiami instalacji elektrycznych w budynkach. Zastosowanie przewodu Dyd 750 1x4 w instalacji LYd 750 4x2,5 na uchwytach na powierzchni ściany piwnicy zapewnia odpowiednią ochronę przed zagrożeniami elektrycznymi, takimi jak zwarcia czy przepięcia. Przewody ochronne muszą być odpowiednio dobrane do warunków pracy oraz obciążenia, a Dyd 750 1x4 spełnia te normy, zapewniając odporność na wysokie napięcia do 750V. W praktyce, stosowanie przewodów z oznaczeniem Dyd w instalacjach podnosi poziom bezpieczeństwa, ponieważ są one często używane do uziemienia oraz ochrony przed porażeniem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, właściwy dobór przewodów w instalacjach elektrycznych jest kluczowy dla ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników.

Pytanie 37

Które z poniższych stwierdzeńnie jest rezultatem przeglądu instalacji elektrycznej?

A. W instalacji nie stwierdzono widocznych uszkodzeń, które mogłyby deteriorować bezpieczeństwo
B. Zachowana jest ciągłość przewodów ochronnych oraz połączeń wyrównawczych
C. Na podstawie danych dostarczonych przez producenta, oznaczeń oraz certyfikatów, elementy instalacji są zgodne z normami bezpieczeństwa
D. Elementy instalacji zostały odpowiednio dobrane i poprawnie zainstalowane
Wnioskowanie na podstawie dostarczonych informacji dotyczących oznakowań, świadectw i oceny wizualnej elementów instalacji elektrycznej wymaga głębszego zrozumienia ich kontekstu i znaczenia. Wskazanie, że elementy instalacji spełniają wymagania bezpieczeństwa, jest niewystarczające bez potwierdzenia ich rzeczywistego stanu i sposobu użytkowania. Po pierwsze, informacje producentów mogą być nieaktualne lub nieprawdziwe w kontekście konkretnej instalacji. Sytuacje, w których elementy instalacji są zainstalowane zgodnie z wymaganiami, nie zawsze zapewniają ich długotrwałą funkcjonalność. W praktyce, nawet jeśli brak widocznych uszkodzeń może sugerować dobry stan techniczny, nie oznacza to automatycznie, że instalacja jest wolna od ukrytych wad. Zdarza się, że uszkodzenia są niewidoczne na pierwszy rzut oka, co może prowadzić do poważnych problemów eksploatacyjnych w przyszłości. Ponadto, każdy element instalacji elektrycznej powinien być regularnie poddawany przeglądom i testom, aby potwierdzić jego integralność. Ważnym aspektem jest także interpretacja wyników pomiarów, które mogą dostarczyć bardziej szczegółowych informacji o ciągłości przewodów ochronnych. Kluczowe jest, aby nie polegać wyłącznie na wnioskach wizualnych i dokumentacyjnych, lecz przeprowadzać systematyczne badania i inspekcje w celu zapewnienia najwyższych standardów bezpieczeństwa, zgodnych z normami takimi jak PN-EN 50110-1, które kładą nacisk na odpowiednie użytkowanie oraz konserwację instalacji elektrycznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Na podstawie wymiarów łożysk podanych w tabeli dobierz łożysko kulkowe do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 28 mm i szerokości tarczy łożyskowej B = 8 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6700
B. 6001
C. 6301
D. 6200
Wybór błędnych odpowiedzi wynika często z niedostatecznej analizy wymiarów oraz ich zgodności z wymaganiami aplikacji. Przykładowo, odpowiedzi takie jak 6700, 6200 i 6301 nie spełniają kryteriów dla danego silnika. Odpowiedź 6700 ma zbyt dużą średnicę wewnętrzną, co uniemożliwia jej zastosowanie na wale o średnicy 12 mm. W przypadku 6200, choć średnica wewnętrzna wynosi 10 mm, średnica zewnętrzna i szerokość nie odpowiadają wymaganym wymiarom, co prowadzi do niewłaściwego dopasowania i potencjalnych uszkodzeń. Odpowiedź 6301 również nie jest zgodna z wymaganiami, ponieważ średnica wewnętrzna wynosi 12 mm, ale średnica zewnętrzna i szerokość są większe niż wymagane. Takie błędne podejścia mogą wynikać z nieprawidłowego zrozumienia kluczowych parametrów łożysk lub z braku znajomości specyfikacji technicznych. W praktyce, kluczowe jest, aby dokładnie analizować wymagania dotyczące wymiarów przed podjęciem decyzji o doborze łożyska. Często zdarza się, że inżynierowie i technicy nie zwracają wystarczającej uwagi na tolerancje oraz klasy dokładności, co może prowadzić do problemów eksploatacyjnych. W kontekście inżynieryjnym zaleca się korzystanie z dokumentacji technicznej oraz z systemu oznaczeń, który pozwala na szybsze i bardziej precyzyjne dobieranie komponentów. Zrozumienie wymagań dotyczących łożysk i ich zastosowania jest fundamentem skutecznego projektowania i zarządzania procesami inżynieryjnymi.

Pytanie 40

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 20 A
B. 25 A
C. 10 A
D. 16 A
W przypadku obiektu zasilanego instalacją elektryczną trójfazową o napięciu znamionowym 400 V, aby obliczyć minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, należy skorzystać z zależności między mocą, napięciem a prądem. Znamionowa moc wynosząca 13 kW (13 000 W) w połączeniu z napięciem 400 V umożliwia obliczenie prądu za pomocą wzoru: P = √3 * U * I, gdzie P to moc, U to napięcie, a I to prąd. Przekształcając wzór, otrzymujemy: I = P / (√3 * U). Podstawiając dane: I = 13000 / (√3 * 400) ≈ 18,7 A. W praktyce dobieramy zabezpieczenie na wartość wyższą, aby zapewnić odpowiedni margines. Z tego powodu wybrana wartość 20 A jest odpowiednia, zgodna z dobrymi praktykami doboru zabezpieczeń, które powinny mieć również margines na ewentualne przeciążenia. Zastosowanie zabezpieczeń o wartości minimalnej 20 A zapewnia lepszą ochronę przed uszkodzeniem instalacji oraz zmniejsza ryzyko wyzwolenia zabezpieczeń podczas normalnej pracy urządzeń. Warto także pamiętać o konieczności przestrzegania norm PN-IEC 60364, które stanowią wytyczne dotyczące projektowania i wykonania instalacji elektrycznych.