Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:13
  • Data zakończenia: 8 grudnia 2025 10:26

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. kasku ochronnym i rękawicach elektroizolacyjnych
B. obuwiu z gumową podeszwą oraz fartuchu ochronnym
C. rękawicach i okularach ochronnych
D. rękawicach skórzanych i fartuchu skórzanym
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 2

Do jakiego rodzaju pracy przystosowany jest silnik indukcyjny, którego tabliczkę znamionową przedstawiono na rysunku?

Ilustracja do pytania
A. Okresowej przerywanej z rozruchem.
B. Okresowej przerywanej.
C. Ciągłej.
D. Dorywczej.
Praca okresowa przerywana oraz dorywcza to koncepcje, które nie są odpowiednie dla silnika z oznaczeniem 'Praca S1'. Silniki przeznaczone do pracy przerywanej, takie jak te oznaczone jako S2 (praca przerywana) lub S3 (praca krótkoterminowa), są projektowane z myślą o cyklicznych procesach, gdzie silnik może być włączany i wyłączany, co nie jest zgodne z wymaganiami dla silnika ciągłego. Typowym błędem w interpretacji oznaczeń silników jest mylenie ich z różnymi cyklami pracy. Na przykład, odpowiedź wskazująca na pracę okresową przerywaną sugeruje, że silnik będzie używany w zmiennych warunkach, co jest niepoprawne dla silnika S1. Dorywcza praca również nie jest odpowiednia, gdyż odnosi się do zastosowań, które są sporadyczne i nie wymagają stałego obciążenia. Silniki dorywcze są przystosowane do krótkotrwałych zadań, co może prowadzić do ich przegrzania, a także znacząco ogranicza ich żywotność. W związku z tym, niezrozumienie różnicy między tymi klasami pracy może prowadzić do niewłaściwego doboru silnika do aplikacji, co z kolei może skutkować nieefektywnością oraz awariami w czasie eksploatacji.

Pytanie 3

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zaginania
B. Zgrzewania
C. Klejenia
D. Spawania
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 4

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 1 Nm
B. 9 420 Nm
C. 986 Nm
D. 10 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 5

Na rysunku przedstawiono symbol graficzny diody

Ilustracja do pytania
A. tunelowej.
B. pojemnościowej.
C. stabilizacyjnej.
D. wstecznej.
Symbol graficzny diody pojemnościowej, który widzisz na rysunku, jest specyficznym przedstawieniem łączącym cechy diody i kondensatora. Dioda pojemnościowa, znana również jako warikap, wykazuje zmienność pojemności w zależności od przyłożonego napięcia wstecznego. Zastosowanie tego typu diody jest szczególnie istotne w obwodach strojenia częstotliwości, gdzie precyzyjne dostosowanie pojemności jest kluczowe dla uzyskania stabilnych parametrów pracy, na przykład w odbiornikach radiowych lub telewizorach. W praktyce, wykorzystując diody pojemnościowe, inżynierowie mogą łatwo regulować częstotliwość rezonansową obwodów LC, co pozwala na efektywne dostrajanie sygnałów. Dodatkowo, standardy branżowe wskazują na znaczenie diod pojemnościowych w budowie filtrów i układów modulacji, co czyni je niezbędnym elementem w nowoczesnej elektronice. Znajomość działania i zastosowania tych komponentów jest kluczowa dla każdego inżyniera elektryka lub elektronik.

Pytanie 6

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HT - ester syntetyczny, najlepiej ulegający biodegradacji
B. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
C. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
D. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 7

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. kontroli temperatury uzwojenia
B. pomiary napięcia zasilającego
C. pomiary obrotów wirnika
D. kontroli kierunku obrotu wirnika
Sprawdzanie, w którą stronę obraca się wirnik przed ponownym połączeniem silnika elektrycznego z maszyną, to bardzo ważny krok, żeby wszystko działało bezpiecznie i efektywnie. Kierunek obrotów ma ogromne znaczenie, bo gdyby wirnik kręcił się w złą stronę, może to prowadzić do poważnych uszkodzeń sprzętu lub nawet zablokowania wirnika. W praktyce, zanim podłączysz silnik, dobrze jest upewnić się, że wirnik obraca się w odpowiednią stronę. Na przykład w wentylatorach, pompach czy systemach transportowych, błędny kierunek mógłby spowodować, że przepływ cieczy lub powietrza byłby niewłaściwy, co może prowadzić do przeciążenia i zniszczenia urządzenia. Dlatego warto przed każdą operacją zrobić szybki przegląd, a także użyć narzędzi, jak wskaźniki kierunku obrotów, aby sprawdzić, czy wszystko działa jak należy. Taki sposób działania nie tylko zwiększa bezpieczeństwo, ale też może wydłużyć żywotność maszyn. Warto pamiętać, że zgodnie z normami bezpieczeństwa, sprawdzenie kierunku obrotów wirnika jest jednym z podstawowych kroków, które należy wykonać przed uruchomieniem maszyny.

Pytanie 8

Które źródło służy do bezpośredniego zasilania urządzenia wskazanego na rysunku strzałką?

Ilustracja do pytania
A. Silnik spalinowy.
B. Zasilacz pneumatyczny.
C. Zasilacz hydrauliczny.
D. Prądnica elektryczna.
Zasilacz hydrauliczny jest odpowiednim źródłem zasilania dla urządzenia, które widoczne jest na zdjęciu, ponieważ prasa hydrauliczna wymaga specyficznego medium roboczego, jakim jest płyn hydrauliczny. Zasilacz hydrauliczny dostarcza nie tylko odpowiednie ciśnienie, ale także umożliwia precyzyjne sterowanie ruchem i siłą nacisku, co jest kluczowe w aplikacjach przemysłowych. Standardy branżowe, takie jak ISO 4413, określają wymagania dotyczące systemów hydraulicznych, zapewniając ich bezpieczeństwo, skuteczność oraz minimalizację ryzyka awarii. Przykładem praktycznym jest wykorzystywanie pras hydraulicznych w obróbce metali, gdzie siła generowana przez zasilacz hydrauliczny umożliwia formowanie i gięcie materiałów. Zastosowanie zasilania hydraulicznego w tych urządzeniach podkreśla jego znaczenie dla efektywności i precyzji w procesach produkcyjnych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Podczas dokręcania jednakowymi śrubami głowicy przedstawionej na rysunku należy zachować następującą kolejność:

Ilustracja do pytania
A. 5-4-1-2-3-6
B. 1-6-4-3-2-5
C. 2-5-4-1-3-6
D. 6-3-5-2-4-1
Wybór błędnych kolejności dokręcania śrub głowicy może prowadzić do poważnych problemów strukturalnych i funkcjonalnych. Podczas gdy niektóre z zaproponowanych sekwencji mogą wydawać się logiczne, to jednak nie uwzględniają one kluczowego aspektu, jakim jest równomierne rozłożenie nacisku. Przykładowo, kolejności takie jak 5-4-1-2-3-6 czy 6-3-5-2-4-1 mogą spowodować, że pewne obszary uszczelki będą narażone na nadmierny nacisk, podczas gdy inne pozostaną niedostatecznie ściśnięte. To prowadzi do nierównomiernego rozkładu sił, co z kolei może skutkować pojawieniem się nieszczelności, uszkodzeniem uszczelki głowicy, a nawet pęknięciem samej głowicy, co wiąże się z kosztownymi naprawami. Podobne błędy myślowe mogą wynikać z ignorowania faktu, że śruby dokręca się nie tylko w celu ich zabezpieczenia, ale także z myślą o równomiernym rozkładzie sił. Właściwa sekwencja dokręcania, jak 1-6-4-3-2-5, opiera się na sprawdzonych technikach, które są zgodne ze standardami inżynieryjnymi w branży motoryzacyjnej, mając na celu zapewnienie trwałości i funkcjonalności złożonych komponentów silnika.

Pytanie 11

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. dokręcić śruby mocujące osłonę wentylatora
B. wycentrować wirnik w stojanie
C. wymienić łożyska silnika
D. wyprostować skrzywiony wentylator lub osłonę
Fajnie, że pomyślałeś o prostowaniu tego skrzywionego wentylatora albo osłony. To ważne, bo jak coś jest krzywe, to wentylator może się ocierać o osłonę i robić hałas. Kiedy wentylator jest dobrze wyważony i ma odpowiednią geometrię, to działa lepiej i nie drga tak. Można nawet użyć wyważarek dynamicznych, żeby dokładnie dopasować kształt i wagę wirnika. Z mojego doświadczenia, przed włączeniem silnika warto zrobić szybką inspekcję wizualną, żeby zobaczyć, czy wszystko wygląda w porządku. No i warto trzymać się norm ISO, bo regularna konserwacja wentylatorów jest kluczowa, żeby długo działały. Dobrze też zapisywać, co już się sprawdziło, bo wtedy łatwiej monitorować stan techniczny urządzenia i przewidywać, kiedy może być potrzebny serwis.

Pytanie 12

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o częstotliwości 50 Hz na prąd stały
B. stały na prąd zmienny o regulowanej częstotliwości
C. trój fazowy na prąd jednofazowy
D. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 13

W układzie cyfrowym, którego strukturę i stany logiczne przedstawiono na rysunku, wskaż która bramka nie działa prawidłowo.

Ilustracja do pytania
A. Bramka D.
B. Bramka C.
C. Bramka B.
D. Bramka A.
Wybór bramki A, C lub D jako niewłaściwie działającej wiąże się z typowymi błędami myślowymi związanymi z analizą logiczną. Zrozumienie zasad działania bramek logicznych jest kluczowe dla poprawnego rozwiązywania problemów w zakresie układów cyfrowych. Bramki AND, OR oraz NOT mają specyficzne zachowania, które są określone przez ich definicje. W przypadku bramki A, jej działanie jest poprawne, jeśli spełnia założenia projektowe, a dwa wejścia o stanie 1 generują wyjście 1, co jest zgodne z zasadami bramek OR. Z kolei bramka C i D również działają zgodnie z oczekiwaniami, co oznacza, że ich wyniki wyjściowe są zgodne z przyjętymi zasadami logiki. Wybierając niewłaściwe bramki, można łatwo wprowadzić się w błąd podczas analizy schematu. Kluczem do właściwego zrozumienia jest analiza stanów wejściowych i wyjściowych, a także znajomość ich funkcji. W praktyce często dochodzi do pomyłek, gdy nie przeprowadza się wystarczającej weryfikacji, co prowadzi do fałszywych wniosków. Dlatego ważne jest, aby każdorazowo sprawdzać, czy wyniki wyjściowe bramek są zgodne z ich definicjami oraz aby stosować metody weryfikacji, takie jak testowanie na symulatorach, co pozwala na bardziej wiarygodną diagnozę i poprawne projektowanie układów.

Pytanie 14

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. odprowadzić bezpośrednio do ścieków
B. osuszyć z nadmiaru wody
C. przefiltrować przy użyciu węgla aktywnego
D. oczyścić z resztek oleju
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 15

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (230)10
B. (255)10
C. (231)10
D. (254)10
Sygnał binarny (11100111)<sub>2</sub> odpowiada liczbie dziesiętnej (231)<sub>10</sub> ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*2<sup>7</sup> + 1*2<sup>6</sup> + 1*2<sup>5</sup> + 0*2<sup>4</sup> + 0*2<sup>3</sup> + 1*2<sup>2</sup> + 1*2<sup>1</sup> + 1*2<sup>0</sup>, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 16

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. śniegową oznaczoną BC
B. proszkową oznaczoną ABC
C. proszkową oznaczoną ABC/E
D. pianową oznaczoną AF
Wybór gaśnicy do elektryki to nie taka prosta sprawa, trzeba znać klasyfikacje i zasady bezpieczeństwa. Odpowiedzi z gaśnicą śniegową BC oraz pianową AF nie są odpowiednie, bo mają swoje ograniczenia, jeśli chodzi o urządzenia pod napięciem. Gaśnice śniegowe są super do gaszenia cieczy palnych i gazów, ale w przypadku elektryki mogą narazić nas na ryzyko porażenia prądem. Gaśnice pianowe też nie są najlepszym rozwiązaniem, bo ich przewodność może być niebezpieczna właśnie przy pożarach elektrycznych. Co prawda, gaśnice proszkowe ABC są dość uniwersalne, ale brak tego 'E' oznacza, że nie są stworzone do strefy elektrycznej. Wybierając niewłaściwą gaśnicę, można narazić siebie i innych na niebezpieczeństwo – gaszenie pożaru może się wręcz pogorszyć. Podczas pożarów elektrycznych ważne jest używanie sprzętu, który jest skuteczny i bezpieczny. To, co mówi europejska norma PN-EN 2, ma ogromne znaczenie w tych sprawach.

Pytanie 17

Którą metodę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenie.
B. Lutowanie.
C. Spawanie.
D. Zgrzewanie.
Lutowanie jest procesem, który polega na łączeniu metali z wykorzystaniem dodatkowego materiału, zwanego lutem, o niższej temperaturze topnienia niż metale łączone. Na zdjęciu widoczne są przewody elektryczne, których połączenie zostało wykonane w tej technice. Lutowanie jest powszechnie stosowane w elektronice do łączenia elementów w obwodach elektronicznych, ponieważ zapewnia silne i trwałe połączenia. W praktyce lutowanie wykorzystuje się nie tylko w elektronice, ale również w wielu innych branżach, takich jak motoryzacja czy przemysł maszynowy. Standardy branżowe, takie jak IPC-A-610 dotyczące akceptowalności montażu elektronicznego, podkreślają znaczenie jakości połączeń lutowanych. Właściwe techniki lutowania, takie jak stosowanie odpowiednich lutów i technik grzewczych, są kluczowe dla zapewnienia niezawodności i bezpieczeństwa w aplikacjach. Ponadto, lutowanie może być stosowane do naprawy i konserwacji urządzeń, co czyni go niezwykle wartościową umiejętnością w wielu zawodach technicznych.

Pytanie 18

Jakie rozwiązanie pozwala na zwiększenie prędkości ruchu tłoka w siłowniku pneumatycznym?

A. przełącznik obiegu
B. zawór podwójnego sygnału
C. zawór szybkiego spustu
D. zawór zwrotny
Zawór szybkiego spustu to naprawdę ważny element w systemach pneumatycznych. Jego główną rolą jest szybkie obniżenie ciśnienia w siłownikach. Dzięki temu tłok porusza się znacznie szybciej. Działa to tak, że sprężone powietrze ma szybki ujście, co pozwala na błyskawiczne zwolnienie siłownika. W praktyce, takie zawory są super przydatne, na przykład w przemyśle motoryzacyjnym czy automatyzacji produkcji, gdzie czas reakcji jest mega istotny. Zgodnie z normami ISO 4414, odpowiednio zainstalowany zawór szybkiego spustu powinien być standardem w każdej instalacji pneumatycznej, żeby zwiększyć wydajność i bezpieczeństwo. Jeżeli system jest dobrze zaprojektowany i wykorzystuje te zawory, to może to znacznie poprawić efektywność produkcji, a przy okazji obniżyć zużycie energii i skrócić czas cyklu procesów.

Pytanie 19

Na zamieszczonym rysunku przedstawiono schemat czujnika

Ilustracja do pytania
A. optycznego.
B. pojemnościowego.
C. magnetycznego.
D. indukcyjnego.
Czujnik optyczny, który przedstawiono na schemacie, jest jednym z kluczowych elementów wykorzystywanych w nowoczesnych systemach automatyki oraz technologii detekcji. Jego działanie opiera się na emisji i detekcji światła, co czyni go niezwykle efektywnym narzędziem do pomiarów i detekcji. Schemat z diodą LED oraz fototranzystorem jest typowy dla czujników optycznych, które znajdują zastosowanie w różnych branżach, takich jak przemysł motoryzacyjny, automatyka przemysłowa czy systemy bezpieczeństwa. Przykłady zastosowania obejmują detekcję obecności obiektów, zliczanie przedmiotów na taśmach produkcyjnych oraz pomiar odległości. Warto zwrócić uwagę na standardy branżowe, takie jak IEC 60947, które definiują wymagania dotyczące bezpieczeństwa i niezawodności czujników. Współczesne czujniki optyczne charakteryzują się dużą precyzją oraz szybką reakcją, co czyni je niezastąpionymi w aplikacjach wymagających wysokiej dokładności.

Pytanie 20

W barach są skalowane

A. manometry
B. prędkościomierze
C. przepływomierze
D. wiskozymetry
Manometry to urządzenia pomiarowe, które służą do określania ciśnienia w różnych systemach. W kontekście barów, manometry są szczególnie ważne w kontrolowaniu ciśnienia gazów i cieczy, co jest kluczowe w wielu procesach przemysłowych oraz w instalacjach hydraulicznych i pneumatycznych. Przykładowo, w przemyśle gazowym manometry umożliwiają monitorowanie ciśnienia w zbiornikach, co jest niezbędne dla zapewnienia bezpieczeństwa i efektywności systemu. W praktyce, manometry są również używane w medycynie, na przykład do pomiaru ciśnienia krwi, co ilustruje ich wszechstronność. Standardy branżowe, takie jak ISO 5171, określają parametry, które manometry muszą spełniać, aby zapewnić wiarygodność i dokładność pomiarów. Ponadto, manometry różnią się rodzajem zastosowanego medium, mogą być stosowane w warunkach wysokotemperaturowych lub w środowiskach agresywnych chemicznie, co dodatkowo podkreśla ich znaczenie w szerokiej gamie aplikacji.

Pytanie 21

Na którym rysunku przedstawiono muskuł pneumatyczny?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Muskuł pneumatyczny, znany również jako siłownik pneumatyczny, jest kluczowym elementem w wielu aplikacjach automatyki przemysłowej. Odpowiedź B jest poprawna, ponieważ przedstawia typowy siłownik pneumatyczny, który składa się z cylindra oraz tłoka. Działa on na zasadzie sprężania powietrza, co pozwala na uzyskanie dużych sił w stosunkowo kompaktowym wymiarze. Przykłady zastosowania muskułów pneumatycznych obejmują automatyzację procesów produkcyjnych, gdzie siłowniki te są używane do przesuwania, podnoszenia lub zaciskania obiektów. W przemyśle spożywczym, siłowniki pneumatyczne są często wykorzystywane do transportu produktów i materiałów. Warto zaznaczyć, że zgodnie z najlepszymi praktykami branżowymi, muskuły pneumatyczne powinny być dobrane zgodnie z wymaganiami aplikacji, takimi jak ciśnienie robocze, siła wymagająca do wykonania zadania oraz cykle pracy. Dodatkowo, regularne przeglądy i konserwacja tych urządzeń są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy.

Pytanie 22

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
B. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
C. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
D. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
Wszystkie podane odpowiedzi, które nie wskazują na właściwą kolejność elementów, wynikają z nieporozumień dotyczących funkcji poszczególnych składowych oraz ich wpływu na ogólne działanie układu pneumatycznego. W przypadku układu, w którym najpierw znajduje się zawór sterujący, reduktor ciśnienia lub układ smarowania, może to prowadzić do nieodpowiedniego ciśnienia lub zanieczyszczenia powietrza, co z kolei negatywnie wpływa na wydajność i trwałość silnika pneumatycznego. Przykładowo, zainstalowanie reduktora ciśnienia przed filtrem może skutkować zanieczyszczeniem mechanizmu redukcyjnego, co doprowadzi do jego uszkodzenia. Dodatkowo, umiejscowienie układu smarowania na początku, bez uprzedniego oczyszczenia powietrza, prowadzi do wprowadzenia do układu zanieczyszczeń, które mogą zatykać smarownice, a tym samym obniżać efektywność smarowania. Właściwa kolejność montażu nie tylko zwiększa bezpieczeństwo operacyjne, ale również jest zgodna z normami branżowymi, które podkreślają znaczenie odpowiedniego przygotowania mediów roboczych w systemach pneumatycznych. Typowym błędem myślowym jest założenie, że elementy te mogą być montowane w dowolnej kolejności, co jest sprzeczne z zasadami inżynierii pneumatycznej.

Pytanie 23

Do kategorii chemicznych źródeł energii elektrycznej można zaliczyć ogniwa galwaniczne oraz

A. prądnice synchroniczne
B. akumulatory kwasowe
C. elementy termoelektryczne
D. ogniwa fotowoltaiczne
Akumulatory kwasowe to jeden z typów ogniw chemicznych, które przekształcają energię chemiczną w energię elektryczną. Działają na zasadzie reakcji chemicznych zachodzących pomiędzy elektrodami i elektrolitem, w tym przypadku kwasem siarkowym. Te ogniwa są powszechnie stosowane w różnych zastosowaniach, takich jak zasilanie pojazdów (akumulatory samochodowe), systemy zasilania awaryjnego oraz w energii odnawialnej, gdzie magazynują energię z paneli słonecznych lub turbin wiatrowych. W kontekście standardów branżowych, akumulatory kwasowe muszą spełniać określone normy dotyczące bezpieczeństwa i wydajności, takie jak normy ISO oraz IEC. Przykładowo, w zastosowaniach motoryzacyjnych akumulatory muszą być zdolne do dostarczenia dużych prądów rozruchowych, co jest krytyczne dla działania silnika. W związku z tym, akumulatory kwasowe są nie tylko kluczowym elementem nowoczesnych systemów energetycznych, ale także wymagają regularnej konserwacji i monitorowania, aby zapewnić ich długoterminową niezawodność.

Pytanie 24

Toczenie powierzchni czołowej przedstawia rysunek

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Toczenie powierzchni czołowej jest kluczowym procesem w obróbce skrawaniem, gdzie narzędzie toczenia przesuwa się w kierunku prostopadłym do osi obrotu obrabianego przedmiotu. W przypadku rysunku C, możemy zauważyć, że narzędzie jest poprawnie ustawione, co umożliwia efektywne skrawanie i uzyskiwanie pożądanej powierzchni. W praktyce toczenie powierzchni czołowej stosuje się w produkcji elementów, które wymagają precyzyjnego wykończenia, takich jak wały czy tuleje. Proces ten pozwala na uzyskanie dokładnych wymiarów oraz wysokiej jakości powierzchni, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, toczenie powierzchni czołowej można optymalizować poprzez odpowiedni dobór parametrów technologicznych, takich jak prędkość skrawania czy posuw, co wpływa na żywotność narzędzi i jakość obróbki. W związku z tym, poprawne zrozumienie ustawienia narzędzia toczenia oraz zasad działania tego procesu jest kluczowe dla każdego inżyniera czy technika w branży mechanicznej.

Pytanie 25

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. piezoelektrycznego
B. ultradźwiękowego
C. refleksyjnego
D. indukcyjnego
Czujniki ultradźwiękowe to naprawdę fajne narzędzia do mierzenia poziomu cieczy, zwłaszcza w sytuacjach, gdy mamy do czynienia z przezroczystymi i nieprzewodzącymi rzeczami. Działają na takiej zasadzie, że wysyłają fale ultradźwiękowe, które zbijają się od powierzchni cieczy i wracają do czujnika. Dzięki temu, że możemy zmierzyć czas, jaki potrzebuje sygnał na powrót, możemy dokładnie określić, jak wysoki jest poziom cieczy. Na przykład, wykorzystuje się je w zbiornikach z wodą pitną czy różnymi cieczyami w przemyśle. Warto też zauważyć, że standardy jak ISO 9001 mówią o precyzyjnych pomiarach w produkcji, a te czujniki właśnie to potrafią. Mają też kilka zalet w porównaniu do innych technologii, jak brak kontaktu z cieczą, co zmniejsza ryzyko zanieczyszczenia czy korozji, a ponadto mogą działać w trudnych warunkach, co jest na pewno plusem.

Pytanie 26

Ile wynosi wartość natężenia prądu znamionowego toru głównego wyłącznika różnicowoprądowego przedstawionego na ilustracji?

Ilustracja do pytania
A. 400 V
B. 30 mA
C. 800 A
D. 63 A
Odpowiedź '63 A' jest poprawna, ponieważ na przedstawionym wyłączniku różnicowoprądowym wyraźnie widnieje oznaczenie, które wskazuje na wartość natężenia prądu znamionowego toru głównego. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach elektrycznych, które zapewniają ochronę przed porażeniem prądem elektrycznym oraz przeciążeniami. Wartość 63 A oznacza maksymalne natężenie prądu, które urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. W praktyce, wybór odpowiedniego wyłącznika różnicowoprądowego jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej. Standardy takie jak PN-EN 61008 określają wymagania dotyczące tych urządzeń, w tym klasyfikację według wartości znamionowych. Dlatego ważne jest, aby instalatorzy i inżynierowie dobrze rozumieli oznaczenia na tego typu sprzęcie oraz potrafili je interpretować, co ma bezpośrednie przełożenie na bezpieczeństwo użytkowników oraz trwałość instalacji elektrycznych.

Pytanie 27

Na podstawie danych katalogowych napędu bramy garażowej wskaż zasilacz, którego należy użyć do zasilania akcesoriów tego napędu.

Napięcie zasilania (V ~/Hz)230/50
Napięcie zasilania akcesoriów (V DC)24
Maks. obciążenie akcesoriów (mA)200
Układ logicznyAutomatyczny/
półautomatyczny
Wyprowadzenia płytyOtwieranie/stop/
zabezpieczenia/
ukł. kontrolny/lampka
błyskowa 24 VDC
Czas świecenia lampy oświetleniowej2 min


Napięcie
wyjściowe
Natężenie prądu
wyjściowego
Zasilacz 1.24 V ~0,5 A
Zasilacz 2.24 V =0,2 A
Zasilacz 3.230 V ~0,5 A
Zasilacz 4.230 V =0,2 A
A. Zasilacza 3.
B. Zasilacza 1.
C. Zasilacza 4.
D. Zasilacza 2.
Wybór zasilaczy 1, 3 i 4 to raczej zła decyzja, bo żaden z tych zasilaczy nie spełnia podstawowych wymagań do napędu bramy garażowej. Zasilacz 1 i 3 dają napięcie 230 V, a to nie jest w porządku, bo my potrzebujemy 24 V DC. To napięcie 230 V może zepsuć elektronikę i stwarzać zagrożenie dla bezpieczeństwa. Poza tym, zasilacz 4, mimo że ma inne parametry, też nie pasuje do naszych wymagań. Ważne, żeby przy wyborze zasilacza nie kierować się tylko prądem, ale też napięciem – obie te wartości muszą być zgodne z wymaganiami urządzenia. Często ludzie mylą się w interpretacji danych z katalogów, co prowadzi do złych wyborów. Dlatego ważne jest, by dokładnie przeczytać dokumentację techniczną przed podjęciem decyzji. Zapamiętajmy też, że złe zasilanie może prowadzić do awarii systemu i różnych niebezpieczeństw, więc warto trzymać się zasad i dobrych praktyk przy doborze zasilaczy.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Ultradźwiękową
B. Termoluminescencyjną
C. Stroboskopową
D. Radiometryczną
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 31

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000
A. 80 mm
B. 63 mm
C. 50 mm
D. 100 mm
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 32

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
B. łączy sprężone powietrze z mgłą olejową
C. generuje mgłę olejową
D. zapewnia stałe ciśnienie robocze
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 33

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. transoptora.
B. optotriaka.
C. fotodiody.
D. fototyrystora.
Symbol przedstawiony na rysunku rzeczywiście reprezentuje transoptor, który jest kluczowym elementem w wielu zastosowaniach elektronicznych. Transoptor, inaczej zwany optoizolator, jest urządzeniem stosowanym do zapewnienia izolacji galwanicznej pomiędzy dwoma obwodami, co jest istotne w przypadku, gdy sygnały muszą być przesyłane w sposób bezpieczny, a jednocześnie efektywny. Przykładem zastosowania transoptorów są układy sterujące w automatyce przemysłowej, gdzie niebezpieczne napięcia muszą być przekazywane do układów kontrolnych o niższych napięciach. Dzięki zastosowaniu transoptorów, można zminimalizować ryzyko uszkodzenia wrażliwych komponentów elektronicznych. Dodatkowo, transoptory są wykorzystywane w systemach komunikacji optycznej oraz w układach zasilania, gdzie zapewniają separację między różnymi sekcjami obwodów, co jest zgodne z dobrymi praktykami inżynieryjnymi. Warto również zauważyć, że transoptory są szeroko stosowane w układach z mikroprocesorami, gdzie wymagane jest zapewnienie bezpieczeństwa i niezawodności przesyłu sygnałów.

Pytanie 34

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 7 obr/min
B. 750 obr/min
C. 7500 obr/min
D. 75 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 4,06 cm3
B. 4060,00 cm3
C. 406,00 cm3
D. 40,60 cm3
Wielu użytkowników może pomylić się w obliczeniach objętości cylindra siłownika, co często wynika z niepełnego zrozumienia wzoru na objętość V = A * h. Niepoprawne odpowiedzi, takie jak 4060,00 cm3, 40,60 cm3 czy 4,06 cm3, mogą być wynikiem błędnych przeliczeń lub nieodpowiedniego przeliczenia jednostek. Na przykład, przy odpowiedzi 4060,00 cm3, użytkownik może błędnie założyć, że skok cylindra powinien być bezpośrednio dodany jako wartość w cm, nie przeliczywszy milimetrów na centymetry. Z kolei 40,60 cm3 może sugerować, że użytkownik źle zinterpretował powierzchnię roboczą, być może myląc jednostki lub pomijając istotne przeliczenia. Natomiast odpowiedź 4,06 cm3 jest rażąco nieadekwatna, co może świadczyć o pominięciu kluczowych elementów w procesie obliczeń. Kluczowym krokiem jest prawidłowe zrozumienie i przeliczenie jednostek, co jest niezbędne dla uzyskania właściwych wyników. W praktyce, właściwe obliczenia objętości siłownika mają znaczenie dla wydajności hydrauliki, a ich błędy mogą prowadzić do niewłaściwego doboru komponentów, co w efekcie może wpłynąć na całościową efektywność systemu oraz jego bezpieczeństwo operacyjne.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Śrubę mikrometryczną do pomiaru głębokości otworów przedstawia rysunek

Ilustracja do pytania
A. A
B. B
C. D
D. C
Śruba mikrometryczna do pomiaru głębokości otworów jest niezwykle precyzyjnym narzędziem, które znajduje zastosowanie w różnych dziedzinach inżynieryjnych i technicznych. Odpowiedź B jest poprawna, ponieważ przedstawia narzędzie, które posiada płaską podstawę oraz wysuwany pręt pomiarowy, co jest kluczowe dla dokładnego pomiaru głębokości otworów. Tego rodzaju sprzęt jest wykorzystywany w procesach produkcyjnych oraz w laboratoriach, gdzie precyzja pomiarów ma ogromne znaczenie. Dzięki możliwości dokładnego pomiaru głębokości, śruba mikrometryczna pozwala na kontrolę wymiarów elementów, co jest istotne w kontekście zachowania tolerancji wymiarowej określonej w normach ISO. Przykładem zastosowania może być pomiar głębokości otworów w metalowych częściach maszyn, gdzie każdy milimetr ma znaczenie dla poprawności montażu i działania mechanizmów. Warto zaznaczyć, że posługiwanie się tym narzędziem wymaga nie tylko wiedzy teoretycznej, ale także praktycznych umiejętności, co czyni je niezbędnym w pracy technika czy inżyniera.

Pytanie 39

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. przecinarki plazmowej
B. prasy krawędziowej
C. frezarki uniwersalnej
D. szlifierki narzędziowej
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 40

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Filtrowanie zakłóceń napięcia sieciowego.
B. Obniżanie napięcia sieciowego.
C. Zamiana prądu stałego na prąd przemienny.
D. Zamiana prądu przemiennego na prąd stały.
Element przedstawiony na ilustracji to mostek prostowniczy, który odgrywa kluczową rolę w przetwarzaniu energii elektrycznej. Jego głównym zastosowaniem jest zamiana prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod ułożonych w taki sposób, aby umożliwić przepływ prądu w jednym kierunku, co prowadzi do wyprostowania sygnału. W praktyce, mostki prostownicze są szeroko stosowane w zasilaczach, które zasilają różne urządzenia elektroniczne. Na przykład, w komputerach czy telewizorach mostki prostownicze są niezbędne do konwersji napięcia z sieci energetycznej na odpowiednie wartości potrzebne do pracy podzespołów. Dzięki zastosowaniu mostka prostowniczego, można osiągnąć stabilne i niezawodne źródło prądu stałego, co jest zgodne z najlepszymi praktykami projektowania zasilaczy. Warto również wspomnieć, że mostki prostownicze wykorzystuje się w systemach fotowoltaicznych, gdzie energia słoneczna, generująca prąd stały, jest przetwarzana na prąd zmienny do użytku w domach lub wprowadzania do sieci energetycznej.