Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 29 grudnia 2025 21:40
  • Data zakończenia: 29 grudnia 2025 21:53

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przedstawiony obraz radiologiczny został zarejestrowany podczas badania jelita

Ilustracja do pytania
A. cienkiego po doodbytniczym podaniu środka kontrastującego.
B. grubego po doustnym podaniu środka kontrastującego.
C. grubego po doodbytniczym podaniu środka kontrastującego.
D. cienkiego po doustnym podaniu środka kontrastującego.
Na obrazie widać klasyczną wlewkę doodbytniczą jelita grubego (tzw. badanie kontrastowe jelita grubego z barytem). Środek cieniujący został podany od strony odbytnicy, dlatego kontrast bardzo dokładnie wypełnia światło okrężnicy, odwzorowując jej zarys, haustracje i przebieg. Jelito grube ma charakterystyczny obraz: szerokie światło, wyraźne haustry układające się w takie jakby segmenty, brak typowych dla jelita cienkiego fałdów okrężnych przechodzących przez całe światło. Na zdjęciu widoczny jest zarys okrężnicy wstępującej, poprzecznej, zstępującej i esicy, co jednoznacznie przemawia za jelitem grubym. Po doodbytniczym podaniu kontrastu uzyskujemy tzw. badanie wlewu kontrastowego, które w standardowej praktyce radiologicznej stosuje się głównie do oceny zmian strukturalnych jelita grubego: zwężeń, uchyłków, guzów, nieprawidłowego poszerzenia, zaburzeń zarysów fałdów śluzówki. W technikach zgodnych z dobrymi praktykami (np. zalecenia towarzystw radiologicznych) pacjent jest odpowiednio przygotowany – oczyszczenie jelita, często dieta płynna dzień wcześniej – tak żeby kontrast równomiernie wypełniał światło i nie było artefaktów z zalegających mas kałowych. Moim zdaniem to jedno z badań, na których bardzo dobrze widać różnicę między jelitem cienkim a grubym, co przydaje się potem przy interpretacji tomografii czy badań z podwójnym kontrastem. Warto zapamiętać: jelito grube + baryt podany od dołu = wlew doodbytniczy, taki jak na tym zdjęciu.

Pytanie 2

Gruboziarnista folia wzmacniająca wpływa na zwiększenie na obrazie rentgenowskim nieostrości

A. rozproszeniowej.
B. geometrycznej.
C. ruchowej.
D. fotograficznej.
W tym pytaniu haczyk polega głównie na tym, żeby dobrze rozróżniać typy nieostrości w radiografii. Gruboziarnista folia wzmacniająca jest elementem układu obrazującego, czyli części odpowiedzialnej za rejestrację obrazu, a nie za ruch, geometrię wiązki czy rozproszenie promieniowania. Dlatego nie może powodować nieostrości ruchowej. Nieostrość ruchowa pojawia się, gdy pacjent się porusza, gdy technik nie ustabilizuje odpowiednio kończyny, albo gdy czas ekspozycji jest za długi. Z mojego doświadczenia w pracowni: jeśli ktoś ma problem z rozmazanymi zdjęciami klatki piersiowej, to zwykle chodzi o oddech pacjenta lub kaszel, a nie o rodzaj folii. Druga często mylona sprawa to nieostrość geometryczna. Ona wynika z wielkości ogniska lampy rentgenowskiej, odległości ognisko–film (OID, FFD) i rozbieżności wiązki. Jeśli ognisko jest duże, a obiekt znajduje się daleko od detektora, powstaje powiększenie i rozmycie krawędzi – to typowa nieostrość geometryczna. Folia wzmacniająca nie zmienia geometrii układu, więc nie może wpływać na ten typ nieostrości. Kto miesza te pojęcia, zwykle wrzuca wszystko do jednego worka: „jak obraz jest nieostry, to pewnie geometria”, a to spore uproszczenie. Pojawia się też skojarzenie z nieostrością rozproszeniową. Ta natomiast jest związana z promieniowaniem rozproszonym w ciele pacjenta i w otoczeniu, które dociera do detektora z innych kierunków niż wiązka pierwotna. Do jej ograniczania służą kratki przeciwrozproszeniowe, kolimacja i odpowiednie parametry ekspozycji. Folia wzmacniająca jedynie przetwarza to, co do niej dociera – nie generuje dodatkowego rozproszenia promieniowania X w takim sensie, by tworzyć osobny typ nieostrości. Typowym błędem myślowym jest tu łączenie „grubej” folii z czymś, co „rozprasza” wszystko dookoła. W rzeczywistości mamy do czynienia z rozpraszaniem światła w samej folii, co właśnie zaliczamy do nieostrości fotograficznej, a nie rozproszeniowej w sensie fizyki promieniowania. Dlatego poprawne rozróżnianie tych pojęć jest kluczowe przy analizie jakości obrazu i planowaniu parametrów badania RTG.

Pytanie 3

W scyntygrafii wykorzystywane są głównie radioizotopy emitujące promieniowanie

A. gamma.
B. neutronowe.
C. beta.
D. alfa.
W scyntygrafii łatwo się pomylić, bo mówimy ogólnie o promieniowaniu jonizującym i radioizotopach, a to wielu osobom od razu kojarzy się z cząstkami alfa albo beta. W obrazowaniu scyntygraficznym nie chodzi jednak o to, żeby naładowane cząstki działały bezpośrednio na tkanki, tylko o rejestrowanie promieniowania wychodzącego na zewnątrz ciała i tworzenie z niego obrazu rozkładu radioznacznika. Z tego powodu promieniowanie alfa kompletnie się do tego nie nadaje: ma bardzo mały zasięg w tkankach (rzędu mikrometrów), jest silnie jonizujące i w ogóle nie „wylatuje” na zewnątrz organizmu, żeby gammakamera mogła je zarejestrować. Alfa jest wykorzystywana raczej w bardzo specyficznych terapiach celowanych, a nie w diagnostyce obrazowej całych narządów. Podobnie z promieniowaniem beta – to są elektrony lub pozytony o ograniczonym zasięgu w tkankach. Elektrony beta minus są bardziej przydatne w radioterapii, np. w leczeniu zmian powierzchownych lub w terapii izotopowej, bo oddają energię lokalnie. W scyntygrafii one są w zasadzie przeszkodą, bo zwiększają dawkę w tkankach, a nie dają użytecznego sygnału obrazowego na zewnątrz. W PET co prawda używa się emiterów pozytonów, ale kluczowe jest to, że pozyton anihiluje z elektronem i dopiero wtedy powstają dwa fotony gamma 511 keV, które rejestrują detektory. Czyli nadal obraz budujemy z promieniowania gamma, a nie z samych cząstek beta. Promieniowanie neutronowe też bywa mylące w skojarzeniach, bo jest bardzo przenikliwe, ale w diagnostyce nuklearnej praktycznie się go nie używa. Neutrony trudniej skutecznie i selektywnie rejestrować w warunkach klinicznych, wymagają zupełnie innej aparatury i osłon, a poza tym ich zastosowanie wiązałoby się ze znacznie większymi problemami ochrony radiologicznej. Typowym błędem jest wrzucanie wszystkich rodzajów promieniowania do jednego worka i zakładanie, że skoro coś jest „mocne” albo „jonizujące”, to nadaje się do każdego zastosowania. W medycynie nuklearnej do obrazowania standardem są izotopy emitujące fotony gamma o dobrze dobranej energii, bo to właśnie te fotony zgodnie z dobrą praktyką kliniczną rejestruje gammakamera lub detektory PET, tworząc obraz scyntygraficzny.

Pytanie 4

Na obrazie scyntygrafii perfuzyjnej serca strzałką wskazano ścianę

Ilustracja do pytania
A. boczną serca.
B. przednią serca.
C. dolną serca.
D. przegrodową serca.
W scyntygrafii perfuzyjnej serca kluczowe jest zrozumienie, jak sztucznie „ustandaryzowano” położenie serca na obrazie. To nie jest klasyczne RTG w projekcji PA, tylko rekonstrukcja tomograficzna, w której lewa komora jest ustawiona według przyjętych osi: krótkiej, długiej pionowej i długiej poziomej. Na załączonym obrazie mamy przekrój w osi krótkiej (short axis), który pokazuje pierścień mięśnia lewej komory. Producent lub pracownia dodaje zwykle po prawej stronie pasek orientacyjny z opisem: „Septal – Lateral” oraz „Anterior – Inferior”. To jest coś w rodzaju legendy mapy. Typowy błąd polega na tym, że ktoś patrzy na obraz jak na zwykłe zdjęcie klatki piersiowej i automatycznie zakłada, że góra to ściana przednia, dół to dolna, lewa strona ekranu to ściana boczna, a prawa to przegroda. W scyntygrafii tak nie wolno zgadywać – trzeba oprzeć się na opisie orientacji. Jeśli spojrzymy na legendę obok obrazu, wyraźnie widać, że po lewej stronie pierścienia oznaczono „Septal”, czyli ścianę przegrodową, a po prawej „Lateral”, czyli boczną. Odpowiedzi wskazujące ścianę przednią lub dolną wynikają najczęściej z mylenia różnych przekrojów: w przekrojach w osi długiej pionowej przednia i dolna są rzeczywiście u góry i u dołu, ale tutaj mamy inną płaszczyznę. Z mojego doświadczenia sporo osób też „odwraca” obraz w pamięci, bo myśli o anatomii w projekcji echo serca, co dodatkowo miesza. Dobre praktyki w medycynie nuklearnej mówią jasno: przed oceną perfuzji należy zawsze potwierdzić kierunek osi, sprawdzić legendę oraz, jeśli jest dostępny, widok 3D lub mapę biegunową. To pozwala uniknąć pomyłek w lokalizacji ubytków perfuzji, a więc błędów w rozpoznawaniu niedokrwienia konkretnych ścian: przedniej, dolnej, bocznej czy właśnie przegrodowej. Dlatego odpowiedzi wskazujące ścianę przednią, boczną lub dolną w tym konkretnym obrazie są po prostu niezgodne z przyjętą orientacją i prowadziłyby do błędnej interpretacji badania.

Pytanie 5

W badaniu EKG odprowadzenie I rejestruje różnicę potencjałów między

A. prawym a lewym przedramieniem.
B. prawym podudziem a lewym przedramieniem.
C. prawym przedramieniem a lewym podudziem.
D. prawym a lewym podudziem.
Prawidłowo – w standardowym 12‑odprowadzeniowym EKG odprowadzenie I rejestruje różnicę potencjałów między prawym a lewym przedramieniem, czyli technicznie między elektrodą na prawym nadgarstku (RA – right arm) a elektrodą na lewym nadgarstku (LA – left arm). To jest tzw. odprowadzenie dwubiegunowe kończynowe wg Einthovena. Mówiąc prościej: aparat porównuje, jaki sygnał elektryczny dociera z prawej ręki, a jaki z lewej ręki i rysuje z tego linię w zapisie EKG. Z mojego doświadczenia to jedno z podstawowych pojęć, które warto mieć „w małym palcu”, bo potem łatwiej ogarnia się całą oś elektryczną serca. W praktyce klinicznej odprowadzenie I pokazuje aktywność elektryczną serca widzianą mniej więcej w płaszczyźnie czołowej, z kierunku lewej strony klatki piersiowej. To odprowadzenie jest szczególnie czułe np. na zmiany zlokalizowane bocznie w lewej komorze. Przy prawidłowym podłączeniu elektrod kompleks QRS w odprowadzeniu I jest zazwyczaj dodatni (większość wychyleń idzie do góry), bo fala depolaryzacji przemieszcza się generalnie w stronę lewej komory. Standardy (np. wytyczne ESC, AHA) bardzo mocno podkreślają prawidłowe rozmieszczenie elektrod: prawa ręka – prawa kończyna górna, lewa ręka – lewa kończyna górna, prawa i lewa noga – kończyny dolne, przy czym elektroda na prawej nodze pełni zwykle funkcję elektrody uziemiającej. W warunkach praktycznych w ambulatorium często nie zakłada się elektrod dokładnie na nadgarstkach, tylko wyżej na przedramionach, ale zasada pozostaje ta sama: odprowadzenie I to zawsze różnica potencjałów między prawą a lewą kończyną górną. Warto też pamiętać, że na podstawie odprowadzeń I, II i III można konstruować trójkąt Einthovena i analizować oś elektryczną serca – to już wyższy poziom interpretacji, ale bardzo przydatny w codziennej pracy.

Pytanie 6

Cholangiografia to badanie radiologiczne

A. dróg żółciowych.
B. pęcherza moczowego.
C. dróg moczowych.
D. pęcherzyka żółciowego.
Cholangiografia to radiologiczne badanie dróg żółciowych, czyli przede wszystkim przewodów żółciowych wewnątrz- i zewnątrzwątrobowych oraz przewodu żółciowego wspólnego. Kluczowe jest tu słowo „cholangio-”, które w terminologii medycznej odnosi się właśnie do dróg żółciowych. W praktyce badanie polega na podaniu środka cieniującego (kontrastu) do światła dróg żółciowych i wykonaniu serii zdjęć RTG lub obrazów fluoroskopowych. Dzięki temu przewody, które normalnie są na zdjęciu prawie niewidoczne, stają się wyraźnie zarysowane. Umożliwia to ocenę ich przebiegu, średnicy, obecności zwężeń, poszerzeń, kamieni czy przecieków żółci. W codziennej pracy najczęściej spotyka się cholangiografię śródoperacyjną (IOC) podczas cholecystektomii laparoskopowej, a także ECPW/ERCP, czyli endoskopową cholangiopankreatografię wsteczną, gdzie kontrast podaje się przez brodawkę Vatera pod kontrolą endoskopu. Moim zdaniem warto skojarzyć, że cholangiografia to zawsze obrazowanie dróg żółciowych z użyciem kontrastu i promieniowania rentgenowskiego, a nie np. USG. Z punktu widzenia dobrych praktyk radiologicznych ważne jest prawidłowe przygotowanie pacjenta, kontrola ryzyka alergii na jodowy środek kontrastowy, aseptyczna technika podania oraz ścisła współpraca z zespołem zabiegowym (chirurg, endoskopista). Wynik cholangiografii ma duże znaczenie przy kwalifikacji do zabiegów, np. usuwania złogów z przewodu żółciowego wspólnego, poszerzania zwężeń czy zakładania stentów. To badanie jest też standardem w diagnostyce powikłań pooperacyjnych, takich jak uszkodzenie dróg żółciowych czy przeciek żółci do jamy brzusznej.

Pytanie 7

Przemiana promieniotwórcza radu w ren opisana wzorem \( {}_{88}^{226}\text{Ra} \to {}_{86}^{222}\text{Rn} + {}_{2}^{4}\text{He} \) jest rozpadem

A. alfa.
B. gamma.
C. beta minus.
D. beta plus.
Rozpad opisany równaniem \( {}_{88}^{226}\text{Ra} \to {}_{86}^{222}\text{Rn} + {}_{2}^{4}\text{He} \) to klasyczny przykład przemiany alfa. Widać to po tym, że z jądra radu „odrywa się” cząstka o liczbie masowej 4 i liczbie atomowej 2, czyli dokładnie jądro helu – to jest właśnie cząstka alfa. Liczba masowa zmniejsza się z 226 do 222 (spadek o 4), a liczba atomowa z 88 do 86 (spadek o 2), co jest typowym wzorcem dla rozpadu alfa. Z fizycznego punktu widzenia jądro ciężkiego pierwiastka, jak rad, pozbywa się nadmiaru energii i „zbyt dużej” liczby nukleonów właśnie przez emisję takiej cząstki. W medycynie, szczególnie w medycynie nuklearnej i w ochronie radiologicznej, rozumienie tego typu przemian jest bardzo praktyczne. Cząstki alfa mają bardzo mały zasięg w tkankach (rzędu dziesiątek mikrometrów), ale jednocześnie bardzo duże liniowe przekazywanie energii (wysoki LET). To oznacza, że jeśli źródło alfa znajdzie się wewnątrz organizmu, może silnie uszkadzać komórki w bardzo małym obszarze. Dlatego w procedurach, które opisują dobre praktyki ochrony radiologicznej, tak mocno podkreśla się, żeby nie spożywać, nie wdychać i nie zanieczyszczać skóry materiałami emitującymi alfa. Z zewnątrz skóra praktycznie zatrzymuje to promieniowanie, ale wewnętrznie jest ono bardzo niebezpieczne. Moim zdaniem znajomość rozpadu alfa przydaje się też przy rozumieniu łańcuchów promieniotwórczych, np. szeregu uranowo-radowego. W takich szeregach wielokrotnie pojawiają się kolejne rozpady alfa prowadzące do powstania gazowego radu i radu–222, który z kolei ma znaczenie w ocenie narażenia na radon w budynkach. W standardach oceny ryzyka radiacyjnego i w dokumentacji ochrony radiologicznej zawsze uwzględnia się, czy mamy do czynienia z promieniowaniem alfa, beta czy gamma, bo od tego zależy zarówno sposób ekranowania, jak i metody monitorowania skażeń. W praktyce technika medycznego znajomość tego typu reakcji pomaga lepiej rozumieć opisy źródeł, charakterystyki radioizotopów w kartach katalogowych oraz zalecenia BHP przy pracy z materiałami promieniotwórczymi.

Pytanie 8

W ultrasonografii występuje zależność:

A. im wyższa częstotliwość, tym płytsza penetracja wiązki.
B. im wyższa rozdzielczość, tym głębsza penetracja wiązki.
C. im wyższa częstotliwość, tym gorsza rozdzielczość.
D. im wyższa częstotliwość, tym głębsza penetracja wiązki.
Zależność między częstotliwością a penetracją w ultrasonografii bywa często mylona, bo intuicyjnie wydaje się, że „więcej” znaczy „lepiej i głębiej”. W fizyce ultradźwięków jest dokładnie odwrotnie: im wyższa częstotliwość, tym silniejsze tłumienie fali w tkankach i tym płytszy zasięg użytecznego sygnału. To tłumienie wynika z absorpcji energii i rozpraszania na granicach ośrodków. W efekcie fala o wysokiej częstotliwości traci energię szybciej niż fala o niskiej częstotliwości, więc nie może wiarygodnie zobrazować struktur położonych głęboko. Pojawia się też mylące skojarzenie, że wyższa rozdzielczość obrazu automatycznie zapewni głębszą penetrację. W ultrasonografii rozdzielczość osiowa jest ściśle związana właśnie z częstotliwością – im wyższa, tym lepsza zdolność rozróżniania dwóch blisko położonych struktur. Jednak ta poprawa rozdzielczości odbywa się kosztem głębokości. Standardy pracy w USG mówią wprost: do struktur powierzchownych stosujemy wysokie częstotliwości i wysoką rozdzielczość, do struktur głębokich – niższe częstotliwości i gorszą rozdzielczość, ale za to większą penetrację. Przeciwstawne stwierdzenie, że wzrost częstotliwości pogarsza rozdzielczość, jest sprzeczne z podstawową teorią fal akustycznych i z praktyką kliniczną. Głowice wysokoczęstotliwościowe są właśnie projektowane po to, żeby uzyskać obraz o bardzo wysokiej szczegółowości, tylko na mniejszej głębokości. Typowy błąd myślowy polega na mieszaniu pojęć: część osób utożsamia „silniejszą wiązkę” z „większą głębokością”, tymczasem aparaty kompensują mocą tylko do pewnego stopnia, nie są w stanie pokonać fizycznego prawa tłumienia w tkankach. Podobnie mylące jest przekonanie, że rozdzielczość to coś niezależnego od częstotliwości – w USG to jest bezpośrednio ze sobą powiązane. Dobre praktyki mówią jasno: wybór głowicy i częstotliwości zaczyna się od pytania, jak głęboko leży interesująca nas struktura, a dopiero potem szuka się maksimum rozdzielczości w tym zakresie głębokości, a nie odwrotnie.

Pytanie 9

W badaniu PET CT wykorzystuje się radioizotopy emitujące promieniowanie

A. beta plus.
B. beta minus.
C. alfa.
D. gamma.
W PET/CT bardzo łatwo pomylić się, bo na pierwszy rzut oka wydaje się, że skoro urządzenie rejestruje promieniowanie gamma, to używa się izotopów gamma. I tu jest ten typowy błąd myślowy: mylimy to, co emituje radioizotop, z tym, co w końcu rejestruje detektor. W PET kluczowy jest emiter beta plus, czyli taki radionuklid, który w swoim rozpadzie wytwarza pozyton. Pozyton to antycząstka elektronu, naładowana dodatnio. Po krótkim torze w tkance pozyton zderza się z elektronem i dopiero wtedy dochodzi do anihilacji i powstają dwa fotony gamma o energii 511 keV. Detektory PET nie rejestrują więc bezpośrednio rozpadu beta, tylko produkty anihilacji. Promieniowanie alfa nie ma tu w ogóle zastosowania – cząstki alfa mają bardzo mały zasięg w tkankach i są silnie jonizujące, przez co kompletnie nie nadają się do obrazowania tomograficznego całego ciała. Stosuje się je czasem w terapii izotopowej, ale nie w PET. Emiter beta minus też nie pasuje, bo w tym rozpadzie powstaje elektron, a nie pozyton. Elektron nie anihiluje z elektronem, tylko traci energię w ośrodku przez jonizację i hamowanie, więc nie generuje tych charakterystycznych dwóch fotonów 511 keV pod kątem 180°. Tego rodzaju izotopy wykorzystuje się głównie w terapii (np. 90Y, 131I), ewentualnie w innych typach badań, ale nie w klasycznym PET. Często zdarza się też, że ktoś odpowiada „gamma”, bo kojarzy, że w medycynie nuklearnej jest gammakamera i scyntygrafia. Tam faktycznie używa się emiterów gamma, ale to jest SPECT, a nie PET. PET opiera się właśnie na fizyce anihilacji pozyton–elektron. Moim zdaniem warto sobie to poukładać tak: do ciała zawsze podajemy emiter beta plus, a urządzenie rejestruje pary fotonów gamma po anihilacji. Jak zapamiętasz ten ciąg zdarzeń, to podobne pytania przestają być problemem.

Pytanie 10

Na ilustracji przedstawiono zjawisko

Ilustracja do pytania
A. emisji fotonu.
B. fotoelektryczne.
C. tworzenia par.
D. anihilacji.
Poprawnie rozpoznano zjawisko fotoelektryczne. Na ilustracji widać kwant promieniowania (γ lub ogólnie foton), który pada na elektron związany w atomie, a następnie wybija go, tworząc elektron swobodny. Dokładnie to opisuje wzór Eₑ = hν − E_w, gdzie hν to energia fotonu, a E_w to energia wiązania elektronu w atomie. Różnica tych energii jest przekazywana elektronowi jako energia kinetyczna. W praktyce medycznej to zjawisko jest absolutnie kluczowe dla diagnostyki obrazowej w zakresie promieniowania X: w detektorach cyfrowych, w błonach rentgenowskich, w komorach jonizacyjnych, dozymetrach – wszędzie tam konwersja promieniowania na ładunek elektryczny opiera się właśnie na efekcie fotoelektrycznym. Moim zdaniem warto pamiętać, że efekt fotoelektryczny dominuje przy niższych energiach fotonów (kilkadziesiąt keV), czyli typowych dla klasycznej radiografii i mammografii. Z tego wynika silna zależność pochłaniania od liczby atomowej Z – kości (wapń, wysoka Z) pochłaniają dużo bardziej niż tkanki miękkie, dzięki czemu na zdjęciu RTG mamy wyraźny kontrast. Właśnie dlatego dobór napięcia na lampie rentgenowskiej (kV) jest tak ważny: zbyt wysokie kV zwiększa udział zjawiska Comptona kosztem fotoelektrycznego i obraz staje się bardziej „płaski”, z gorszym kontrastem tkankowym. Efekt fotoelektryczny ma też duże znaczenie w ochronie radiologicznej – materiały osłonowe o dużej liczbie atomowej (np. ołów) bardzo skutecznie pochłaniają promieniowanie właśnie przez ten mechanizm. W podręcznikach z fizyki medycznej podkreśla się, że zrozumienie tego zjawiska jest podstawą świadomego ustawiania parametrów ekspozycji i oceny jakości obrazu, a nie tylko „klikania” domyślnych protokołów.

Pytanie 11

Lordoza to fizjologiczna krzywizna kręgosłupa występująca

A. tylko w odcinku piersiowym.
B. w odcinku szyjnym i lędźwiowym.
C. w odcinku szyjnym i piersiowym.
D. tylko w odcinku lędźwiowym.
Lordoza często myli się osobom uczącym się z kifozą, stąd biorą się różne błędne skojarzenia z odcinkiem piersiowym. Trzeba to sobie uporządkować: lordoza to wygięcie kręgosłupa do przodu (brzusznie), a kifoza – do tyłu (grzbietowo), patrząc w projekcji bocznej. Fizjologiczna, czyli prawidłowa, lordoza występuje tylko w dwóch odcinkach: szyjnym i lędźwiowym. Odcinek piersiowy ma fizjologiczną kifozę, więc stwierdzenie, że lordoza występuje „tylko w odcinku piersiowym” albo „w odcinku szyjnym i piersiowym” jest sprzeczne z podstawową anatomią. To jest taki typowy błąd: ktoś kojarzy, że kręgosłup ma krzywizny, ale nie rozróżnia ich kierunku. Drugi częsty problem to odpowiedź sugerująca, że lordoza jest tylko w odcinku lędźwiowym – wiele osób pamięta określenie „hiperlordoza lędźwiowa” i przez to zapomina o lordozie szyjnej, która jest równie ważna. W praktyce obrazowania medycznego, np. w RTG bocznym kręgosłupa szyjnego czy lędźwiowego, ocena zachowania naturalnej lordozy jest jednym z elementów standardowej analizy. Zbyt mała lub zniesiona lordoza szyjna może wskazywać na przewlekłe przeciążenie mięśni karku, urazy typu „smagnięcie biczem” albo niefizjologiczne ustawienie głowy przy pracy. Z kolei nieprawidłowa lordoza lędźwiowa wiąże się z bólami krzyża, zmianami przeciążeniowymi, wadami postawy. Moim zdaniem warto zapamiętać prostą zasadę: szyja i lędźwie – lordoza, klatka piersiowa – kifoza. Ułatwia to nie tylko zdawanie testów, ale też interpretację badań RTG, MR czy TK, gdzie opisujący musi jasno odróżnić, czy zaburzenie dotyczy lordozy, czy kifozy. Mylenie tych pojęć prowadzi potem do nieprecyzyjnych opisów i gorszej komunikacji w zespole medycznym.

Pytanie 12

Na obrazie TK nadgarstka uwidocznione jest złamanie kości

Ilustracja do pytania
A. główkowatej.
B. haczykowatej.
C. księżycowatej.
D. łódeczkowatej.
Prawidłowo wskazana została kość łódeczkowata. Na obrazie TK nadgarstka widoczna jest projekcja w płaszczyźnie czołowej, a kość łódeczkowata leży w szeregu bliższym kości nadgarstka, po stronie promieniowej, między wyrostkiem rylcowatym kości promieniowej a kością główkowatą i czworoboczną większą. W TK (tak samo jak w dobrych projekcjach RTG – PA, skośnych, czasem tzw. projekcji Stechera) zwraca się uwagę na ciągłość warstwy korowej i jednorodność struktury beleczkowej. W złamaniu kości łódeczkowatej widzimy szczelinę złamania przechodzącą przez trzon, często z niewielkim przemieszczeniem odłamów lub tylko z zatarciem zarysu korowego. Moim zdaniem to jest jedno z kluczowych złamań, które technik i lekarz radiolog powinni umieć „wyłapać”, bo kość łódeczkowata ma słabsze unaczynienie (zwłaszcza biegun bliższy) i łatwo dochodzi do jałowej martwicy, jeśli uraz zostanie przeoczony. W praktyce klinicznej TK wykonuje się najczęściej wtedy, gdy klasyczne RTG jest niejednoznaczne, a pacjent ma typowe objawy: ból w tabakierce anatomicznej, ból przy osiowym obciążeniu kciuka, ograniczenie ruchu. Dobrą praktyką jest przeglądanie obrazów w kilku płaszczyznach rekonstrukcyjnych (coronal, sagittal, axial) z cienką warstwą cięcia, bo szczelina złamania czasem jest widoczna tylko w jednej z nich. W standardach opisowych zaleca się dokładne określenie lokalizacji (biegun dalszy, trzon, biegun bliższy), stopnia przemieszczenia, ewentualnych fragmentów kostnych oraz oceny powierzchni stawowych pod kątem uszkodzeń chrzęstnych. W codziennej pracy bardzo pomaga znajomość topografii: najbardziej promieniowo i nieco dłoniowo – właśnie łódeczkowata, obok niej księżycowata, a dalej w stronę łokciową – trójgraniasta i grochowata. Im lepiej kojarzysz ten układ, tym szybciej i pewniej rozpoznajesz złamania na TK i RTG.

Pytanie 13

Emisja fali elektromagnetycznej występuje w procesie rozpadu promieniotwórczego

A. alfa.
B. gamma.
C. beta minus.
D. beta plus.
W tym pytaniu kluczowe jest rozróżnienie między promieniowaniem cząstkowym a elektromagnetycznym. Promieniowanie alfa to strumień ciężkich cząstek – jąder helu (dwa protony i dwa neutrony). One mają dużą masę i ładunek dodatni, przez co bardzo silnie jonizują ośrodek, ale praktycznie nie są falą elektromagnetyczną, tylko typowo promieniowaniem korpuskularnym. W praktyce medycznej cząstki alfa są rzadziej wykorzystywane diagnostycznie, bardziej w bardzo specyficznych terapiach celowanych, a ich zasięg w tkankach jest minimalny. Dlatego kojarzenie alfa z falą elektromagnetyczną to takie trochę uproszczenie, które potrafi się w głowie zakodować, ale jest po prostu fizycznie błędne. Podobnie promieniowanie beta plus i beta minus to emisja cząstek, a nie fotonów. W rozpadzie beta minus z jądra emitowany jest elektron oraz antyneutrino, natomiast w rozpadzie beta plus – pozyton i neutrino. Elektron i pozyton to również cząstki naładowane, więc zachowują się w tkankach zupełnie inaczej niż fotony gamma: mają krótki zasięg, tor jest zakrzywiany przez pola magnetyczne, a charakter jonizacji jest inny. W PET faktycznie używamy izotopów beta plus, ale obraz rejestrowany jest nie z samego pozytonu, tylko z fotonów gamma powstających w anihilacji pozytonu z elektronem. I to jest ważne rozróżnienie, bo łatwo pomylić: „w PET jest beta plus, więc to chyba fala elektromagnetyczna”. Nie, fala elektromagnetyczna to dopiero gamma po anihilacji. W standardach fizyki medycznej i ochrony radiologicznej (ICRP, IAEA) promieniowanie alfa i beta klasyfikuje się jako promieniowanie korpuskularne, a gamma i X jako promieniowanie fotonowe, czyli elektromagnetyczne. Moim zdaniem warto sobie to poukładać: alfa i beta – cząstki, gamma i X – fotony. Dzięki temu później dużo łatwiej zrozumieć dobór osłon (ołów dla fotonów, lekkie materiały dla cząstek), charakter dawek oraz różnice w zastosowaniach diagnostycznych i terapeutycznych.

Pytanie 14

Na jakim etapie procesu karcynogenezy dochodzi do inwazji miejscowej nowotworu i tworzenia przerzutów odległych?

A. Konwersji.
B. Progresji.
C. Promocji.
D. Inicjacji.
W karcynogenezie wyróżnia się kilka następujących po sobie etapów i łatwo się w nich pogubić, bo nazwy są dość podobne i brzmią trochę abstrakcyjnie. Wiele osób intuicyjnie przypisuje inwazję i przerzuty już do wcześniejszych faz, takich jak inicjacja czy promocja, bo kojarzy nowotwór złośliwy od razu z przerzutami. Tymczasem proces jest bardziej stopniowy. Inicjacja to najwcześniejszy moment, kiedy w komórce pojawia się trwałe uszkodzenie materiału genetycznego – mutacja, która nie zostaje naprawiona. Komórka może wyglądać zupełnie normalnie pod mikroskopem, nie nacieka, nie tworzy przerzutów, po prostu ma „zapisany” błąd w DNA. To jest bardziej poziom zmian molekularnych niż klinicznych. Promocja to faza, w której te zainicjowane komórki zaczynają się nadmiernie dzielić pod wpływem różnych czynników promujących, np. hormonów, przewlekłego stanu zapalnego czy niektórych chemikaliów. Rozrasta się wtedy klon komórek z mutacją, ale wciąż mówimy o zmianie raczej łagodnej lub przedinwazyjnej – bez przekraczania błony podstawnej i bez przerzutów. Tu typowym błędem myślowym jest założenie, że skoro guz rośnie, to już musi naciekać i dawać przerzuty. W rzeczywistości wiele zmian w fazie promocji ma jeszcze charakter ograniczony, przypomina np. dysplazję wysokiego stopnia czy raka in situ. Konwersja bywa różnie definiowana w literaturze, ale zwykle odnosi się do przejścia ze stanu przednowotworowego w nowotwór złośliwy na poziomie histologicznym. Nadal jednak sama nazwa nie oznacza automatycznie, że guz jest już w pełni zdolny do tworzenia przerzutów odległych. Kluczowe dla pytania jest rozróżnienie: inwazja miejscowa i przerzutowanie to cechy fazy progresji. W progresji dochodzi do dalszego nagromadzenia mutacji, niestabilności genetycznej i selekcji najbardziej agresywnych klonów komórek. To wtedy guz zaczyna naciekać otaczające tkanki, wnika do naczyń i może kolonizować odległe narządy. Moim zdaniem warto zapamiętać prosty schemat: inicjacja – pierwsza mutacja, promocja – rozrost klonu, konwersja – przejście w nowotwór złośliwy, progresja – pełna agresja kliniczna z inwazją i przerzutami. Takie uporządkowanie pomaga uniknąć mylenia etapów i lepiej rozumieć, dlaczego rozpoznanie na wczesnych fazach daje dużo lepsze rokowanie.

Pytanie 15

Promieniowanie jonizujące pośrednio to

A. promieniowanie γ
B. promieniowanie β⁺
C. promieniowanie α
D. promieniowanie β⁻
Promieniowanie γ zaliczamy do promieniowania jonizującego pośrednio, ponieważ samo w sobie jest strumieniem fotonów, czyli kwantów energii elektromagnetycznej, a nie naładowanych cząstek. Foton γ nie „wyrywa” elektronów z atomów bezpośrednio jak cząstka naładowana, tylko najpierw oddziałuje z materią (np. z elektronem powłokowym lub jądrem), wytwarzając wtórne cząstki naładowane – głównie elektrony wtórne. Dopiero te elektrony powodują zasadniczą część jonizacji w tkankach. Dlatego mówimy, że γ jonizuje pośrednio. W praktyce medycznej ma to ogromne znaczenie. W radioterapii z użyciem przyspieszaczy liniowych albo aparatów Co-60 wiązka promieniowania γ lub wysokoenergetycznego X przenika głębiej w ciało, a maksimum dawki pojawia się na pewnej głębokości, właśnie przez generację wtórnych elektronów. Dzięki temu można lepiej oszczędzić skórę i dostarczyć większą dawkę do guza położonego głębiej, co jest standardem w nowoczesnym planowaniu napromieniania. Podobnie w diagnostyce medycyny nuklearnej – w gammakamerze rejestrujemy fotony γ emitowane przez radioizotop (np. 99mTc), które same są nienaładowane, więc dobrze przechodzą przez tkanki, a ich detekcja wymaga kryształu scyntylacyjnego i fotopowielaczy. Z mojego doświadczenia, zrozumienie, że γ jest promieniowaniem pośrednio jonizującym, pomaga ogarnąć, czemu ochrona radiologiczna opiera się na grubych ekranach z ołowiu czy betonu: ekran nie tyle zatrzymuje ładunek, co pochłania fotony i ogranicza powstawanie wtórnych elektronów w organizmie osoby narażonej. To też tłumaczy, dlaczego normy dawek i zasada ALARA tak mocno podkreślają czas, odległość i osłony – bo pracujemy z promieniowaniem, które ma duży zasięg i jonizuje trochę „okrężną drogą”.

Pytanie 16

Rozpraszanie promieniowania X, w wyniku którego następuje zwiększenie długości fali promieniowania, to zjawisko

A. Maxwella.
B. Boltzmana.
C. Bragga.
D. Comptona.
Prawidłowo wskazane zjawisko to efekt Comptona. W fizyce promieniowania mówi się, że jest to sprężyste rozpraszanie fotonów promieniowania X (albo gamma) na praktycznie swobodnych elektronach, po którym foton ma mniejszą energię, a więc większą długość fali. Energia nie znika, tylko dzieli się: część przejmuje elektron (zostaje on wybity z powłoki i zyskuje energię kinetyczną), a część zachowuje foton, ale już o niższej energii i zmienionym kierunku. Właśnie ta utrata energii fotonu jest fizyczną przyczyną zwiększenia długości fali. W praktyce radiologicznej efekt Comptona dominuje w zakresie energii typowej dla diagnostycznych zdjęć RTG klatki piersiowej czy jamy brzusznej, szczególnie w tkankach o średniej gęstości. Z mojego doświadczenia to jedno z kluczowych zjawisk, które trzeba rozumieć, jeśli ktoś chce sensownie mówić o kontraście obrazu i dawce rozproszonej. Rozproszone promieniowanie Comptona odpowiada za tzw. mgłę na obrazie, pogarsza kontrast i zwiększa niepotrzebne narażenie personelu. Dlatego w dobrych praktykach pracowni RTG stosuje się kratki przeciwrozproszeniowe, odpowiednie kolimowanie wiązki, właściwe parametry kV i mAs – właśnie po to, żeby ograniczać wpływ rozpraszania Comptona. W planowaniu osłon stałych i organizacji pracowni fizyk medyczny też musi brać pod uwagę udział promieniowania rozproszonego na ściany, sufit i podłogę. Co ważne, efekt Comptona jest w dużej mierze niezależny od liczby atomowej materiału, więc występuje zarówno w tkankach miękkich, jak i w kości, a jego intensywność bardziej zależy od gęstości elektronowej i energii wiązki. W tomografii komputerowej, przy typowych energiach efektywnych wiązki, rozpraszanie Comptona również ma duży udział i wpływa na artefakty oraz konieczność stosowania filtrów i algorytmów rekonstrukcji uwzględniających rozproszenie. Dlatego kojarzenie „zwiększenia długości fali po rozproszeniu” z nazwiskiem Compton to w medycynie obrazowej absolutna podstawa fizyki promieniowania.

Pytanie 17

Na ilustracji przedstawiono ułożenie pacjenta do wykonania zdjęcia rentgenowskiego

Ilustracja do pytania
A. palców stopy.
B. stopy.
C. kości piętowej.
D. śródstopia.
Na zdjęciu widać klasyczne ułożenie pacjenta do wykonania projekcji AP stopy – stopa leży podeszwą na detektorze (kaseta / płyta obrazująca), palce są wyprostowane, a wiązka promieniowania będzie padała z góry, prostopadle lub lekko skośnie, na całą stopę. Strzałka wskazuje mniej więcej środek pola ekspozycji, czyli okolice środka stopy, co jest typowe dla standardowego badania RTG stopy, a nie tylko pojedynczego odcinka, jak kość piętowa czy palce. W praktyce technik elektroradiolog ustawia centralną wiązkę tak, aby objąć jednocześnie paliczki, śródstopie i tyłostopie, bo celem jest ocena całej architektury stopy: łuku podłużnego, ustawienia kości śródstopia, stawów śródstopno‑paliczkowych i stępu. Dla kości piętowej stosuje się zupełnie inne pozycjonowanie – pięta jest wtedy najczęściej odsunięta i wykonywana jest projekcja boczna lub osiowa, z wyraźnym ukierunkowaniem na kość piętową i staw skokowo‑piętowy. Z kolei zdjęcia palców wymagają bardziej precyzyjnego ogniskowania na konkretny promień (np. paluch) oraz użycia mniejszego pola ekspozycji, często też innego ułożenia, żeby uniknąć nakładania się sąsiednich struktur. Moim zdaniem warto zapamiętać, że przy „zdjęciu stopy” standardem jest objęcie wszystkich kości od paliczków aż po tyłostopie w jednym polu, co dokładnie sugeruje ta ilustracja. W praktyce klinicznej takie badanie wykonuje się bardzo często przy urazach, deformacjach (np. płaskostopie, hallux valgus) czy bólach przeciążeniowych, dlatego poprawne pozycjonowanie całej stopy jest kluczowe dla jakości diagnostycznej obrazu i zgodne z zasadami dobrej praktyki radiologicznej.

Pytanie 18

Jaka jest odległość pomiędzy źródłem promieniowania a powierzchnią ciała pacjenta w technice izocentrycznej radioterapii?

A. Zmienna, zależna od grubości pacjenta i rodzaju akceleratora.
B. Stała i wynosi 100 cm.
C. Zmienna, zależna od lokalizacji punktu izocentrycznego w ciele pacjenta.
D. Stała i wynosi 110 cm.
Prawidłowa odpowiedź wynika bezpośrednio z samej idei techniki izocentrycznej. W radioterapii izocentrycznej kluczowe jest położenie izocentrum, czyli punktu w przestrzeni, w którym przecinają się osie wszystkich wiązek promieniowania i oś obrotu gantry, stołu oraz kolimatora. Ten punkt umieszcza się wewnątrz ciała pacjenta – w obszarze planowanej objętości napromienianej (PTV), a nie na powierzchni skóry. Skoro izocentrum jest „w środku”, to odległość od źródła promieniowania do powierzchni ciała musi się zmieniać w zależności od tego, jak głęboko i w jakim miejscu anatomicznym to izocentrum zostało zaplanowane. W praktyce planowania leczenia (TPS – treatment planning system) ustala się stałą odległość źródło–izocentrum (najczęściej ok. 100 cm dla typowego akceleratora liniowego), natomiast odległość źródło–skóra (SSD) wychodzi zmienna. Jeżeli punkt izocentryczny leży płytko, blisko skóry, SSD będzie stosunkowo duża. Jeśli guz jest głęboko w miednicy lub w śródpiersiu, powierzchnia skóry znajdzie się bliżej głowicy, czyli SSD się zmniejsza. Widać to bardzo dobrze przy rotacyjnych technikach jak VMAT czy klasyczna terapia łukowa: gantry obraca się wokół pacjenta, izocentrum pozostaje nieruchome w ciele, a geometria odległości do skóry zmienia się wraz z kształtem i grubością pacjenta w różnych projekcjach. Moim zdaniem najważniejsze praktyczne skojarzenie jest takie: w technice izocentrycznej „święte” i stałe jest źródło–izocentrum, a nie źródło–skóra. Dlatego radioterapeuci i technicy planując ustawienie pacjenta korzystają z współrzędnych izocentrum (laser, systemy IGRT) i nie próbują na siłę utrzymywać jednej odległości SSD. To podejście ułatwia skomplikowane techniki wielopolowe, IMRT czy stereotaksję, gdzie wiele wiązek musi trafiać w ten sam punkt w przestrzeni bez względu na kształt pacjenta. Z mojego doświadczenia, jeżeli ktoś mechanicznie myśli tylko „100 cm od skóry”, to zwykle ma kłopot ze zrozumieniem geometrii izocentrycznej i potem gorzej ogarnia planowanie bardziej zaawansowanych technik.

Pytanie 19

W jaki sposób należy ustawić promień centralny w stosunku do ramienia i przedramienia, by wykonać zdjęcie rentgenograficzne stawu łokciowego u pacjenta z przykurczem?

A. Prostopadle do kości ramiennej.
B. W dwusiecznej kąta zawartego między kasetą a kością ramienną.
C. W dwusiecznej kąta zawartego między ramieniem a przedramieniem.
D. Prostopadle do kości promieniowej.
Poprawnie – w przypadku przykurczu w stawie łokciowym ustawienie promienia centralnego w dwusiecznej kąta między ramieniem a przedramieniem jest najbardziej logiczne i zgodne z zasadami projekcji RTG. Chodzi o to, że przy przykurczu nie jesteśmy w stanie ustawić klasycznej, „książkowej” projekcji AP czy bocznej, bo kości nie układają się równolegle do kasety. Gdy ramię i przedramię tworzą kąt, to promień centralny powinien być prowadzony dokładnie w dwusiecznej tego kąta, żeby uzyskać możliwie równomierne odwzorowanie przestrzenne stawu i zminimalizować zniekształcenia geometryczne (skrócenie, wydłużenie, nakładanie struktur). Moim zdaniem to jest jedna z tych zasad, które warto mieć „w ręku”, bo pojawia się też w innych sytuacjach, np. przy przykurczach w stawie kolanowym, nadgarstku czy u pacjentów po urazach, kiedy nie da się ich wyprostować. Standardy radiografii kończyn górnych podkreślają, że najważniejsze jest dostosowanie projekcji do stanu klinicznego pacjenta, a nie odwrotnie – nie wolno na siłę prostować kończyny, bo to zwiększa ból i ryzyko uszkodzeń. W praktyce: układasz pacjenta tak, jak pozwala mu ból i przykurcz, stabilizujesz kończynę, ustawiasz kasetę możliwie blisko, a potem „szukasz” kąta między ramieniem a przedramieniem i kierujesz wiązkę dokładnie w jego dwusieczną. Dzięki temu szpara stawowa łokcia będzie lepiej zobrazowana, a główne elementy kostne (kłykcie kości ramiennej, głowa kości promieniowej, wcięcie bloczkowe kości łokciowej) nie będą tak mocno zniekształcone. To jest właśnie dobra praktyka w radiografii: kompromis między idealną geometrią a realnymi możliwościami ułożenia pacjenta.

Pytanie 20

Na obrazie ultrasonograficznym jamy brzusznej strzałką wskazano

Ilustracja do pytania
A. wątrobę.
B. pęcherzyk żółciowy.
C. ogon trzustki.
D. nerkę.
Na obrazie USG strzałka wskazuje typowy obraz pęcherzyka żółciowego: wydłużoną, owalną, bezechową (czarną) strukturę z cienką, wyraźnie zarysowaną, hiperechogeniczną ścianą, położoną przy dolnym brzegu wątroby. W badaniu w projekcji podżebrowej prawostronnej pęcherzyk leży w loży pęcherzyka żółciowego, zwykle tuż przy przedniej ścianie jamy brzusznej, co dokładnie widać na tym skanie. Brak wewnętrznych ech, brak pogrubienia ściany i brak cieni akustycznych w świetle narządu odpowiada obrazowi prawidłowemu, który jest punktem odniesienia przy ocenie patologii. W praktyce klinicznej właśnie taki prosty, „książkowy” obraz jest podstawą do rozpoznawania zmian, np. kamicy pęcherzyka (hiperechogeniczne złogi z cieniem akustycznym), zapalenia (pogrubiała ściana >3 mm, płyn okołopęcherzykowy) czy polipów. Moim zdaniem warto zapamiętać, że pęcherzyk żółciowy na USG jest zawsze strukturą bezechową wypełnioną żółcią, a jego ściana jest jasna i cienka. Standardy opisu w ultrasonografii jamy brzusznej (np. zalecenia Polskiego Lekarskiego Towarzystwa Radiologicznego) wymagają rutynowej oceny kształtu, wymiarów, grubości ściany oraz obecności złogów lub mas w świetle. W codziennej pracy technika elektroradiologii bardzo ważne jest też prawidłowe ułożenie pacjenta (najczęściej na wznak, czasem lewy bok) oraz skanowanie w kilku płaszczyznach, żeby nie pomylić pęcherzyka z poszerzonym przewodem żółciowym lub naczyniem żylnym. Dobrą praktyką jest również ocena pęcherzyka w pozycji stojącej lub siedzącej, gdy podejrzewamy kamicę – złogi wtedy „spadają” grawitacyjnie i zmieniają położenie w świetle narządu, co bardzo ułatwia rozpoznanie.

Pytanie 21

Który detektor w radiografii wymaga laserowego czytnika obrazu?

A. Detektor selenowy.
B. Płyta fosforowa.
C. Błona halogenosrebrowa.
D. Detektor krzemowy.
W radiografii łatwo się pogubić między różnymi typami detektorów, bo nazwy brzmią podobnie technicznie, a zasady działania są inne. Kluczowa rzecz: laserowy czytnik obrazu to element typowy dla systemu CR, czyli radiografii pośredniej na płytach fosforowych, a nie dla detektorów selenowych, krzemowych czy klasycznej błony halogenosrebrowej. Detektor selenowy kojarzy się wielu osobom z klasyczną radiografią cyfrową DR, bo amorficzny selen jest stosowany w detektorach bezpośrednich. W takim układzie promieniowanie X jest zamieniane bezpośrednio na ładunek elektryczny, który trafia do matrycy TFT. Nie ma tam etapu skanowania laserem, nie ma odczytu z płyty w osobnym urządzeniu. Obraz powstaje praktycznie od razu na konsoli operatora. To zupełnie inny workflow pracy niż w CR. Podobnie detektor krzemowy, zwykle amorficzny krzem z warstwą scyntylatora (np. CsI), działa jako detektor pośredni: promieniowanie rentgenowskie zamienia się najpierw w światło, a dopiero potem światło w sygnał elektryczny. Ale znowu – odczyt zachodzi elektronicznie w tym samym panelu detektora, bez żadnego lasera, bez kaset i bez przenoszenia czegoś do osobnego czytnika. To są panele płaskie DR, które montuje się w statywach, stołach czy mammografach. Błona halogenosrebrowa to z kolei klasyczna technika analogowa. Obraz jest utrwalany chemicznie w ciemni, w wywoływarce, przy użyciu odczynników. Żaden laser nie jest tu potrzebny, chyba że mówimy o późniejszym skanowaniu filmu do archiwizacji – ale to już nie jest standardowy etap tworzenia obrazu w radiografii, tylko dodatkowa digitalizacja. Typowym błędem myślowym jest wrzucanie wszystkiego, co „cyfrowe”, do jednego worka i automatyczne łączenie z laserem. W rzeczywistości laserowy czytnik obrazu jest znakiem rozpoznawczym właśnie płyt fosforowych CR: najpierw ekspozycja, potem skanowanie laserem w czytniku, dopiero potem cyfrowy obraz. Detektory selenowe i krzemowe pracują w systemach DR i nie wymagają osobnego laserowego skanera, a błona halogenosrebrowa opiera się o proces chemiczny, nie optyczno‑laserowy.

Pytanie 22

Jaki sposób frakcjonowania dawki jest stosowany w radioterapii konwencjonalnej?

A. Dawka frakcyjna w zakresie 2,5-3,5 Gy 1 raz dziennie.
B. Dawka frakcyjna w zakresie 2,5-3,5 Gy 2 razy dziennie.
C. Dawka frakcyjna w zakresie 1,8-2,5 Gy 2 razy dziennie.
D. Dawka frakcyjna w zakresie 1,8-2,5 Gy 1 raz dziennie.
W radioterapii bardzo łatwo pomylić różne schematy frakcjonowania, bo wszystkie wyglądają podobnie: jakaś dawka w Gy i ile razy dziennie. Sedno polega jednak na tym, że pojęcie „radioterapia konwencjonalna” jest dość precyzyjne. Oznacza ono standardowe frakcjonowanie, czyli stosunkowo mała dawka na frakcję, podawana raz dziennie, pięć dni w tygodniu. Gdy dawka pojedynczej frakcji rośnie powyżej typowych 2 Gy, wchodzimy raczej w obszar hipofrakcjonowania, które ma inne cele, inne ryzyko powikłań i zwykle jest ściślej ograniczone do wybranych wskazań klinicznych. Odpowiedzi z dawką 2,5–3,5 Gy sugerują właśnie takie podejście. Tak wysokie dawki frakcyjne stosuje się w schematach skróconych, paliatywnych lub w radioterapii stereotaktycznej, a nie w klasycznej terapii konwencjonalnej. Przy 3 Gy na frakcję ryzyko późnych powikłań w narządach o powolnej proliferacji (np. rdzeń kręgowy, nerki, jelita) znacząco rośnie, dlatego w radioterapii radykalnej unika się rutynowo takich dawek jako „standard”. Kolejny problem to liczba frakcji na dobę. Schematy z napromienianiem dwa razy dziennie to hiperfrakcjonowanie lub akceleracja leczenia. Wymagają one co najmniej 6-godzinnej przerwy między frakcjami i są stosowane w wybranych nowotworach (np. część schematów dla raków głowy i szyi czy drobnokomórkowego raka płuca), ale nie są uznawane za typową radioterapię konwencjonalną. Typowym błędem myślowym jest założenie, że „więcej i częściej” zawsze znaczy lepiej – w radioterapii tak nie jest. Radiobiologia jest bezlitosna: zbyt duża dawka na frakcję albo zbyt duża liczba frakcji dziennie może zniszczyć nie tylko guz, ale i zdrowe tkanki, prowadząc do ciężkich powikłań późnych. Dlatego, gdy mówimy o klasycznym, podręcznikowym schemacie, mamy na myśli dawkę około 2 Gy raz dziennie, a nie wyższe dawki ani dwa naświetlania w ciągu doby.

Pytanie 23

Wskazaniem do wykonania badania spirometrycznego jest

A. krwioplucie niejasnego pochodzenia.
B. odma opłucnowa.
C. zapalenie płuc.
D. przewlekła choroba obturacyjna płuc.
Prawidłowo wskazana przewlekła choroba obturacyjna płuc (POChP) to klasyczne i jedno z najważniejszych wskazań do wykonania spirometrii. Spirometria jest podstawowym badaniem czynnościowym układu oddechowego, które pozwala ocenić pojemności i objętości płuc oraz przepływy powietrza w drogach oddechowych. W praktyce klinicznej właśnie dzięki temu badaniu rozpoznaje się obturację, czyli zwężenie dróg oddechowych, typowe dla POChP i astmy. Standardy GOLD oraz wytyczne towarzystw pneumonologicznych bardzo jasno mówią, że rozpoznanie POChP nie powinno być stawiane tylko „na oko”, na podstawie objawów, ale musi być potwierdzone spirometrycznie – typowo przez obniżony wskaźnik FEV1/FVC poniżej wartości granicznej. Z mojego doświadczenia to badanie jest takim „EKG dla płuc” – proste, powtarzalne, a daje masę informacji. U pacjentów z przewlekłym kaszlem, dusznością wysiłkową, nawracającymi infekcjami oskrzelowymi, szczególnie palaczy, spirometria jest absolutnym standardem postępowania. Dzięki niej można nie tylko postawić diagnozę, ale też oceniać stopień zaawansowania choroby, monitorować skuteczność leczenia (np. lekami rozszerzającymi oskrzela) i kontrolować postęp choroby w czasie. W POChP wynik spirometrii ma też znaczenie rokownicze i pomaga ustalić, czy pacjent kwalifikuje się np. do tlenoterapii domowej albo rehabilitacji oddechowej. W dobrej praktyce technik i personel wykonujący spirometrię dba o prawidłowe przygotowanie pacjenta, poprawną technikę dmuchania, powtarzalność prób i interpretację zgodną z normami odniesienia, bo od jakości tego badania zależy cała dalsza diagnostyka i leczenie pacjenta z przewlekłą obturacją.

Pytanie 24

Strzałką na schemacie oznaczono

Ilustracja do pytania
A. węzeł zatokowo-przedsionkowy.
B. węzeł przedsionkowo-komorowy.
C. prawą odnogę pęczka Hisa.
D. lewą odnogę pęczka Hisa.
Strzałka na schemacie pokazuje strukturę położoną w ścianie prawego przedsionka, przy ujściu żyły głównej górnej – to klasyczna lokalizacja węzła zatokowo‑przedsionkowego (SA). Ten węzeł to fizjologiczny rozrusznik serca: generuje impulsy elektryczne, które następnie szerzą się przez mięsień przedsionków i dalej trafiają do węzła przedsionkowo‑komorowego. Moim zdaniem warto to sobie skojarzyć tak: wszystko „zaczyna się” w prawym przedsionku, wysoko, przy żyle głównej górnej. W praktyce diagnostyki elektromedycznej znajomość położenia SA ma znaczenie np. przy interpretacji EKG – rytm zatokowy oznacza, że bodźce powstają właśnie w tym węźle. Na zapisie widzimy wtedy prawidłowe załamki P dodatnie w odprowadzeniach kończynowych (np. II, aVF), z równym odstępem między kolejnymi załamkami R. W badaniach obrazowych (echo serca, TK, MR) węzła nie widać tak ładnie jak na schemacie, ale orientacja anatomiczna jest ta sama: górna część prawego przedsionka, grzebień graniczny. W praktyce klinicznej zaburzenia funkcji węzła zatokowo‑przedsionkowego prowadzą do tzw. choroby węzła zatokowego, bradykardii zatokowej czy naprzemiennych okresów tachy‑ i bradykardii. Wtedy często konieczne jest wszczepienie stymulatora serca, który przejmuje rolę naturalnego rozrusznika. W technice EKG i przy analizie zabiegów elektroterapii (ablacje, implantacje stymulatorów) rozumienie, skąd fizjologicznie startuje impuls, jest absolutną podstawą i pomaga unikać błędów interpretacyjnych. Dlatego dobrze, że kojarzysz ten mały „guzek” przy żyle głównej górnej właśnie z węzłem zatokowo‑przedsionkowym.

Pytanie 25

W radiografii mianem SID określa się

A. odległość między źródłem promieniowania a detektorem obrazu.
B. system automatycznej regulacji jasności.
C. system automatycznej kontroli ekspozycji.
D. odległość między obiektem badanym a detektorem obrazu.
Prawidłowo – SID (Source to Image Distance) w radiografii to odległość między źródłem promieniowania rentgenowskiego a detektorem obrazu (kasetą, przetwornikiem DR, płytą CR). To jest bardzo podstawowy, ale kluczowy parametr geometryczny badania RTG. Od SID zależy powiększenie obrazu, ostrość krawędzi (nieostrość geometryczna), a także rozkład dawki i ekspozycja detektora. W praktyce w klasycznej radiografii przyjmuje się standardowe wartości, np. 100–115 cm dla większości projekcji przyłóżkowych i stołowych, 150–180 cm dla zdjęć klatki piersiowej przy stojaku. Dzięki stałemu, znanemu SID można porównywać badania w czasie i utrzymywać powtarzalność jakości obrazu – to jest jedna z podstaw dobrych praktyk w radiologii. Moim zdaniem wielu uczniów trochę lekceważy geometrię, a to właśnie ona często decyduje, czy lekarz będzie mógł dobrze ocenić zmianę na zdjęciu. Zwiększenie SID zmniejsza powiększenie i nieostrość geometryczną, ale jednocześnie promieniowanie bardziej się rozprasza w przestrzeni, więc do uzyskania tej samej ekspozycji na detektorze trzeba zwykle podnieść mAs. W protokołach pracowni RTG bardzo często jest wpisane: projekcja AP, SID 100 cm; projekcja PA klatki, SID 180 cm itd. Technik powinien SID znać, ustawiać i kontrolować, bo zmiana SID bez korekty parametrów ekspozycji może prowadzić albo do prześwietlenia, albo do niedoświetlenia obrazu. W radiologii zabiegowej i fluoroskopii też operuje się pojęciem odległości źródło–detektor, choć czasem bardziej zwraca się uwagę na odległość źródło–pacjent, ale zasada geometryczna jest ta sama. Utrzymywanie odpowiedniego SID jest też elementem optymalizacji dawki zgodnie z zasadą ALARA, bo pozwala uzyskać dobrą jakość przy rozsądnym obciążeniu pacjenta promieniowaniem.

Pytanie 26

W pracowni ultrasonograficznej technik elektroradiolog nie korzysta z przepisów dotyczących

A. bezpieczeństwa i higieny pracy.
B. ochrony radiologicznej.
C. ochrony przeciwpożarowej.
D. antyseptyki.
Prawidłowo wskazałeś, że w pracowni ultrasonograficznej technik elektroradiolog nie korzysta z przepisów dotyczących ochrony radiologicznej w rozumieniu promieniowania jonizującego. USG opiera się na fali ultradźwiękowej, czyli drganiach mechanicznych o wysokiej częstotliwości, a nie na promieniowaniu jonizującym takim jak w RTG, TK czy medycynie nuklearnej. To oznacza, że nie obowiązują tu typowe zasady ochrony radiologicznej: nie liczymy dawek efektywnych w mSv, nie ma konieczności prowadzenia rejestru dawek, nie wyznacza się stref kontrolowanych i nadzorowanych z powodu promieniowania jonizującego, nie ma też obowiązku stosowania fartuchów ołowianych, osłon gonad czy tarczycy z tego powodu. Moim zdaniem to jedno z częstszych miejsc, gdzie uczniowie się mylą – widzą słowo „pracownia obrazowa” i od razu kojarzą z ochroną radiologiczną. Tymczasem standardy, np. wytyczne ICRP czy polskie przepisy prawa atomowego, dotyczą właśnie promieniowania jonizującego, a ultrasonografia się w ten zakres po prostu nie łapie. Oczywiście, w USG nadal dbamy o bezpieczeństwo pacjenta i personelu: kontrolujemy czas ekspozycji na ultradźwięki, parametry aparatu (MI, TI), unikamy zbyt długiego badania u ciężarnych na płodzie, ale to jest raczej bioefekt ultradźwięków, a nie klasyczna ochrona radiologiczna. W praktyce technik w pracowni USG musi bardzo pilnować przepisów BHP, zasad ergonomii (bo badania są długie i obciążają układ mięśniowo‑szkieletowy), przepisów przeciwpożarowych oraz zasad antyseptyki: dezynfekcja głowic, stosowanie jednorazowych osłonek przy badaniach przezpochwowych czy przezodbytniczych, właściwe przygotowanie żelu. To są realne, codzienne obowiązki. Natomiast typowe procedury jak dozymetr osobisty, kontrola dawek, testy osłonności ścian dotyczą już pracowni RTG, TK, radioterapii czy medycyny nuklearnej, a nie USG.

Pytanie 27

W radiologii analogowej lampy rentgenowskiej z tubusem używa się do wykonania zdjęcia

A. osiowego czaszki.
B. bocznego czaszki.
C. wewnątrzustnego zębów.
D. PA zatok.
Prawidłowo – w radiologii analogowej lampa rentgenowska z tubusem jest typowo wykorzystywana właśnie do wykonywania zdjęć wewnątrzustnych zębów. Tubus to nic innego jak specjalna nasadka/kanał ograniczający wiązkę promieniowania X do stosunkowo małego pola. Dzięki temu można precyzyjnie naświetlić obszar zębowy, minimalizując dawkę dla pozostałych tkanek i poprawiając jakość obrazu poprzez redukcję rozproszenia. W stomatologii klasycznym przykładem są zdjęcia zębowe okołowierzchołkowe, zgryzowe czy skrzydłowo-zgryzowe, gdzie aparat stomatologiczny (często ścienny lub mobilny) ma właśnie wąski, długi tubus. W dobrych praktykach przyjmuje się używanie tubusów prostokątnych lub kolimowanych, co dodatkowo ogranicza niepotrzebne napromienianie. Moim zdaniem to jedno z lepszych zastosowań promieniowania – małe pole, konkretna informacja diagnostyczna. W przeciwieństwie do projekcji czaszki czy zatok, gdzie stosuje się raczej klasyczne aparaty ogólnodiagnostyczne z ruchomą lampą i stołem, zdjęcia wewnątrzustne wymagają bardzo precyzyjnego ustawienia wiązki względem zęba i błony obrazowej/filmu umieszczonej w jamie ustnej pacjenta. Stąd tubus: ustala odległość ognisko–film, kierunek wiązki i ogranicza pole ekspozycji. Standardy stomatologiczne i wytyczne ochrony radiologicznej mocno podkreślają znaczenie właściwej kolimacji i stosowania osłon (fartuch ołowiany, osłona na tarczycę), a przy tubusie jest to łatwiejsze do zrealizowania. W praktyce technik powinien kojarzyć: mały aparat z tubusem = zdjęcia wewnątrzustne, duży aparat z bucky/stojakiem = klasyczne projekcje czaszki, zatok itp.

Pytanie 28

Jakie struktury anatomiczne uwidoczniono na obrazie USG?

Ilustracja do pytania
A. Nerka lewa ze złogami.
B. Pęcherzyk żółciowy z kamieniami.
C. Ciężarna macica z czterema płodami.
D. Pęcherz moczowy z kamieniami.
Na obrazie USG widoczny jest typowy obraz pęcherzyka żółciowego z kamieniami – jest to podłużna, bezechowa struktura (czarna, wypełniona żółcią) z wyraźnie hiperechogenicznymi ogniskami przy jego ścianie. Te jasne „kulki” dają za sobą cienioowanie akustyczne, czyli ciemny cień w głąb obrazu, bo fala ultradźwiękowa nie przechodzi przez złogi. To właśnie ten akustyczny cień jest jednym z najważniejszych kryteriów rozpoznania kamicy pęcherzyka w standardach ultrasonograficznych (m.in. zalecenia PTU i EFSUMB). W praktyce klinicznej, jeśli widzimy: bezechowy pęcherzyk, ruchome lub zalegające przy ścianie hiperechogeniczne złogi z cieniem, do tego dodatni objaw zmiany położenia przy zmianie pozycji pacjenta – myślimy w pierwszej kolejności o kamicy. Z mojego doświadczenia, w opisie badania warto zawsze zaznaczyć: liczbę złogów (pojedyncze vs mnogie), ich wielkość, obecność zgrubienia ściany pęcherzyka, płynu okołopęcherzykowego oraz ewentualny dodatni objaw Murphy’ego w USG (ból przy uciśnięciu głowicą w rzucie pęcherzyka). To pomaga lekarzowi prowadzącemu ocenić, czy mamy tylko niepowikłaną kamicę, czy już ostre zapalenie pęcherzyka. W dobrych praktykach technik wykonujący badanie zawsze optymalizuje głębokość, wzmocnienie (gain) i ognisko tak, żeby ściana pęcherzyka i cień za złogami były jak najbardziej czytelne. Dobrze jest też pamiętać o projekcjach: badamy pęcherzyk w przekrojach podłużnych i poprzecznych, zwykle w pozycji na wznak, czasem dodatkowo w leżeniu na lewym boku, żeby ocenić ruchomość kamieni. Taka systematyka bardzo ułatwia pewne rozpoznanie i odróżnienie kamieni od np. polipów czy zagęszczeń żółci.

Pytanie 29

Które odprowadzenie w badaniu EKG rejestruje różnice potencjałów pomiędzy lewym a prawym przedramieniem?

A. I
B. III
C. aVL
D. aVR
Prawidłowe jest odprowadzenie I, bo właśnie ono rejestruje różnicę potencjałów pomiędzy prawym a lewym przedramieniem. W standardowym 12‑odprowadzeniowym EKG mamy trzy odprowadzenia kończynowe dwubiegunowe: I, II i III. Odprowadzenie I ma elektrodę dodatnią na lewym przedramieniu (lewa ręka – LA) i elektrodę ujemną na prawym przedramieniu (prawa ręka – RA). Czyli zapis pokazuje, jak impuls elektryczny serca „widzi” różnicę napięcia między tymi dwoma kończynami. To jest absolutna podstawa osi elektrycznej serca i ogólnej interpretacji EKG. W praktyce, jeśli np. elektrodę z prawej ręki założysz w złym miejscu albo odwrotnie podłączysz przewody, odprowadzenie I od razu będzie wyglądało dziwnie: załamki P, zespół QRS czy T mogą się odwrócić. Dlatego technicy EKG i pielęgniarki są uczeni, żeby bardzo pilnować prawidłowego rozmieszczenia elektrod kończynowych – bo odprowadzenia I, II, III są bazą do wyliczania osi serca, a także do tworzenia odprowadzeń aVR, aVL i aVF. Moim zdaniem, jeśli ktoś dobrze rozumie dokładnie to jedno odprowadzenie, to dużo łatwiej ogarnia resztę. W dobrych praktykach przyjmuje się, że elektrody kończynowe można zakładać nie tylko na nadgarstkach, ale też wyżej na przedramionach czy nawet na ramionach, byle zachować układ RA–LA–LL (prawa ręka, lewa ręka, lewa noga). Niezależnie od tego, czy elektroda jest trochę wyżej czy niżej, odprowadzenie I zawsze opisuje różnicę potencjałów między prawą a lewą kończyną górną. To też tłumaczy, dlaczego w odprowadzeniu I przy prawidłowym zapisie QRS jest najczęściej dodatni – fala depolaryzacji komór przebiega ogólnie z prawej strony klatki w lewo, więc wektor elektryczny jest skierowany mniej więcej w stronę elektrody dodatniej na lewej ręce. Dobrze jest sobie to wyobrazić na tzw. trójkącie Einthovena: wierzchołki to prawa ręka, lewa ręka, lewa noga, a odprowadzenie I to „górna krawędź” między RA i LA. To nie jest sucha teoria – w codziennej pracy przy EKG pomaga szybko wychwycić np. odwrotne podłączenie elektrod kończynowych, bo wtedy odprowadzenie I będzie kompletnie nielogiczne w stosunku do II i III.

Pytanie 30

Ile razy i jak zmieni się wartość natężenia promieniowania X przy zwiększeniu odległości OF ze 100 cm do 200 cm?

A. Dwukrotnie się zmniejszy.
B. Dwukrotnie się zwiększy.
C. Czterokrotnie się zwiększy.
D. Czterokrotnie się zmniejszy.
Poprawna odpowiedź wynika bezpośrednio z tzw. prawa odwrotności kwadratu odległości. W diagnostyce rentgenowskiej przyjmuje się, że natężenie promieniowania X (a w praktyce: ilość fotonów docierających na jednostkę powierzchni, czyli ekspozycja) jest odwrotnie proporcjonalne do kwadratu odległości od ogniska lampy rentgenowskiej. Matematycznie zapisuje się to jako I ~ 1/d². Jeśli zwiększamy odległość ognisko–film/detektor (OF) z 100 cm do 200 cm, to odległość rośnie dwukrotnie, ale natężenie nie spada „tylko” dwa razy, tylko cztery razy, bo 2² = 4. Czyli promieniowanie na detektorze będzie czterokrotnie mniejsze. Moim zdaniem to jedno z kluczowych praw, które trzeba mieć w małym palcu w pracowni RTG. W praktyce oznacza to, że jeżeli z jakiegoś powodu musisz zwiększyć OF z 100 do 200 cm (np. przy zdjęciach klatki piersiowej wykonywanych w większej odległości, żeby zmniejszyć powiększenie serca i zniekształcenia geometryczne), to żeby utrzymać podobną gęstość optyczną obrazu, trzeba odpowiednio zwiększyć ładunek mAs mniej więcej czterokrotnie. Standardowe zalecenia w radiografii mówią wprost: podwojenie odległości wymaga około czterokrotnego zwiększenia mAs dla utrzymania ekspozycji. Jednocześnie, z punktu widzenia ochrony radiologicznej, zwiększenie odległości jest korzystne dla personelu – im dalej od źródła, tym mniejsze narażenie, dokładnie na tej samej zasadzie. Właśnie dlatego w dobrych praktykach BHP w radiologii podkreśla się zasadę „distance, shielding, time” – odległość jest jednym z podstawowych środków ochrony. Warto też pamiętać, że zmiana OF wpływa nie tylko na dawkę, ale i na parametry geometryczne obrazu (ostrość, powiększenie), więc technik zawsze musi łączyć fizykę promieniowania z wymaganiami jakości obrazu i zasadami ochrony pacjenta.

Pytanie 31

Kiedy w procesie terapii wykonuje się badanie CBCT (cone beam computed tomography)?

A. Przed rozpoczęciem leczenia.
B. Po ukończeniu leczenia.
C. Przy końcu leczenia.
D. W środku leczenia.
Badanie CBCT wykonuje się standardowo przed rozpoczęciem leczenia, bo jest to badanie typowo diagnostyczne i planistyczne. Na tomografii stożkowej ocenia się dokładnie anatomię: przebieg kanałów korzeniowych, grubość kości, położenie struktur krytycznych (np. kanał nerwu zębodołowego dolnego, zatoka szczękowa), ewentualne zmiany zapalne czy resorpcje. Bez takiego obrazu 3D planowanie zabiegu, np. implantologicznego, endodontycznego czy chirurgicznego, byłoby w dużej mierze „na oko”, co po prostu jest sprzeczne z aktualnymi standardami postępowania. W nowoczesnej stomatologii i radiologii dąży się do tego, żeby dawkę promieniowania podać raz, w dobrze uzasadnionym momencie – czyli właśnie na etapie planowania terapii. Zasada ALARA (as low as reasonably achievable) jasno mówi, że nie powinniśmy powtarzać badań bez wyraźnej potrzeby klinicznej. Dlatego CBCT robi się przed leczeniem, żeby na podstawie jednego badania ustalić możliwie kompletny plan: rodzaj zabiegu, długość i średnicę implantów, potrzebę augmentacji kości, zakres leczenia endodontycznego. W ortodoncji CBCT również wykonuje się przed terapią, jeśli jest wskazanie, np. zęby zatrzymane, podejrzenie resorpcji korzeni, ocena stawów skroniowo‑żuchwowych. Moim zdaniem kluczowe jest myślenie w ten sposób: CBCT to narzędzie do podejmowania decyzji przed wejściem w leczenie, a nie badanie „kontrolne z ciekawości” po wszystkim. Oczywiście czasem wykonuje się kontrolne CBCT, ale tylko w szczególnych sytuacjach klinicznych, a nie rutynowo przy końcu czy w środku terapii.

Pytanie 32

W badaniu audiometrycznym do oceny przewodnictwa kostnego wybranego ucha słuchawkę kostną należy przyłożyć do

A. nasady nosa.
B. guzowatości potylicznej.
C. wyrostka sutkowatego.
D. guza czołowego.
Prawidłowe miejsce przyłożenia słuchawki kostnej w badaniu audiometrycznym to wyrostek sutkowaty kości skroniowej, czyli ten twardy guzek kostny tuż za małżowiną uszną. Właśnie tam przewodnictwo kostne najlepiej odzwierciedla próg słyszenia badanego ucha, bo drgania są przekazywane bezpośrednio na struktury ucha wewnętrznego. Z punktu widzenia techniki badania ważne jest, żeby słuchawka była dociśnięta stabilnie, prostopadle do powierzchni skóry, ale bez przesadnego ucisku, bo zbyt duża siła może zmieniać wynik pomiaru. W praktyce klinicznej w audiometrii tonalnej zawsze porównuje się przewodnictwo powietrzne (słuchawki na uszach) z kostnym (słuchawka na wyrostku sutkowatym). Na tej podstawie odróżnia się niedosłuch przewodzeniowy od odbiorczego, co ma ogromne znaczenie przy kwalifikacji do leczenia, np. operacyjnego czy aparatowania. Moim zdaniem warto zapamiętać, że wszystkie inne wymienione miejsca – nasada nosa, guz czołowy, guzowatość potyliczna – są wykorzystywane co najwyżej w testach kamertonowych jako tzw. przewodnictwo kostne ogólne, a nie w standardowej audiometrii do oceny konkretnego ucha. Zgodnie z dobrymi praktykami, przed przyłożeniem słuchawki trzeba zdjąć kolczyki, okulary z grubymi zausznikami, odsunąć włosy, bo każdy taki drobiazg potrafi zaburzyć kontakt słuchawki z wyrostkiem sutkowatym i zafałszować próg słyszenia. W porządnie prowadzonych pracowniach audiologicznych bardzo pilnuje się prawidłowego pozycjonowania słuchawki kostnej, bo nawet kilkumilimetrowe przesunięcie może dać różnice kilku decybeli, a to już ma znaczenie przy dokładnej diagnostyce.

Pytanie 33

Elementem pomocniczym w radioterapii, zapewniającym powtarzalność ułożenia w pozycji terapeutycznej, a także unieruchomienie pacjenta, jest

A. filtr kompensacyjny.
B. bolus.
C. maska termoplastyczna.
D. osłona.
Prawidłowo wskazana maska termoplastyczna to w radioterapii klasyczny przykład systemu unieruchomienia i pozycjonowania pacjenta. Jej główna rola nie jest fizyczna modyfikacja wiązki promieniowania, tylko zapewnienie powtarzalnego, stabilnego ułożenia ciała – najczęściej głowy i szyi, czasem także górnej części klatki piersiowej. Maska jest wykonywana indywidualnie: podgrzany materiał termoplastyczny formuje się na twarzy i głowie pacjenta na etapie planowania (TK planistyczna), a po ostygnięciu zachowuje dokładnie ten kształt. Dzięki temu przy każdym kolejnym frakcyjnym napromienianiu pacjent jest układany praktycznie tak samo, w granicach kilku milimetrów, co jest zgodne z wymaganiami dokładności ICRU i standardów ośrodków radioterapii. Z mojego doświadczenia, bez dobrego unieruchomienia nawet najlepszy plan leczenia na akceleratorze traci sens, bo narządy krytyczne mogą dostać wyższą dawkę niż zakładano, a objętość tarczowa będzie napromieniona nierównomiernie. W praktyce klinicznej maski termoplastyczne są obowiązkowym elementem przy nowotworach głowy i szyi, guzach mózgu, czasem przy napromienianiu oczodołu czy podstawy czaszki. Stosuje się je razem z systemami IGRT (obrazowanie przedzabiegowe – np. CBCT), żeby jeszcze dokładniej zweryfikować pozycję. Maska ogranicza też mimowolne ruchy, np. przełykanie czy lekki skręt szyi. Warto zapamiętać, że bolusy, filtry kompensacyjne czy osłony służą głównie do kształtowania rozkładu dawki w objętości, a nie do stabilizacji pacjenta. W dobrych pracowniach zawsze rozróżnia się systemy unieruchomienia (maski, materace próżniowe, podpórki) od elementów modyfikujących wiązkę.

Pytanie 34

Na którym radiogramie uwidoczniona jest kamica nerkowa?

A. Radiogram 4
Ilustracja do odpowiedzi A
B. Radiogram 3
Ilustracja do odpowiedzi B
C. Radiogram 2
Ilustracja do odpowiedzi C
D. Radiogram 1
Ilustracja do odpowiedzi D
Rozpoznawanie kamicy nerkowej na prostym radiogramie jamy brzusznej wymaga dość uważnego podejścia, bo w polu obrazowania jest sporo struktur dających podobne zacienienia. Typowy błąd polega na tym, że wzrok skupia się jedynie na kręgosłupie i miednicy, a nie na przebiegu całego układu moczowego. Z tego powodu można łatwo przecenić znaczenie przypadkowych zwapnień naczyniowych, cieni kałowych czy nakładających się struktur kostnych i uznać je błędnie za złogi. Na radiogramach bez kontrastu, takich jak 1 i 4, uwagę przyciąga głównie zarys kręgosłupa lędźwiowego i talerzy biodrowych. Brak jest tam jednak typowych, skoncentrowanych, dobrze odgraniczonych cieni w rzucie nerek czy moczowodów. Owszem, mogą być widoczne pojedyncze, niewyraźne zagęszczenia, ale ich lokalizacja jest niespecyficzna, a kształt zbyt rozlany, aby wiarygodnie mówić o kamicy. W praktyce opisowej takie obrazy traktuje się raczej jako prawidłowe lub nieswoiste, wymagające ewentualnie dalszej diagnostyki USG niż jako dowód złogów. Radiogram 3 jest dodatkowo mylący, bo wypełniający kontrast w układzie kielichowo‑miedniczkowym i pęcherzu daje bardzo wyraźny obraz nerek i dróg moczowych. Łatwo wtedy uznać, że każda jaśniejsza struktura to kamień, a tymczasem kontrast sam w sobie jest jednorodnym zacienieniem, a złogi – jeśli są – zwykle widoczne są jako ubytki w jego zarysie albo dodatkowe, bardzo gęste cienie. Jeżeli nie ma wyraźnych, punktowych lub owalnych zagęszczeń nakładających się na zarys wypełnionych kontrastem kielichów czy moczowodu, nie można na siłę „doszukiwać się” kamicy. Z mojego punktu widzenia najczęstsze potknięcie to ignorowanie zasady, że złogi oceniamy zawsze w typowych piętrach anatomicznych: od górnych biegunów nerek, wzdłuż przebiegu moczowodów przy wyrostkach poprzecznych kręgów, aż po rzut pęcherza. Jeśli podejrzany cień leży poza tymi obszarami, zwłaszcza bardziej bocznie lub z przodu, trzeba raczej myśleć o gazie jelitowym, zwapnieniach w obrębie tkanek miękkich czy złogach w innych narządach, niż o kamicy nerkowej. Dobra praktyka w diagnostyce obrazowej mówi też, aby nie opierać się na pojedynczym, wątpliwym zacienieniu – w razie niepewności lepiej skierować pacjenta na USG lub TK niskodawkową, niż stawiać pochopne rozpoznanie na podstawie przypadkowego artefaktu.

Pytanie 35

Celem radioterapii paliatywnej nie jest

A. zmniejszenie dolegliwości bólowych.
B. przedłużenie życia.
C. trwałe wyleczenie.
D. zahamowanie procesu nowotworowego.
Prawidłowo wskazana odpowiedź „trwałe wyleczenie” dobrze oddaje sens radioterapii paliatywnej. Napromienianie paliatywne stosuje się u chorych, u których nowotwór jest najczęściej uogólniony, nieoperacyjny albo bardzo zaawansowany miejscowo i szanse na całkowite wyleczenie są znikome. Celem takiego leczenia nie jest więc radykalne usunięcie choroby, tylko poprawa jakości życia pacjenta. W praktyce oznacza to głównie zmniejszenie dolegliwości bólowych, redukcję krwawień z guza, zmniejszenie duszności przy naciekach na płuca czy oskrzela, a także zapobieganie powikłaniom, takim jak złamania patologiczne w przerzutach do kości czy ucisk na rdzeń kręgowy. Typowe są krótsze schematy frakcjonowania (np. 8 Gy jednorazowo, 5×4 Gy, 10×3 Gy), bo liczy się szybki efekt objawowy, a nie maksymalne „dobicie” guza. Standardy i wytyczne (np. ESMO, ESTRO) podkreślają, że w paliacji akceptuje się pewien stopień progresji choroby, o ile pacjent ma mniej objawów i funkcjonuje lepiej w życiu codziennym. Dlatego pozostałe odpowiedzi – przedłużenie życia, łagodzenie bólu i częściowe zahamowanie procesu nowotworowego – jak najbardziej mieszczą się w realnych, praktycznych celach radioterapii paliatywnej. Moim zdaniem ważne jest, żeby zawsze pamiętać o rozmowie z pacjentem: jasno tłumaczymy, że nie „wyleczymy” nowotworu, ale możemy sprawić, że będzie mniej boleć, łatwiej będzie się poruszać i ogólnie komfort życia się poprawi, czasem nawet na dłuższy okres niż wszyscy się spodziewają.

Pytanie 36

Pielografia to badanie układu

A. limfatycznego.
B. moczowego.
C. pokarmowego.
D. płciowego.
Pielografia to badanie obrazowe układu moczowego, w którym do dróg moczowych podaje się środek cieniujący (kontrast), a następnie wykonuje zdjęcia rentgenowskie. Dzięki temu lekarz może dokładnie ocenić kształt, drożność i ewentualne nieprawidłowości w obrębie miedniczek nerkowych, kielichów, moczowodów, czasem też pęcherza. W praktyce wyróżnia się m.in. pielografię wstępującą (kontrast podawany przez cewnik założony do moczowodu) oraz zstępującą, związaną z wydalaniem kontrastu przez nerki. Z mojego doświadczenia to badanie kojarzy się głównie z diagnostyką zwężeń, kamicy, wad wrodzonych układu moczowego czy powikłań po zabiegach urologicznych. Jest to badanie dość „celowane”, stosowane wtedy, gdy zwykłe USG lub klasyczna urografia nie dają wystarczających informacji. W nowoczesnych standardach częściej korzysta się z tomografii komputerowej (CT urography), ale klasyczna pielografia nadal ma swoje miejsce, szczególnie w urologii zabiegowej, przy planowaniu lub kontroli założenia stentów moczowodowych, ocenie nieszczelności układu kielichowo‑miedniczkowego czy przetok moczowych. Ważne jest też przestrzeganie zasad bezpieczeństwa: ocena funkcji nerek, alergii na kontrast jodowy, aseptyka przy zakładaniu cewników. Moim zdaniem warto zapamiętać prostą skojarzeniówkę: „pielo‑” odnosi się do miedniczki nerkowej, czyli od razu kieruje myślenie w stronę układu moczowego, a nie płciowego czy pokarmowego. To pomaga na testach i w praktyce.

Pytanie 37

Które znaczniki są wykorzystywane w scyntygrafii tarczycy?

A. Jod 131 i technet 99m
B. Mikrosfery albuminowe i jod 131
C. Mikrosfery albuminowe i jod 132
D. Mikrosfery albuminowe i technet 99m
Prawidłowo wskazane znaczniki – jod 131 i technet 99m – to klasyczne i w zasadzie podręcznikowe radioizotopy stosowane w scyntygrafii tarczycy. W praktyce medycyny nuklearnej oba wykorzystuje się do oceny funkcji i budowy gruczołu, ale w trochę innych sytuacjach. Technet 99m (a dokładniej nadtechnecjan Tc‑99m) jest pobierany przez komórki tarczycy podobnie jak jod, ale nie jest przez nie wbudowywany w hormony. Dzięki temu daje szybki, czysty obraz rozmieszczenia czynnego miąższu – świetnie nadaje się do rutynowych badań scyntygraficznych, oceny guzków „zimnych” i „gorących”, kontroli po leczeniu zachowawczym nadczynności. W standardach pracowni medycyny nuklearnej Tc‑99m jest izotopem pierwszego wyboru do typowej scyntygrafii, bo ma krótki okres półtrwania i emituje głównie promieniowanie gamma o energii idealnej dla gammakamery. Jod 131 ma inne zastosowanie: służy głównie do badań jodochwytności, planowania terapii jodem promieniotwórczym oraz do terapii nadczynności i raka tarczycy. Emituje promieniowanie beta (terapeutyczne) i gamma (diagnostyczne), ale z racji wyższej dawki i gorszej jakości obrazowania w nowoczesnych standardach rzadziej używa się go do klasycznej scyntygrafii obrazowej, a bardziej do procedur terapeutyczno‑diagnostycznych. Moim zdaniem ważne jest, żeby kojarzyć: tarczyca = izotopy jodu + Tc‑99m, a nie mikrosfery czy inne radiofarmaceutyki narządowo‑nieswoiste. W praktyce technik medycyny nuklearnej musi wiedzieć, że do scyntygrafii tarczycy przygotowuje się właśnie preparaty jodu promieniotwórczego albo nadtechnecjanu, zgodnie z procedurami, kontrolą jakości radiofarmaceutyku i zasadami ochrony radiologicznej.

Pytanie 38

Folia wzmacniająca umieszczona w kasecie rentgenowskiej emituje pod wpływem promieniowania X światło

A. widzialne, umożliwiające zmniejszenie dawki promieniowania do wykonania badania.
B. widzialne, wymagające zwiększenia dawki promieniowania do wykonania badania.
C. ultrafioletowe, wymagające zwiększenia dawki promieniowania do wykonania badania.
D. ultrafioletowe, umożliwiające zmniejszenie dawki promieniowania do wykonania badania.
Prawidłowo – folia wzmacniająca (ekran wzmacniający) w kasecie rentgenowskiej emituje światło widzialne, a jej głównym zadaniem jest właśnie umożliwienie zmniejszenia dawki promieniowania X potrzebnej do wykonania zdjęcia. Promieniowanie rentgenowskie pada na folię, a kryształy luminoforu (np. wolframian wapnia w starszych kasetach albo związki ziem rzadkich – gadolinu, lantanu – w nowoczesnych) pochłaniają fotony X i zamieniają ich energię na błysk światła widzialnego. To światło naświetla film dużo efektywniej niż same fotony X, dlatego do uzyskania odpowiedniej czerni na filmie wystarczy znacznie mniejsza dawka promieniowania. W praktyce klinicznej oznacza to realne obniżenie narażenia pacjenta – w klasycznych systemach analogowych nawet kilkukrotne. Moim zdaniem to jeden z podstawowych przykładów, jak fizyka medyczna przekłada się na ochronę radiologiczną w codziennej pracy. W nowoczesnych kasetach CR/DR idea jest podobna: mamy warstwę fosforową lub detektor półprzewodnikowy, który też ma za zadanie jak najlepiej „wyłapać” fotony X i przekształcić je w sygnał (świetlny lub elektryczny), żeby nie trzeba było sztucznie podkręcać dawki. Ważna dobra praktyka: zawsze dobiera się kasetę i rodzaj folii do typu badania (np. folie o większej czułości do badań pediatrycznych), właśnie po to, żeby zgodnie ze standardem ALARA (As Low As Reasonably Achievable) trzymać dawki jak najniższe przy zachowaniu diagnostycznej jakości obrazu. Widać to choćby przy zdjęciach klatki piersiowej – odpowiednio dobrany ekran wzmacniający pozwala skrócić czas ekspozycji, zmniejszyć dawkę i jednocześnie ograniczyć poruszenie obrazu.

Pytanie 39

W badaniu EEG w systemie „10-20” elektrody w okolicy skroniowej oznaczone są literą

A. O
B. P
C. T
D. F
Prawidłowo – w klasycznym systemie „10–20” do opisu elektrod w okolicy skroniowej używa się litery T, od angielskiego „temporal”. Jest to standard międzynarodowy, stosowany w pracowniach EEG na całym świecie, więc warto go mieć w małym palcu. Elektrody skroniowe to m.in. T3, T4, T5, T6 w starszej nomenklaturze, a w nowszej – odpowiednio T7, T8, P7, P8, ale litera T cały czas oznacza region skroniowy. Cyfra parzysta zawsze odnosi się do półkuli prawej, a nieparzysta do lewej, a litera określa płat mózgu: F – czołowy (frontal), C – centralny, P – ciemieniowy (parietal), O – potyliczny (occipital), a właśnie T – skroniowy (temporal). Z mojego doświadczenia w pracowni EEG, szybkie i pewne kojarzenie tych oznaczeń bardzo ułatwia zarówno prawidłowe rozmieszczenie elektrod na głowie, jak i późniejszą interpretację zapisu, szczególnie w diagnostyce padaczek skroniowych, napadów częściowych czy zmian pourazowych. W praktyce, jeżeli w opisie badania EEG pojawia się np. „zmiany napadowe w okolicy T3–T5”, od razu wiadomo, że chodzi o lewą okolicę skroniową, często z zajęciem tylnych rejonów tego płata. Dobra znajomość systemu 10–20 jest też wymagana w standardach szkoleniowych techników EEG i neurofizjologii klinicznej, bo od poprawnego rozmieszczenia elektrod zależy wiarygodność badania. Moim zdaniem to jest taki absolutny fundament – jak alfabet w czytaniu – bez tego każda dalsza interpretacja EEG robi się mocno niepewna.

Pytanie 40

Standardowo do wykonania których zdjęć należy zastosować kratkę przeciwrozproszeniową?

A. Czaszki i stawu skokowego.
B. Klatki piersiowej i nadgarstka.
C. Jamy brzusznej i stawu łokciowego.
D. Czaszki i jamy brzusznej.
Prawidłowa odpowiedź wskazuje na czaszkę i jamę brzuszną, co bardzo dobrze oddaje standardowe zasady stosowania kratki przeciwrozproszeniowej w klasycznej radiografii. Kratka (grid) jest potrzebna tam, gdzie mamy stosunkowo grubą część ciała i dużo tkanek miękkich, które generują silne promieniowanie rozproszone na skutek zjawiska Comptona. To rozproszenie psuje kontrast obrazu, powoduje „zamglenie” i utratę szczegółów. Moim zdaniem najłatwiej to zapamiętać tak: im grubsza i bardziej „miękka” anatomicznie okolica, tym większa szansa, że trzeba użyć kratki. W badaniach czaszki najczęściej używa się napięć rzędu 70–80 kV, a grubość struktur kostnych i części miękkich głowy jest na tyle duża, że ilość promieniowania rozproszonego jest istotna. Z mojego doświadczenia, bez kratki obraz byłby wyraźnie bardziej „płaski”, szczególnie przy ocenie struktur podstawy czaszki czy zatok. Podobnie w jamie brzusznej: mamy tam głównie tkanki miękkie, narządy miąższowe, gaz w jelitach, a ekspozycje są wykonywane na dość wysokich wartościach kV. To wszystko sprzyja powstawaniu rozproszenia, więc kratka przeciwrozproszeniowa jest tu praktycznie standardem w prawidłowo prowadzonej pracowni RTG. W dobrych praktykach zaleca się stosowanie kratki dla obszarów o grubości powyżej ok. 10–12 cm, co klasycznie dotyczy właśnie czaszki (w wielu projekcjach) i jamy brzusznej. Warto też pamiętać, że użycie kratki wymaga odpowiedniej centracji wiązki, właściwej odległości ognisko–kratka i dostosowania parametrów ekspozycji (zwykle trzeba podnieść mAs), żeby skompensować pochłanianie promieniowania przez kratkę. W nowoczesnych systemach cyfrowych część ośrodków próbuje ograniczać stosowanie kratki przy mniejszych pacjentach, ale w typowych, dorosłych badaniach czaszki i brzucha kratka nadal pozostaje złotym standardem poprawy jakości obrazu.