Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 1 stycznia 2026 19:25
  • Data zakończenia: 1 stycznia 2026 19:45

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W wzmacniaczu mocy działającym w klasie A prąd przez element aktywny tego wzmacniacza (tranzystor) przepływa przez czas

A. krótszy niż pełen okres, lecz dłuższy niż pół okresu sygnału sterującego
B. wynoszący połowę okresu sygnału sterującego
C. krótszy od pół okresu sygnału sterującego
D. wynoszący pełen okres sygnału sterującego
Wzmacniacze mocy pracujące w klasie A charakteryzują się tym, że element aktywny, zazwyczaj tranzystor, prowadzi prąd przez cały okres sygnału sterującego. Oznacza to, że w każdym cyklu sygnału, niezależnie od jego amplitudy czy kształtu, tranzystor jest aktywny przez pełny okres. To podejście zapewnia wysoką liniowość i małe zniekształcenia, co jest kluczowe w aplikacjach audio, gdzie jakość dźwięku jest priorytetem. W praktyce, wzmacniacze klasy A są często wykorzystywane w drobnych systemach audio, gdzie wymagane jest odtwarzanie sygnałów o wysokiej wierności. Przykładem mogą być wzmacniacze lampowe, które zyskały popularność wśród audiofilów właśnie dzięki jakości dźwięku. Wzmacniacze te są również stosowane w systemach RF (radio-frequency), gdzie ich stabilność i linearność są kluczowe. Znajomość działania wzmacniaczy klasy A jest niezbędna dla inżynierów pracujących w branży audio oraz telekomunikacyjnej, co czyni tę wiedzę niezwykle istotną w kontekście standardów branżowych.

Pytanie 2

Do zasilania urządzenia, którego dane techniczne podano w ramce, należy zastosować zasilacz o parametrach:

Dane techniczne:
  • zasilanie nominalne: 19 V/DC
  • pobór prądu: 3 A
  • zakres temperatur: od -20°C do +70°C
  • wilgotność względna bez kondensacji 5÷95%
  • wymiary: 160 x 46 x 19 mm
  • obudowa w wersji natynkowej IP55
  • wtyk 1.7/5.5
A. 19 V, 2,15 A
B. 24 V, 3,42 A
C. 19 V, 3,42 A
D. 12 V, 3,00 A
Poprawna odpowiedź "19 V, 3,42 A" jest zgodna z wymaganiami dla większości urządzeń elektronicznych, które muszą być zasilane odpowiednim napięciem i prądem. Napięcie zasilacza musi być równe nominalnemu napięciu urządzenia, w tym przypadku 19 V, aby zapewnić stabilne działanie. Jeśli napięcie byłoby niższe, urządzenie mogłoby nie działać poprawnie lub wcale. Z kolei prąd zasilacza powinien być równy lub wyższy od maksymalnego poboru prądu przez urządzenie, co w tym przypadku wynosi 3 A. Zasilacz o parametrach "19 V, 3,42 A" zapewnia wystarczającą moc, co jest istotne, aby uniknąć przegrzewania się zasilacza oraz chronić urządzenie przed uszkodzeniem. W praktyce, stosując zasilacze w urządzeniach komputerowych, telekomunikacyjnych czy innych systemach elektronicznych, zawsze należy zwracać uwagę na zgodność napięcia i prądu, ponieważ ich niewłaściwy dobór może prowadzić do awarii sprzętu czy utraty danych.

Pytanie 3

Podczas podłączania czujnika ruchu typu NC do panelu alarmowego w konfiguracji 3EOL/NC, konieczne jest umieszczenie w tym czujniku, odpowiednio podłączonych, trzech

A. kondensatorów
B. rezystorów
C. diody
D. fototranzystorów
Podłączenie czujki ruchu typu NC (normalnie zamknięty) w konfiguracji 3EOL/NC wymaga zastosowania odpowiednich rezystorów, które są kluczowe dla zapewnienia poprawnej pracy systemu alarmowego. W przypadku czujek ruchu, rezystory służą do monitorowania stanu obwodu, co pozwala na wykrycie sabotażu oraz sygnalizację alarmu w momencie, gdy czujka jest aktywowana. Standardowo w tej konfiguracji stosuje się rezystory o wartości 1kΩ dla każdego z trzech kanałów, co umożliwia efektywne zbalansowanie systemu oraz dostarczenie informacji o ewentualnych uszkodzeniach. Dobrą praktyką jest również stosowanie rezystorów w odpowiednich wartościach, aby uniknąć fałszywych alarmów oraz zapewnić stabilność działania czujki w różnych warunkach środowiskowych. W praktyce, zastosowanie rezystorów zwiększa niezawodność systemów alarmowych, co jest kluczowe w kontekście ochrony obiektów.

Pytanie 4

Przepustowość transferu danych w sieci wynosząca 256 kb/s odpowiada wartości

A. 16kB/s
B. 8kB/s
C. 32kB/s
D. 64kB/s
Odpowiedź 32kB/s jest prawidłowa, ponieważ 1 bajt (B) składa się z 8 bitów (b). Aby przeliczyć prędkość transferu z kilobitów na kilobajty, należy podzielić wartość w kilobitach przez 8, ponieważ 8 bitów tworzy 1 bajt. Zatem, 256 kb/s podzielone przez 8 daje 32 kB/s. Przykładowo, w przypadku pobierania pliku o wielkości 32 kB z prędkością 256 kb/s, czas pobierania wyniesie zaledwie 1 sekundy. W praktyce, znajomość tej konwersji jest kluczowa dla projektantów sieci oraz inżynierów zajmujących się optymalizacją wydajności transferu danych. Przykładowo, w kontekście monitorowania przepustowości sieci, umiejętność szybkiego przeliczania jednostek pozwala na lepszą ocenę efektywności transferu oraz identyfikację potencjalnych wąskich gardeł w komunikacji sieciowej.

Pytanie 5

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm
A. JVR14N431K
B. B72210S0301K101
C. TSV07D471
D. JVRO7N431K
Warystor JVR14N431K jest odpowiednim zamiennikiem dla uszkodzonego MYG 10K-431 z kilku powodów. Po pierwsze, oba warystory mają identyczne napięcie znamionowe: 275 V AC oraz 350 V DC, co jest kluczowe dla zapewnienia, że nowy komponent będzie działał w tych samych warunkach. Po drugie, JVR14N431K charakteryzuje się wyższą energią tłumienia wynoszącą 132 J/2 ms, co oznacza, że może skuteczniej absorbować i tłumić przepięcia, co jest istotne w obwodach narażonych na nagłe skoki napięcia. W praktyce, gdy w układzie występują przepięcia, warystory pełnią rolę ochronną, zapobiegając uszkodzeniu innych komponentów. Zastosowanie warystora o wyższej energii tłumienia w tym przypadku zwiększa niezawodność całego systemu elektronicznego. Również wspomniany raster wynoszący 7,5 mm zapewnia, że nowy warystor będzie odpowiednio pasował do istniejącego miejsca w obwodzie, co ułatwia jego wymianę i zabezpiecza przed błędami montażowymi. W branży elektronicznej kluczowe jest przestrzeganie standardów jakości oraz dobrych praktyk w doborze komponentów, dlatego stosowanie zamienników z porównywalnymi parametrami jest niezbędne. Zastosowanie JVR14N431K nie tylko spełnia wymogi techniczne, ale także przyczynia się do długotrwałej eksploatacji urządzenia.

Pytanie 6

Na rysunku pokazano widok sygnału zmodulowanego amplitudowo, przy czym amplituda sygnału nośnego Un = 1 V. Wartość współczynnika głębokości modulacji wynosi

Ilustracja do pytania
A. 1
B. 1/2
C. 1/3
D. 3/2
Współczynnik głębokości modulacji, oznaczany jako m, jest kluczowym parametrem w analizie sygnałów zmodulowanych amplitudowo. Jego wartość określa się jako stosunek amplitudy sygnału modulującego (Am) do amplitudy sygnału nośnego (An), wyrażony wzorem m = Am / An. W omawianym przypadku amplituda sygnału nośnego wynosi 1 V, a amplituda sygnału modulującego to 0,5 V. Po podstawieniu wartości do wzoru otrzymujemy m = 0,5 V / 1 V = 0,5, co odpowiada 1/2. Zrozumienie współczynnika głębokości modulacji jest istotne w kontekście projektowania i analizy systemów komunikacyjnych, gdzie odpowiednia głębokość modulacji wpływa na jakość i stabilność sygnału. Praktycznym zastosowaniem tej wiedzy może być optymalizacja parametrów transmisji w radiokomunikacji, co bezpośrednio wpływa na zasięg i klarowność sygnału. W standardach branżowych, takich jak ITU-R, zaleca się przestrzeganie określonych zakresów wartości m dla różnych typów modulacji, co podkreśla znaczenie tej koncepcji w zastosowaniach inżynieryjnych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie urządzenie elektroniczne jest niezbędne do bezpośredniego łączenia układów CMOS z układami TTL?

A. Stabilizator impulsowy
B. Konwerter poziomów logicznych
C. Generator fali prostokątnej
D. Wzmacniacz napięciowy
Konwerter poziomów logicznych jest niezbędnym układem elektronicznym, gdy chcemy połączyć układy CMOS (Complementary Metal-Oxide-Semiconductor) z układami TTL (Transistor-Transistor Logic). Różnice w poziomach napięć logicznych między tymi dwoma technologiami mogą prowadzić do uszkodzenia układów, dlatego konwerter zapewnia bezpieczne i prawidłowe przejście sygnałów. Na przykład, standardowe napięcie logiczne dla układów TTL wynosi 5V, podczas gdy dla wielu układów CMOS poziom logiczny „1” może wynosić od 3V do 15V, w zależności od konkretnego układu. Konwertery poziomów logicznych są projektowane tak, aby dostosować te napięcia, co pozwala na prawidłowe i niezawodne działanie systemu. W praktyce konwertery te są szeroko stosowane w systemach, gdzie różne technologie są integrowane, np. w mikrokontrolerach, które współpracują z różnymi typami czujników lub modułów komunikacyjnych. Dzięki konwerterom poziomów logicznych można również uniknąć problemów związanych z kompatybilnością sygnałów w projektach elektronicznych, co jest kluczowe dla zapewnienia stabilności i niezawodności działania całego układu.

Pytanie 9

W dokumentacji urządzenia podano, że zakres napięcia zasilania wynosi od 10,8 V do 14,4 V. Wskaż odpowiednie ustawienie zasilacza w momencie uruchamiania tego układu.

A. 10,1 V
B. 13,8 V
C. 15,4 V
D. 18,7 V
Wybór napięcia zasilania 13,8 V jest właściwy, ponieważ mieści się w określonym zakresie napięcia zasilania urządzenia, wynoszącym od 10,8 V do 14,4 V. Ustalając napięcie na poziomie 13,8 V, zapewniamy stabilne zasilanie, które jest optymalne dla wielu urządzeń elektronicznych, w tym systemów telekomunikacyjnych i innych aplikacji wymagających precyzyjnego zasilania. Utrzymanie napięcia w tym zakresie nie tylko zapewnia prawidłową pracę układu, ale także minimalizuje ryzyko uszkodzenia komponentów. W praktyce, wiele zasilaczy ma możliwość precyzyjnego ustawienia napięcia, co pozwala na dostosowanie do specyficznych wymagań urządzenia. Zgodnie ze standardami branżowymi, takich jak IEC 60950, ważne jest, aby unikać zasilania urządzeń napięciem powyżej ich maksymalnych specyfikacji, co może prowadzić do uszkodzeń termicznych lub innych awarii. Dlatego też, wybór 13,8 V jako napięcia zasilania jest nie tylko poprawny, ale również praktycznie zalecany dla zapewnienia długotrwałej i niezawodnej pracy układu.

Pytanie 10

Która czynność może zostać pominięta podczas oceny stanu technicznego systemu alarmowego?

A. Analiza historii alarmów
B. Ocena działania sygnalizatorów
C. Weryfikacja działania czujek PIR
D. Kontrola montażu czujek PIR
Ocena stanu technicznego instalacji alarmowej jest kluczowym procesem, który wymaga szczegółowej analizy każdego elementu systemu. Sprawdzanie czujek PIR jest niezbędne, ponieważ te urządzenia odpowiadają za detekcję ruchu i wszelkie problemy z ich działaniem mogą skutkować poważnymi lukami w zabezpieczeniach. Właściwe testy obejmują nie tylko ich funkcjonalność, ale również ustawienia czułości oraz prawidłowe zamontowanie. Na przykład, jeśli czujki są umieszczone w niewłaściwych miejscach lub mają nieprawidłowo ustawione kąty, mogą nie wykrywać ruchu lub generować fałszywe alarmy. Podobnie, sprawdzenie pracy sygnalizatorów, zarówno wizualnych, jak i akustycznych, jest krytyczne, ponieważ ich aktywność daje sygnał o potencjalnym zagrożeniu i mobilizuje reakcję. Nie można także zignorować znaczenia sprawdzenia montażu czujek PIR, które musi być zgodne z wytycznymi producentów oraz ogólnymi zasadami instalacji. W kontekście norm, takich jak PN-EN 50131-1, każdy element systemu powinien być regularnie sprawdzany, aby zapewnić jego długoterminową niezawodność. Prawidłowa ocena stanu technicznego nie tylko zwiększa bezpieczeństwo, ale także poprawia efektywność operacyjną całego systemu alarmowego, co jest kluczowe dla ochrony mienia i osób. Pominięcie któregokolwiek z tych elementów stanowi poważne zaniedbanie, które może prowadzić do niewłaściwego działania systemu alarmowego w sytuacjach kryzysowych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Zakład elektroniczny otrzymał zamówienie na rozbudowę istniejącego domowego systemu alarmowego. Usługa obejmuje zamontowanie 3 czujników ruchu i włączenie ich do systemu. Na podstawie danych zamieszczonych w tabeli określ, jaki będzie koszt planowanych prac, jeżeli materiały objęte są 23%, a usługa 8% podatkiem VAT. W obliczeniach należy uwzględnić zryczałtowany koszt dojazdu do domu klienta w wysokości 45,00 zł.

Element/usługaCena jednostkowa netto
Czujnik50,00 zł
Montaż 1 czujnika30,00 zł
Przeprogramowanie i sprawdzenie systemu60,00 zł
A. 345,00 zł
B. 395,10 zł
C. 312,00 zł
D. 391,50 zł
Obliczenia błędne, a ich przyczyną mogą być różne nieprawidłowe założenia. W przypadku podanych odpowiedzi, istotnym błędem jest nieprawidłowe uwzględnienie stawek VAT, co prowadzi do zaniżenia lub zawyżenia całkowitego kosztu. Na przykład, jeśli ktoś obliczył VAT dla materiałów lub usług w sposób, który nie uwzględnia zaktualizowanych przepisów, to może otrzymać znacznie niższą lub wyższą kwotę. Inny typowy błąd to pominięcie zryczałtowanego kosztu dojazdu, który powinien być dodany jako koszt stały, niezależnie od obliczeń. W przypadku wyboru odpowiedzi, która jest znacznie niższa od prawidłowej, należy również uwzględnić, że czasami może dojść do pomylenia netto z brutto, co wprowadza zamieszanie w obliczeniach. Dobrym podejściem jest zawsze dążenie do transparentności w kalkulacjach i sprawdzanie wszystkich danych z tabeli źródłowej, aby uniknąć błędów. Obliczając koszty, warto także stosować zasady rachunkowości, które nakładają obowiązek netto i brutto w kontekście podatków. Ostatecznie, w branży usług elektronicznych ważne jest, by być na bieżąco z przepisami oraz standardami, co wpływa na jakość świadczonych usług oraz zadowolenie klientów.

Pytanie 14

Jakie urządzenie pozwala na podłączenie wielu urządzeń sieciowych do jednej sieci LAN?

A. Modulator.
B. Wzmacniak.
C. Przełącznik.
D. Serwer.
Przełącznik, znany również jako switch, to urządzenie sieciowe, które umożliwia połączenie wielu urządzeń w jednej sieci LAN (Local Area Network). Jego główną funkcją jest inteligentne zarządzanie ruchem danych, co pozwala na przesyłanie informacji tylko między urządzeniami, które tego potrzebują, co zwiększa efektywność sieci. Przełączniki operują na warstwie drugiej modelu OSI, co oznacza, że wykorzystują adresy MAC do zidentyfikowania urządzeń w sieci. W praktyce, przełączniki pozwalają na połączenie komputerów, drukarek, serwerów oraz innych urządzeń w biurach czy domach. Dzięki technologii VLAN (Virtual Local Area Network), przełączniki umożliwiają także segmentację sieci, co poprawia bezpieczeństwo i wydajność. Współczesne przełączniki często oferują dodatkowe funkcje, takie jak PoE (Power over Ethernet), co pozwala na zasilanie urządzeń, takich jak kamery IP lub punkty dostępu, za pomocą tego samego kabla, który przesyła dane. W kontekście najlepszych praktyk, korzystanie z przełączników zamiast hubów jest standardem, ponieważ przełączniki znacznie redukują kolizje sieciowe i zwiększają przepustowość.

Pytanie 15

Jakim standardem bezprzewodowej wymiany danych powinno charakteryzować się urządzenie elektroniczne, aby mogło dokonywać płatności zbliżeniowych?

A. UNIQUE
B. NFC
C. HITAG
D. MIFARE
NFC, czyli Near Field Communication, to technologia bezprzewodowej wymiany danych, która działa na bardzo krótkich odległościach, zazwyczaj poniżej 10 centymetrów. Jest to kluczowy standard wykorzystywany w płatnościach zbliżeniowych, ponieważ zapewnia szybkie i bezpieczne połączenie między urządzeniem mobilnym a terminalem płatniczym. Przykładem zastosowania NFC jest płatność za pomocą smartfona w punktach sprzedaży, gdzie użytkownik zbliża swoje urządzenie do terminala, by zrealizować transakcję. NFC wykorzystuje również mechanizmy zabezpieczeń, takie jak szyfrowanie danych oraz autoryzację transakcji, co sprawia, że jest to rozwiązanie uznawane za bezpieczne w kontekście płatności. W praktyce, NFC znajduje zastosowanie nie tylko w transakcjach finansowych, ale także w biletach elektronicznych, kartach lojalnościowych oraz wymianie danych między urządzeniami. W dobie cyfryzacji, umiejętność zrozumienia i korzystania z technologii NFC staje się niezwykle istotna, co czyni ją standardem branżowym w dziedzinie płatności mobilnych oraz Internetu rzeczy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W jakim układzie pracuje wzmacniacz operacyjny oznaczony na schemacie literą B?

Ilustracja do pytania
A. Całkującym.
B. Różniczkującym.
C. Nieodwracającym.
D. Odwracającym.
Wzmacniacz operacyjny oznaczony literą B pracuje w konfiguracji nieodwracającej, co oznacza, że sygnał wyjściowy jest równy sygnałowi wejściowemu pomnożonemu przez współczynnik wzmocnienia, który jest większy lub równy jeden. W tej konfiguracji, wejście nieodwracające (plus) jest podłączone do sygnału wejściowego przez rezystor R8, natomiast wejście odwracające (minus) jest połączone z masą za pomocą rezystora R9. Taki układ zapewnia, że sygnał wyjściowy nie zmienia fazy w stosunku do sygnału wejściowego. W praktyce, wzmacniacze operacyjne w konfiguracji nieodwracającej są powszechnie stosowane w aplikacjach takich jak wzmacniacze audio, filtry aktywne oraz systemy pomiarowe, gdzie zachowanie fazy sygnału jest kluczowe. Dzięki wysokiej impedancji wejściowej i niskiej impedancji wyjściowej, wzmacniacze te są w stanie efektywnie współpracować z różnymi źródłami sygnału, co czyni je niezwykle użytecznymi w projektowaniu układów elektronicznych.

Pytanie 18

Jakie kroki należy podjąć w pierwszej kolejności podczas wymiany przekaźnika w obwodzie sterowania?

A. Zatrzymać zasilanie w obwodzie sterowania
B. Wyjąć przewody przymocowane do styków przekaźnika
C. Odłączyć kable przymocowane do cewki przekaźnika
D. Zdjąć przekaźnik z szyny TH-35
Wyłączenie napięcia w obwodzie sterowania jest kluczowym krokiem przed przystąpieniem do wymiany przekaźnika. Bezpieczeństwo operatora oraz zachowanie integralności sprzętu są najważniejszymi priorytetami w pracy z instalacjami elektrycznymi. W przypadku przekaźników, ich cewki mogą być pod napięciem, co stwarza ryzyko porażenia prądem elektrycznym. Standardy BHP oraz zalecenia branżowe jednoznacznie wskazują, że przed wszelkimi pracami serwisowymi należy zawsze wyłączyć zasilanie. Przykładowo, w przemyśle automatyki, powszechnie stosuje się praktykę umieszczania znaków ostrzegawczych w pobliżu paneli sterujących informujących o konieczności wyłączenia zasilania przed jakimikolwiek interwencjami. Dopiero po upewnieniu się, że napięcie zostało wyłączone, można bezpiecznie odłączać przewody i demontować przekaźnik, co zapobiega nie tylko wypadkom, ale także uszkodzeniu urządzeń. Zastosowanie tej zasady jest fundamentem profesjonalizmu w każdej działalności związanej z elektrycznością.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Znak CE umieszczony na urządzeniu elektronicznym informuje użytkownika o

Ilustracja do pytania
A. zastosowaniu przy produkcji urządzenia szkodliwych substancji chemicznych.
B. wykonaniu na urządzeniu wyłącznie testów temperaturowych.
C. konieczności podłączenia obudowy urządzenia do przewodu ochronnego.
D. potwierdzonym badaniami bezpieczeństwie użytkowania.
Znak CE na sprzęcie elektronicznym to taki mały, ale ważny symbol. Mówi nam, że produkt przeszedł wszystkie potrzebne testy i jest bezpieczny, co jest zgodne z zasadami Unii Europejskiej. Fajnie, bo dzięki temu możemy być pewni, że używając danego urządzenia nie narażamy się na żadne niebezpieczeństwa, prawda? Znak CE to nie tylko pieczątka, ale też tak jakby gwarancja, że producent zna się na rzeczy i stosuje się do ustalonych norm jakościowych. Na przykład telewizory muszą spełniać różne normy, jak bezpieczeństwo elektryczne czy efektywność energetyczna. Jeśli nie znajdziesz znaku CE na produkcie, to mogą się pojawić różne problemy, bo to może oznaczać, że sprzęt nie przeszedł testów bezpieczeństwa. Dlatego warto wiedzieć, co ten znak oznacza, gdy kupujemy elektronikę.

Pytanie 22

Układ do pomiaru rezystancji metoda techniczną z poprawnie mierzonym prądem jest przedstawiony na rysunku

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Podczas analizy błędnych odpowiedzi, warto zwrócić uwagę na kluczowe zasady dotyczące pomiarów elektrycznych. Niewłaściwe podłączenie woltomierza i amperomierza prowadzi do fundamentalnych błędów w pomiarze rezystancji. W przypadku błędnych schematów, woltomierz mógłby być podłączony szeregowo z rezystorem, co skutkowałoby pomiarem całkowitego napięcia źródła, a nie napięcia na samym rezystorze. Takie podejście uniemożliwia określenie rzeczywistej rezystancji, ponieważ nie uwzględnia prądu przepływającego przez ten rezystor. Innym powszechnym błędem jest podłączenie amperomierza równolegle do rezystora, co prowadzi do zwarcia i zniszczenia urządzenia pomiarowego. Ta nieprawidłowa koncepcja opiera się na mylnym przeświadczeniu, że amperomierz można stosować w taki sam sposób jak woltomierz. Ponadto, brak znajomości zasad prawa Ohma oraz niewłaściwe zrozumienie relacji między napięciem, prądem a rezystancją może prowadzić do poważnych pomyłek przy pomiarach. Zrozumienie tych zasad jest kluczowe nie tylko dla poprawności pomiarów, ale także dla bezpieczeństwa podczas pracy z urządzeniami elektrycznymi. W kontekście praktycznym, stosowanie nieprawidłowych metod pomiarowych może prowadzić do błędnych wyników w projektach inżynieryjnych, co może mieć poważne konsekwencje w zastosowaniach przemysłowych czy badawczych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jak wygląda poziom sygnału w.cz. po przejściu przez tłumik o tłumieniu -20 dB, jeżeli poziom sygnału na wejściu wynosi 40 dBmV?

A. 70 dBmV
B. 20 dBmV
C. 60 dB
D. 20 dB
Poprawna odpowiedź to 20 dBmV, co wynika z zastosowania wzoru na poziom sygnału po przejściu przez tłumik. Tłumik o tłumieniu -20 dB oznacza, że sygnał zostaje osłabiony o 20 dB. Wzór do obliczeń wygląda następująco: Poziom sygnału wyjściowego (dBmV) = Poziom sygnału wejściowego (dBmV) - Tłumienie (dB). Zatem, 40 dBmV - 20 dB = 20 dBmV. Tego rodzaju obliczenia są powszechnie stosowane w dziedzinie telekomunikacji, gdzie precyzyjne zarządzanie poziomami sygnałów jest kluczowe dla zapewnienia wysokiej jakości transmisji. W praktyce, znajomość wartości tłumienia jest niezbędna do projektowania systemów antenowych oraz optymalizacji sygnałów w sieciach kablowych i bezprzewodowych. Warto również pamiętać, że w telekomunikacji standardem jest dążenie do minimalizacji strat sygnału, co podkreśla znaczenie wysokiej jakości komponentów oraz staranności w ich instalacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Do jakiej klasy urządzeń energoelektronicznych należy przekształtnik zwany czoperem?

A. Pośrednich konwerterów częstotliwości
B. Bezpośrednich konwerterów prądu stałego
C. Bezpośrednich konwerterów częstotliwości
D. Pośrednich konwerterów prądu stałego
Czoper to taki przekształtnik, który ma za zadanie zmieniać napięcie stałe na inne poziomy napięcia stałego, przy tym zachowując moc. Fajnie się sprawdza, kiedy na przykład zasilamy silniki prądu stałego i potrzebujemy regulować ich prędkość. To ma spore znaczenie w różnych procesach przemysłowych, gdzie liczy się precyzja. Używa się go też w systemach zasilania odnawialnych źródeł energii, jak panele słoneczne, co pozwala lepiej wykorzystać energię. Czopery są zgodne z normami IEC i IEEE, więc można na nie liczyć w przemyśle. Dobrze jest też zastosować odpowiednie filtry, żeby zredukować zakłócenia elektromagnetyczne, które mogą się pojawić podczas działania czopera.

Pytanie 28

Zmniejszenie amplitudy światła przesyłanego w linii światłowodowej określa się mianem

A. tłumienia
B. propagacji
C. dyspersji
D. polaryzacji
Tłumienie to naprawdę ważna sprawa w technologii światłowodowej. To zjawisko, które polega na spadku siły sygnału optycznego, gdy przesuwa się przez włókno. W praktyce to oznacza, że część energii światła gdzieś znika, bo jest wchłaniana albo rozpraszana przez włókno lub jego otoczenie. Kiedy mamy do czynienia z tłumieniem, to wpływa to na to, na jaką odległość możemy przesyłać sygnał bez utraty jakości. W branży telekomunikacyjnej mamy różne standardy, na przykład ITU-T G.652, które mówią, jakie powinny być limity tłumienia dla różnych typów światłowodów, żeby wszystko działało sprawnie. W przemyśle ważne jest monitorowanie tego zjawiska, bo każda strata dB może naprawdę zrujnować jakość połączeń, szczególnie w sieciach telekomunikacyjnych. Dobrze dobrane komponenty, takie jak wzmacniacze optyczne, mogą pomóc zredukować efekty tłumienia, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 29

Język LD do tworzenia schematów drabinkowych pozwala na

A. komunikowanie z procesorem GPU
B. programowanie sterowników PLC
C. wizualizację pracy układów GAL
D. zaprogramowanie pamięci EPROM
Język schematów drabinkowych (LD) jest standardowym językiem programowania używanym w automatyce przemysłowej, szczególnie w kontekście programowania sterowników PLC (Programmable Logic Controllers). Jego struktura przypomina schematy elektryczne, co ułatwia inżynierom zrozumienie logiki działania aplikacji. Przez użycie elementów takich jak styki i cewki, LD pozwala na łatwą reprezentację operacji logicznych oraz sekwencyjnych, co jest kluczowe w sterowaniu procesami przemysłowymi. Typowe zastosowania obejmują automatyzację linii produkcyjnych, kontrolę urządzeń, a także monitorowanie i diagnostykę systemów. W praktyce, inżynierowie często używają oprogramowania takich jak RSLogix, które umożliwia tworzenie, testowanie i wdrażanie programów w języku LD zgodnie z normą IEC 61131-3. Wspieranie standardów branżowych oraz dobrych praktyk, takich jak dokumentacja oraz testowanie programów, jest kluczowe dla zapewnienia niezawodności i efektywności systemów automatyki.

Pytanie 30

Jaką wartość ma liczba poziomów w dwunastobitowym przetworniku C/A?

A. 212
B. 212-1
C. (2-1)12
D. 212-1
Odpowiedź 212 jest poprawna, ponieważ liczba poziomów przetwornika C/A (cyfrowo-analogowego) jest obliczana na podstawie liczby bitów, które ten przetwornik obsługuje. W przypadku dwunastobitowego przetwornika, liczba poziomów wynosi 2^12, co daje 4096 różnych poziomów sygnału analogowego. Taki przetwornik może więc generować 4096 różnych wartości napięcia, co jest istotne w wielu zastosowaniach elektronicznych, takich jak audio, wideo oraz w systemach kontrolnych. W praktyce, wyższa liczba poziomów pozwala na dokładniejsze odwzorowanie sygnału analogowego, co zwiększa jakość dźwięku i obrazu. W kontekście standardów, przetworniki C/A o wysokiej rozdzielczości są często stosowane w urządzeniach audio wysokiej jakości, gdzie precyzja sygnału jest kluczowa. Dlatego zrozumienie, jak oblicza się liczbę poziomów w przetwornikach, jest kluczowe dla inżynierów zajmujących się projektowaniem takich systemów.

Pytanie 31

Na rysunku przestawiono

Ilustracja do pytania
A. fotokomórkę.
B. zworę elektromagnetyczną.
C. elektrozaczep.
D. czujnik magnetyczny.
Czujnik magnetyczny, elektrozaczep oraz fotokomórka to urządzenia, które wypełniają różne funkcje w systemach automatyki i zabezpieczeń, ale nie są one tożsame ze zworą elektromagnetyczną. Czujnik magnetyczny, na przykład, jest używany do detekcji obecności lub ruchu obiektów za pomocą pola magnetycznego, co czyni go odpowiednim w systemach alarmowych lub automatyki budowlanej, ale nie ma zdolności do blokowania drzwi. Elektrozaczep działa na zasadzie zwolnienia mechanicznego zamka, pozwalając na otwarcie drzwi pod wpływem sygnału elektrycznego, jednak nie zapewnia on takiego poziomu bezpieczeństwa jak zwora elektromagnetyczna, która utrzymuje drzwi w zamkniętej pozycji, kiedy jest zasilana prądem. Fotokomórka z kolei to czujnik, który wykrywa przeszkody lub obecność obiektów za pomocą promieniowania podczerwonego lub widzialnego, co czyni ją użyteczną w systemach automatycznych, takich jak automatyczne drzwi, ale nie ma zastosowania w kontekście blokady drzwi. Zrozumienie różnic pomiędzy tymi urządzeniami jest kluczowe dla skutecznego projektowania i wdrażania systemów zabezpieczeń, co jest niezwykle istotne dla zapewnienia bezpieczeństwa w obiektach komercyjnych i mieszkalnych. Właściwe przypisanie funkcji do odpowiednich urządzeń jest podstawą dobrych praktyk w branży zabezpieczeń.

Pytanie 32

Jaka jest rezystancja wewnętrzna baterii AAA, jeśli jej napięcie w stanie jałowym wynosi U1=1,5 V, a pod obciążeniem prądem 100 mA U2=1,45 V?

A. 0,05 Ω
B. 50,0 Ω
C. 0,50 Ω
D. 5,00 Ω
Wartość rezystancji wewnętrznej baterii można obliczyć na podstawie różnicy napięcia w stanie jałowym i napięcia pod obciążeniem. W tym przypadku mamy napięcie w stanie jałowym U1 = 1,5 V oraz napięcie pod obciążeniem U2 = 1,45 V. Różnica ta wynosi ΔU = U1 - U2 = 0,05 V. Zastosowanie prawa Ohma pozwala na obliczenie rezystancji wewnętrznej (R) jako R = ΔU / I, gdzie I to prąd płynący przez obciążenie. W naszym przypadku prąd wynosi 100 mA, czyli 0,1 A. Zatem, R = 0,05 V / 0,1 A = 0,5 Ω. Taka rezystancja wewnętrzna wskazuje, że bateria jest w dobrym stanie, ponieważ niskie wartości rezystancji wewnętrznej są pożądane w akumulatorach, co przekłada się na ich efektywność i dłuższą żywotność. Niska rezystancja wewnętrzna minimalizuje straty energii i pozwala na efektywniejsze wykorzystanie energii zgromadzonej w baterii, co jest kluczowe w zastosowaniach wymagających wysokiej wydajności, takich jak urządzenia przenośne i systemy zasilania awaryjnego.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Na rysunku przedstawiono logo standardu

Ilustracja do pytania
A. Ethernet
B. USB
C. RS-485
D. RS-232
Poprawna odpowiedź to USB, co oznacza Universal Serial Bus. Logo przedstawione na rysunku jest powszechnie rozpoznawane jako symbol standardu USB, który został wprowadzony w latach 90. XX wieku. USB jest standardem komunikacji, który umożliwia przesyłanie danych i zasilania między urządzeniami. Jego zastosowanie jest bardzo szerokie - od podłączania myszek i klawiatur do komputerów po ładowanie smartfonów i tabletek. W praktyce, standard USB pozwala na szybkie i łatwe łączenie różnych typów urządzeń, co czyni go niezbędnym w codziennym użytkowaniu technologii. Istnieją różne wersje USB, takie jak USB 2.0, 3.0 czy 3.1, które oferują różne prędkości transferu danych, co jest istotne w kontekście wydajności. Warto również wspomnieć, że USB jest standardem otwartym, co oznacza, że wiele producentów może projektować urządzenia zgodne z tym standardem, co wpływa na jego popularność i szeroką akceptację w branży.

Pytanie 36

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. zmniejsza się
B. pozostaje takie samo
C. zwiększa się
D. wynosi 0
Ujemne sprzężenie zwrotne jest kluczowym mechanizmem w wielu układach elektronicznych, które pozwala na stabilizację wzmocnienia oraz redukcję zniekształceń sygnału. W przypadku zastosowania ujemnego sprzężenia zwrotnego, część sygnału wyjściowego jest przekazywana z powrotem do wejścia, co zmniejsza ogólne wzmocnienie układu. Przykładem zastosowania ujemnego sprzężenia zwrotnego mogą być wzmacniacze operacyjne, gdzie taka technika pozwala na uzyskanie stabilnych parametrów pracy, niezależnych od zmian warunków otoczenia czy elementów składowych. Dzięki temu, poprzez odpowiednie dostosowanie wartości rezystorów w układzie, można kontrolować stopień ujemnego sprzężenia zwrotnego, a tym samym wzmocnienie. W praktyce, wzmocnienie spada w wyniku zastosowania sprzężenia zwrotnego, co prowadzi do wyższej linearności odpowiedzi układu oraz zmniejszenia szumów, co jest zgodne z najlepszymi praktykami w inżynierii elektronicznej.

Pytanie 37

W urządzeniu elektronicznym doszło do uszkodzenia kondensatora ceramicznego o oznaczeniu 104 100 V. Jaki kondensator należy zastosować w jego miejsce?

A. 10 nF 100 V
B. 1000 nF 1000 V
C. 10 nF 1000 V
D. 100 nF 100 V
Odpowiedź "100 nF 100 V" jest poprawna, ponieważ kondensator oznaczony jako "104 100 V" wskazuje na pojemność 100 nF i maksymalne napięcie robocze 100 V. Oznaczenie "104" oznacza, że dwie pierwsze cyfry to znaczące liczby (10), a trzecia cyfra to mnożnik, który w tym przypadku wynosi 10^4 pF, co daje 100000 pF, co po przeliczeniu daje 100 nF. Napięcie znamionowe wynosi 100 V, co jest zgodne z wymaganiami dla aplikacji elektronicznych. W praktycznych zastosowaniach kondensatory ceramiczne o pojemności 100 nF są powszechnie stosowane w filtrach, układach czasowych oraz w obwodach zasilających, gdzie stabilność i niskie straty są kluczowe. Warto pamiętać, że dobór kondensatora powinien być zgodny z normami branżowymi, takimi jak IEC 60384, które określają parametry bezpieczeństwa i jakości dla komponentów elektronicznych.

Pytanie 38

Jakiego typu procesor jest używany w wzmacniaczach z cyfrowym przetwarzaniem dźwięku?

A. DSP
B. RISC
C. CISC
D. AVR
Wzmacniacze z cyfrowym przetwarzaniem dźwięku (DSP - Digital Signal Processing) wykorzystują specjalizowane procesory, które są zoptymalizowane do realizacji skomplikowanych algorytmów manipulacji sygnałem. Procesory DSP charakteryzują się zdolnością do szybkiego przetwarzania danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach audio, takich jak filtracja, kompresja, echo czy inny efekt dźwiękowy. Dzięki architekturze, która umożliwia równoległe przetwarzanie wielu operacji matematycznych, DSP potrafią efektywnie zarządzać dużymi zestawami danych audio. Przykłady zastosowań obejmują profesjonalne systemy nagłośnienia, gdzie jakość dźwięku ma kluczowe znaczenie, oraz w sprzęcie konsumenckim, takim jak procesory w soundbarach czy systemach hi-fi. Rekomendacje branżowe wskazują, że zastosowanie DSP w audio to standard w nowoczesnych urządzeniach, co potwierdza ich niezastąpioną rolę w obróbce dźwięku.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W dokumentacji serwisowej kamery znajduje się informacja: "kamerę zasilać napięciem stałym U = 12 V /15 W". Który zasilacz pozwoli na jednoczesne działanie czterech takich kamer?

A. 12 V AC/ 6 A
B. 12 V DC/ 4 A
C. 12 V DC/ 6 A
D. 12 V AC/ 4 A
Zasilacz 12 V DC/ 6 A jest odpowiedni, ponieważ kamera wymaga napięcia 12 V i mocy 15 W. Aby obliczyć, ile prądu potrzebuje jedna kamera, można użyć wzoru: moc (W) = napięcie (V) x prąd (A). Przekształcając wzór, otrzymujemy prąd = moc / napięcie, co daje 15 W / 12 V = 1,25 A na kamerę. W przypadku czterech kamer, potrzebujemy 4 x 1,25 A = 5 A. Zasilacz 12 V DC/ 6 A dostarcza wystarczającą moc, ponieważ jego wydajność przewyższa wymogi energetyczne kamer. Dobrą praktyką jest zawsze wybierać zasilacz o nieco większej wydajności, aby zapewnić stabilną pracę urządzeń. Takie zasilacze są powszechnie stosowane w systemach monitoringu, gdzie wiele urządzeń wymaga zasilania z jednego źródła. Wybór odpowiedniego zasilacza jest kluczowy dla niezawodności i bezpieczeństwa systemu.