Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 2 lutego 2026 13:38
  • Data zakończenia: 2 lutego 2026 13:58

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zrealizować ręczną konfigurację interfejsu sieciowego w systemie LINUX, należy wykorzystać komendę

A. ipconfig
B. eth0
C. route add
D. ifconfig
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to klasyczne polecenie używane w systemach Linux do konfigurowania i zarządzania interfejsami sieciowymi. Umożliwia ono nie tylko wyświetlenie szczegółowych informacji o aktualnych ustawieniach interfejsów, takich jak adres IP, maska podsieci czy stan interfejsu, ale także pozwala na zmianę tych ustawień. Przykładem użycia może być wydanie polecenia 'ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up', które ustawia adres IP dla interfejsu eth0. Pomimo że 'ifconfig' był standardowym narzędziem przez wiele lat, od czasu wprowadzenia narzędzia 'ip' w pakiecie iproute2, zaleca się używanie polecenia 'ip' do zarządzania interfejsami sieciowymi. Niemniej jednak, 'ifconfig' pozostaje w użyciu w wielu systemach oraz w starszych instrukcjach i dokumentacjach, co czyni go istotnym elementem wiedzy o administracji sieciami w systemach Linux.

Pytanie 2

Jak jest nazywana transmisja dwukierunkowa w sieci Ethernet?

A. Simplex
B. Duosimplex
C. Full duplex
D. Halfduplex
Transmisja dwukierunkowa w sieci Ethernet nazywa się full duplex. Chodzi tutaj o to, że możliwa jest równoczesna komunikacja w obu kierunkach, czyli urządzenie może jednocześnie wysyłać i odbierać dane. To jest spora różnica w porównaniu do trybu halfduplex, gdzie trzeba czekać na swoją kolej, bo transmisja działa tylko w jedną stronę na raz (albo wysyłasz, albo odbierasz). W praktyce full duplex pozwala maksymalnie wykorzystać przepustowość łącza – na przykład w sieciach 1 Gb/s oznacza to, że faktycznie możemy przesłać 1 Gb/s w obie strony naraz, co daje łącznie 2 Gb/s ogólnego transferu. Stosowanie full duplexu to już praktycznie standard w nowoczesnych sieciach LAN, zwłaszcza w sieciach opartych na switchach, a nie hubach. Ważne jest też to, że protokół CSMA/CD stosowany w Ethernetach halfduplex nie jest już potrzebny w trybie full duplex – nie ma tu kolizji, bo każda transmisja ma swoją drogę. Moim zdaniem warto zwracać uwagę, czy urządzenia końcowe i przełączniki są ustawione właśnie na full duplex, bo często automatyczne negocjacje mogą się „rozjechać” i wtedy mamy niepotrzebnie niższe osiągi. W świecie profesjonalnych sieci praktycznie zawsze dąży się do pracy w full duplexie, zarówno ze względu na wydajność, jak i niezawodność transmisji.

Pytanie 3

Użytkownik Gość należy do grupy Goście. Grupa Goście należy do grupy Wszyscy. Wskaż uprawnienia udziału użytkownika Gość do folderu test1

Ilustracja do pytania
A. Użytkownik Gość posiada uprawnienia tylko odczytu do folderu test1
B. Użytkownik Gość posiada pełne uprawnienia do folderu test1
C. Użytkownik Gość posiada uprawnienia tylko zapisu do folderu test1
D. Użytkownik Gość nie posiada uprawnień do folderu test1
Wszystkie błędne odpowiedzi wynikają z nieporozumienia na temat uprawnień użytkownika Gość do folderu test1. Stwierdzenie, że Gość mógłby mieć pełne uprawnienia, to absolutnie zła interpretacja. W tej sytuacji ani on, ani grupa Goście nie mają przypisanych żadnych uprawnień. Pełne uprawnienia oznaczają, że można coś odczytać, zapisać lub modyfikować, a tu takie opcje są wykluczone. Mówiąc o uprawnieniach, nie można też myśleć, że fakt bycia w grupie automatycznie daje pełny dostęp, bo to nie tak działa. Dlatego zawsze warto sprawdzić, jakie uprawnienia rzeczywiście mają użytkownicy. To ważne, żeby zasady bezpieczeństwa były wprowadzone i przestrzegane.

Pytanie 4

Która z grup w systemie Windows Serwer ma najniższe uprawnienia?

A. Wszyscy
B. Użytkownicy.
C. Operatorzy kont.
D. Administratorzy.
Odpowiedzi "Operatorzy kont", "Użytkownicy" i "Administratorzy" pokazują, że mają one różne poziomy uprawnień, ale nie są najmniejsze, gdy porównamy to z "Wszyscy". "Operatorzy kont" na przykład mają możliwość zarządzania kontami, a to znaczy, że mają większe uprawnienia. Mogą dodawać lub usuwać konta, co jest ważne w zarządzaniu dostępem. Jeśli chodzi o "Użytkowników", to są to wszyscy zalogowani, a ich uprawnienia mogą się różnić w zależności od ról, jakie mają. Mogą mieć dostęp do aplikacji i zasobów. A "Administratorzy"? To już najwyższy poziom uprawnień - pełna kontrola nad systemem. Często myli się pojęcie minimalnych uprawnień z tym, co mają użytkownicy. Ważne jest, żeby zrozumieć, że "Wszyscy" oznacza brak specjalnych uprawnień, co jest istotne w strategii bezpieczeństwa, bo ogranicza ryzyko nadużyć i zagrożeń dla systemu.

Pytanie 5

Które urządzenie jest stosowane do mocowania kabla w module Keystone?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór niewłaściwego narzędzia do mocowania kabla w module Keystone może prowadzić do wielu problemów. Odpowiedzi A, B i C odnoszą się do narzędzi, które mają różne funkcje, ale nie są przeznaczone do mocowania kabli w złączach Keystone. Narzędzie do ściągania izolacji, które znajduje się pod pozycją A, jest używane do usuwania izolacji z przewodów, co jest istotne w procesie przygotowania kabla, ale nie ma zastosowania w bezpośrednim mocowaniu go w module. Z kolei odpowiedź B wskazuje na narzędzie typu punch down, które jest dedykowane do zaciskania kabli w blokach teleinformatycznych, co różni się od zamocowania kabla w module Keystone. Narzędzia te są projektowane z myślą o konkretnych zastosowaniach i ich niewłaściwe użycie może prowadzić do nietrwałych połączeń oraz obniżonej jakości sygnału. Odpowiedź C, czyli szczypce do zaciskania końcówek kablowych, również nie spełni funkcji mocowania kabla w module Keystone. Typowymi błędami prowadzącymi do tych niepoprawnych wniosków są zrozumienie funkcji narzędzi oraz pomylenie ich zastosowań. Kluczowe jest zrozumienie, że każde z tych narzędzi ma specyficzne funkcje i nieprzemyślane użycie niewłaściwego narzędzia może prowadzić do awarii systemu. Dlatego ważne jest, aby przy doborze narzędzi kierować się ich przeznaczeniem oraz standardami branżowymi, co w dłuższej perspektywie zapewni lepszą jakość i niezawodność infrastruktury teleinformatycznej.

Pytanie 6

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 150 Mb/s
B. 11 Mb/s
C. 54 Mb/s
D. 108 Mb/s
Odpowiedzi takie jak 150 Mb/s, 11 Mb/s czy 108 Mb/s to niestety nieporozumienia. Przykładowo, 150 Mb/s nie pasuje do żadnego dobrze znanego standardu 802.11; to prędkość z 802.11n lub 802.11ac, ale nie 802.11g. Natomiast 11 Mb/s odnosi się do 802.11b, który był stosowany głównie przed 802.11g. 108 Mb/s to też chyba mylne wrażenie, bo to wartość z dodatkowego trybu w 802.11g, ale nie jest to maksymalna prędkość. Takie błędne myślenie często bierze się z mylenia różnych standardów i ich specyfikacji, co prowadzi do przypisania złej prędkości. Warto więc lepiej poznać różnice między standardami oraz ich zastosowaniem, aby nie wpaść w takie pułapki.

Pytanie 7

Przechwycone przez program Wireshark komunikaty, które zostały przedstawione na rysunku należą do protokołu

Queries
> www.cke.edu.pl: type A, class IN
Answers
> www.cke.edu.pl: type A, class IN, addr 194.54.27.143
A. DNS
B. DHCP
C. HTTP
D. FTP
Z tego, co widzę, wybrałeś odpowiedzi, które nie mają za dużo wspólnego z DNS, a to może prowadzić do zamieszania. Na przykład FTP, czyli Protokół Transferu Plików, służy do przesyłania plików, co jest kompletnie inną sprawą niż zamiana nazw domen na adresy. Z kolei HTTP to protokół używany głównie do przesyłania danych w sieci, a DHCP zajmuje się przypisywaniem adresów IP. Te pomyłki się zdarzają, bo czasem ludzie mylą działanie tych protokołów. Ważne, żeby każdy wiedział, że każdy z tych protokołów ma swoje unikalne zadania. Kiedy analizujesz ruch w Wireshark, rozpoznanie DNS jest kluczowe dla wykrywania problemów z nazwami domen, ale FTP czy HTTP odnoszą się do zupełnie innych rzeczy. Tak że warto nie tylko zapamiętywać, co każdy z tych protokołów robi, ale też w jakim kontekście się je stosuje.

Pytanie 8

W wyniku wykonania przedstawionych poleceń systemu Linux interfejs sieciowy eth0 otrzyma

ifconfig eth0 10.0.0.100 netmask 255.255.255.0 broadcast 10.0.0.255 up
route add default gw 10.0.0.10
A. adres IP 10.0.0.100, maskę /24, bramę 10.0.0.10
B. adres IP 10.0.0.10, maskę /24, bramę 10.0.0.255
C. adres IP 10.0.0.10, maskę /16, bramę 10.0.0.100
D. adres IP 10.0.0.100, maskę /22, bramę 10.0.0.10
Poprawna odpowiedź dotyczy konfiguracji interfejsu sieciowego w systemie Linux, gdzie użyto polecenia ifconfig do przypisania adresu IP, maski podsieci oraz adresu broadcast. W tym przypadku interfejs eth0 otrzymuje adres IP 10.0.0.100 oraz maskę /24, co odpowiada masce 255.255.255.0. Maska ta oznacza, że pierwsze 24 bity adresu IP są używane do identyfikacji sieci, co pozwala na 256 adresów w danej podsieci. Ponadto, dodanie domyślnej bramy poprzez polecenie route add default gw 10.0.0.10 umożliwia komunikację z innymi sieciami oraz dostęp do Internetu. W praktyce, prawidłowa konfiguracja interfejsu sieciowego jest kluczowa dla funkcjonowania aplikacji sieciowych, a także dla bezpieczeństwa, gdyż nieprawidłowe ustawienia mogą prowadzić do problemów z dostępem czy ataków. Warto również zwrócić uwagę na dokumentację techniczną, która wskazuje na najlepsze praktyki w zakresie zarządzania interfejsami sieciowymi i ich konfiguracji.

Pytanie 9

Komputer, który automatycznie otrzymuje adres IP, adres bramy oraz adresy serwerów DNS, łączy się z wszystkimi urządzeniami w sieci lokalnej za pośrednictwem adresu IP. Jednakże komputer ten nie ma możliwości nawiązania połączenia z żadnym hostem w sieci rozległej, ani poprzez adres URL, ani przy użyciu adresu IP, co sugeruje, że występuje problem z siecią lub awaria

A. rutera
B. serwera DHCP
C. serwera DNS
D. przełącznika
Poprawna odpowiedź to ruter, ponieważ jest to urządzenie, które umożliwia komunikację pomiędzy różnymi sieciami, w tym między siecią lokalną a siecią rozległą (WAN). Kiedy komputer uzyskuje adres IP, adres bramy i adresy serwerów DNS automatycznie, najczęściej korzysta z protokołu DHCP, który przypisuje te informacje. W przypadku braku możliwości połączenia z hostami w sieci rozległej, problem może leżeć w ruterze. Ruter zarządza ruchem danych w sieciach, a jego awaria uniemożliwia komunikację z innymi sieciami, takimi jak internet. Przykładowo, jeżeli ruter jest wyłączony lub ma uszkodzony firmware, żaden z komputerów w sieci lokalnej nie będzie mógł uzyskać dostępu do zewnętrznych zasobów, co skutkuje brakiem możliwości połączenia z adresami URL czy adresami IP. Dobrą praktyką jest regularne aktualizowanie oprogramowania ruterów oraz monitorowanie ich stanu, aby zapobiegać tego rodzaju problemom.

Pytanie 10

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
B. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
C. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
D. umożliwiająca zdalne połączenie z urządzeniem
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 11

Ile punktów przyłączeniowych (2 x RJ45), według wymogów normy PN-EN 50167, powinno być w biurze o powierzchni 49 m2?

A. 1
B. 4
C. 5
D. 9
Zgodnie z normą PN-EN 50167, dla pomieszczenia biurowego o powierzchni 49 m² zaleca się posiadanie co najmniej 5 punktów abonenckich. Ta liczba wynika z analizy potrzeb użytkowników w kontekście efektywności pracy oraz liczby stanowisk roboczych, które mogą być zaaranżowane w danym pomieszczeniu. Norma ta wskazuje, że na każde 10 m² przestrzeni biurowej powinno przypadać co najmniej 1 punkt abonencki. W przypadku biura o powierzchni 49 m², można zastosować prostą proporcję, co prowadzi do obliczenia 4,9 punktów abonenckich, zaokrąglając do 5. Praktyczne zastosowanie tej normy zapewnia, że wszyscy pracownicy mają łatwy dostęp do infrastruktury telekomunikacyjnej, co jest szczególnie istotne w kontekście pracy zdalnej i współpracy przy użyciu nowoczesnych technologii. Warto również pamiętać, że zbyt mała liczba punktów abonenckich może prowadzić do przeciążenia sieci oraz trudności w komunikacji, co negatywnie wpływa na wydajność pracy zespołów.

Pytanie 12

Jaką komendę wykorzystuje się do ustawiania interfejsu sieciowego w systemie Linux?

A. netsh
B. ifconfig
C. ipconfig
D. netstate
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to narzędzie używane w systemach operacyjnych Linux do konfigurowania interfejsów sieciowych. Umożliwia ono wyświetlanie informacji o interfejsach, takich jak adresy IP, maski podsieci oraz status interfejsów. Przykładowe użycie to komenda 'ifconfig eth0 up', która aktywuje interfejs sieciowy o nazwie 'eth0'. Warto zaznaczyć, że 'ifconfig' jest częścią pakietu net-tools, który w wielu nowoczesnych dystrybucjach Linuxa jest zastępowany przez bardziej zaawansowane narzędzie 'ip'. Do konfigurowania interfejsów sieciowych zgodnie z aktualnymi standardami zaleca się korzystanie z polecenia 'ip', które oferuje szersze możliwości i jest bardziej zgodne z standardami sieciowymi. Prawidłowe zarządzanie konfiguracją interfejsów ma kluczowe znaczenie dla zapewnienia stabilności i bezpieczeństwa systemu operacyjnego oraz efektywności sieci.

Pytanie 13

W celu zagwarantowania jakości usług QoS, w przełącznikach warstwy dostępu wdraża się mechanizm

A. decydujący o liczbie urządzeń, które mogą łączyć się z danym przełącznikiem
B. który zapobiega tworzeniu się pętli w sieci
C. przydzielania wyższego priorytetu wybranym typom danych
D. pozwalający na używanie wielu portów jako jednego łącza logicznego
Odpowiedzi, które odnoszą się do zapobiegania powstawaniu pętli w sieci, liczby urządzeń mogących łączyć się z przełącznikiem oraz wykorzystywania kilku portów jako jednego łącza logicznego, nie dotyczą bezpośrednio mechanizmu QoS w przełącznikach warstwy dostępu. Zapobieganie powstawaniu pętli, realizowane na przykład przez protokoły STP (Spanning Tree Protocol), ma na celu utrzymanie stabilności i niezawodności sieci, jednak nie wpływa na jakość usług w kontekście priorytetyzacji ruchu. Podobnie, regulowanie liczby urządzeń łączących się z przełącznikiem nie jest metodą poprawy jakości usług, lecz ma bardziej związek z zarządzaniem zasobami sieciowymi i bezpieczeństwem. Przykładowe techniki zarządzania dostępem do sieci, takie jak MAC filtering, nie rozwiążą problemów związanych z ruchem o różnym poziomie krytyczności. Co więcej, łączenie kilku portów w jedno logiczne, zazwyczaj realizowane poprzez LACP (Link Aggregation Control Protocol), służy zwiększeniu przepustowości, lecz nie wpływa na różnicowanie jakości przesyłanych danych. Typowe błędy myślowe prowadzące do takich wniosków mogą obejmować mylenie pojęć związanych z zarządzaniem ruchem oraz nieodróżnianie mechanizmów związanych z bezpieczeństwem i stabilnością sieci od tych, które mają na celu poprawę jakości usług.

Pytanie 14

Parametr, który definiuje stosunek liczby wystąpionych błędnych bitów do ogólnej liczby odebranych bitów, to

A. Return Loss
B. Propagation Delay Skew
C. Near End Crosstalk
D. Bit Error Rate
Bit Error Rate (BER) to kluczowy parametr w telekomunikacji, który określa stosunek liczby błędnych bitów do całkowitej liczby otrzymanych bitów. Mierzy on jakość transmisji danych oraz niezawodność systemów komunikacyjnych. Niska wartość BER jest pożądana, ponieważ wskazuje na wysoką jakość sygnału i efektywność przesyłania informacji. W zastosowaniach praktycznych, takich jak sieci komputerowe czy systemy satelitarne, monitorowanie BER pozwala na szybką identyfikację problemów związanych z zakłóceniami sygnału, co jest kluczowe dla utrzymania wysokiej jakości usług. Standardy, takie jak ITU-T G.826, definiują sposoby pomiaru BER oraz akceptowalne poziomy w różnych aplikacjach. Zrozumienie i kontrola BER pozwala inżynierom na projektowanie bardziej niezawodnych systemów oraz na świadome podejmowanie decyzji dotyczących wyboru technologii transmisji, co w praktyce przekłada się na lepsze doświadczenia użytkowników końcowych.

Pytanie 15

Użycie na komputerze z systemem Windows poleceń ```ipconfig /release``` oraz ```ipconfig /renew``` umożliwia weryfikację działania usługi w sieci

A. Active Directory
B. routingu
C. serwera DHCP
D. serwera DNS
Wykonanie poleceń 'ipconfig /release' oraz 'ipconfig /renew' jest kluczowe w procesie uzyskiwania dynamicznego adresu IP z serwera DHCP. Pierwsze polecenie zwalnia aktualnie przydzielony adres IP, co oznacza, że komputer informuje serwer DHCP o zakończeniu korzystania z adresu. Drugie polecenie inicjuje proces uzyskiwania nowego adresu IP, wysyłając zapytanie do serwera DHCP. Jeśli usługa DHCP działa poprawnie, komputer otrzyma nowy adres IP, co jest kluczowe dla prawidłowej komunikacji w sieci. Praktyczne zastosowanie tych poleceń jest widoczne w sytuacjach, gdy komputer nie może uzyskać dostępu do sieci z powodu konfliktu adresów IP lub problemów z połączeniem. W dobrych praktykach sieciowych, administratorzy często wykorzystują te polecenia do diagnozowania problemów z siecią, co podkreśla znaczenie usługi DHCP w zarządzaniu adresacją IP w lokalnych sieciach komputerowych. Działanie DHCP zgodne jest z protokołem RFC 2131, który definiuje zasady przydzielania adresów IP w sieciach TCP/IP.

Pytanie 16

Które z urządzeń służy do testowania okablowania UTP?

Ilustracja do pytania
A. 2.
B. 1.
C. 4.
D. 3.
Urządzenie oznaczone numerem 2 to tester okablowania UTP, który jest kluczowym narzędziem w branży IT oraz telekomunikacyjnej. Tester ten sprawdza integralność połączeń w kablu UTP, umożliwiając identyfikację problemów technicznych, takich jak przerwy w przewodach, zwarcia czy niewłaściwe połączenia. Zastosowanie testera okablowania jest niezwykle ważne w kontekście budowy i konserwacji sieci komputerowych, gdzie odpowiednia jakość połączeń wpływa na stabilność i wydajność całego systemu. Dobre praktyki wskazują, że przed uruchomieniem sieci należy przeprowadzić dokładne testy, aby upewnić się, że wszystkie połączenia są poprawne. Testery UTP mogą również wykrywać długość kabla oraz jego typ, co jest niezbędne przy projektowaniu i wdrażaniu nowych instalacji. W kontekście standardów branżowych, zgodność z normami takimi jak TIA/EIA-568 jest kluczowa dla osiągnięcia wysokiej jakości usług transmisji danych.

Pytanie 17

Aby umożliwić komunikację pomiędzy sieciami VLAN, wykorzystuje się

A. modem
B. punkt dostępowy
C. koncentrator
D. ruter
Ruter to naprawdę ważne urządzenie, które łączy różne sieci, w tym również VLAN-y, czyli wirtualne sieci lokalne. Dzięki VLAN-om można lepiej zarządzać ruchem w sieci i zwiększać jej bezpieczeństwo. Żeby urządzenia w różnych VLAN-ach mogły ze sobą rozmawiać, potrzebny jest ruter, który zajmuje się przełączaniem danych między tymi sieciami. W praktyce ruter korzysta z różnych protokołów routingu, jak OSPF czy EIGRP, żeby skutecznie przesyłać informacje. Co więcej, nowoczesne rutery potrafią obsługiwać routing między VLAN-ami, dzięki czemu można przesyłać dane między nimi bez potrzeby używania dodatkowych urządzeń. Używanie rutera w sieci VLAN to świetny sposób na projektowanie sieci, co ma duży wpływ na efektywność i bezpieczeństwo komunikacji.

Pytanie 18

Wskaź na prawidłowe przyporządkowanie usługi warstwy aplikacji z domyślnym numerem portu, na którym działa.

A. SMTP – 80
B. DHCP – 161
C. DNS – 53
D. IMAP – 8080
Odpowiedź 'DNS – 53' jest całkiem trafna. Usługa DNS, czyli Domain Name System, rzeczywiście korzysta z portu 53, co mówi wiele standardów IETF. Jest to mega ważny element internetu, bo pomaga zamieniać nazwy domen na adresy IP. Dzięki temu urządzenia mogą ze sobą rozmawiać. Na przykład, jak wpisujesz 'www.example.com', to właśnie DNS zmienia to na odpowiedni adres IP, co pozwala na połączenie z serwerem. Port 53 działa zarówno z zapytaniami UDP, jak i TCP, więc jest dość uniwersalny. Zrozumienie, jak to wszystko działa i umiejętność skonfigurowania DNS są kluczowe, zwłaszcza dla tych, którzy zajmują się administracją sieci. Bez tego, ciężko zapewnić, że usługi internetowe będą działać poprawnie.

Pytanie 19

Jaką wiadomość przesyła klient DHCP w celu przedłużenia dzierżawy?

A. DHCPDISCOVER
B. DHCPREQUEST
C. DHCPACK
D. DHCPNACK
Odpowiedź DHCPREQUEST jest poprawna, ponieważ jest to komunikat wysyłany przez klienta DHCP w celu odnowy dzierżawy. Proces odnowy dzierżawy IP odbywa się, gdy klient zbliża się do końca czasu przydzielonej mu dzierżawy (Lease Time). W momencie, gdy klient chce przedłużyć dzierżawę, wysyła komunikat DHCPREQUEST do serwera DHCP, informując go o chęci kontynuacji korzystania z aktualnie przypisanego adresu IP. W praktyce ten mechanizm jest kluczowy dla utrzymania ciągłości połączenia sieciowego, szczególnie w dynamicznych środowiskach, takich jak sieci Wi-Fi, gdzie urządzenia mogą często łączyć się i rozłączać. Dobrą praktyką jest monitorowanie przydzielonych adresów IP oraz czasu ich dzierżawy, aby uniknąć problemów z dostępnością adresów w sieci. Zgodnie z protokołem RFC 2131, komunikat DHCPREQUEST może również być używany w innych kontekstach, na przykład podczas początkowej konfiguracji IP, co czyni go wszechstronnym narzędziem w zarządzaniu adresami IP.

Pytanie 20

Zarządzanie uprawnieniami oraz zdolnościami użytkowników i komputerów w sieci z systemem Windows serwerowym zapewniają

A. zasady zabezpieczeń
B. listy dostępu
C. zasady grupy
D. ustawienia przydziałów
Zasady grupy to mechanizm stosowany w systemach operacyjnych Windows, który umożliwia centralne zarządzanie uprawnieniami i dostępem do zasobów sieciowych. Dzięki zasadom grupy administratorzy mogą definiować, które ustawienia dotyczące bezpieczeństwa, konfiguracji systemów i dostępów do aplikacji oraz zasobów mają być stosowane w obrębie całej organizacji. Przykładem zastosowania zasad grupy jest możliwość wymuszenia polityki haseł, która określa minimalną długość haseł oraz wymagania dotyczące ich złożoności. W praktyce, zasady grupy mogą być przypisywane do jednostek organizacyjnych, co pozwala na elastyczne i dostosowane do potrzeb zarządzanie uprawnieniami. Wspierają one również dobre praktyki branżowe, takie jak zasada najmniejszych uprawnień, co oznacza, że użytkownicy oraz komputery mają dostęp tylko do tych zasobów, które są niezbędne do wykonywania ich zadań. Efektywne wykorzystanie zasad grupy przyczynia się do zwiększenia bezpieczeństwa sieci oraz uproszczenia zarządzania tymi ustawieniami.

Pytanie 21

Jaką metodę należy zastosować, aby chronić dane przesyłane w sieci przed działaniem sniffera?

A. Skanowanie za pomocą programu antywirusowego
B. Szyfrowanie danych w sieci
C. Zmiana hasła konta użytkownika
D. Wykorzystanie antydialera
Szyfrowanie danych w sieci to kluczowy proces, który znacząco zwiększa bezpieczeństwo przesyłanych informacji. Sniffer to narzędzie służące do podsłuchiwania ruchu w sieci, co oznacza, że atakujący może przechwytywać dane takie jak hasła, numery kart kredytowych czy inne wrażliwe informacje. Szyfrowanie danych sprawia, że nawet jeśli te dane zostaną przechwycone, będą nieczytelne dla osób trzecich. Przykładem szyfrowania jest protokół HTTPS, który jest szeroko stosowany w Internecie do zabezpieczania komunikacji między przeglądarką a serwerem. Dzięki zastosowaniu szyfrowania, dane są kodowane za pomocą algorytmów takich jak AES czy RSA, co sprawia, że tylko uprawnione osoby z odpowiednim kluczem mogą je odczytać. Wdrożenie szyfrowania w transmitowanych danych jest zgodne z najlepszymi praktykami branżowymi, które zalecają zabezpieczanie wszystkich wrażliwych informacji w celu ochrony prywatności i integralności danych.

Pytanie 22

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. skonfigurować filtrowanie adresów MAC
B. zmienić sposób szyfrowania z WEP na WPA
C. zmienić kanał radiowy
D. zmienić hasło
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 23

Jak wiele punktów rozdzielczych, według normy PN-EN 50174, powinno być umiejscowionych w budynku o trzech kondygnacjach, przy założeniu, że powierzchnia każdej z kondygnacji wynosi około 800 m²?

A. 3
B. 2
C. 4
D. 1
Analizując odpowiedzi, można zauważyć, że pominięcie normy PN-EN 50174 prowadzi do błędnych wniosków. W przypadku niepoprawnych odpowiedzi, istnieją różne mity i nieporozumienia dotyczące zasadności liczby punktów rozdzielczych. Wybór zbyt małej liczby punktów, jak 1 lub 2, może wynikać z przekonania, że centralizacja systemów telekomunikacyjnych jest wystarczająca. Tego rodzaju myślenie ignoruje fakt, że w miarę wzrostu liczby kondygnacji i powierzchni użytkowej, rośnie także złożoność infrastruktury. Niezbędne jest zapewnienie punktów rozdzielczych w każdym poziomie budynku, aby zminimalizować ryzyko przeciążeń sieci oraz ułatwić dostęp do urządzeń i systemów. Dodatkowo, odpowiednia liczba punktów rozdzielczych może obniżyć koszty związane z eksploatacją i konserwacją infrastruktury telekomunikacyjnej. Pamiętajmy, że w sytuacji awaryjnej, rozległe sieci z centralnym punktem mogą napotykać poważne problemy z dostępem do usług. W praktyce, ignorowanie standardów dotyczących rozmieszczenia punktów rozdzielczych może prowadzić do utraty efektywności operacyjnej oraz zwiększenia kosztów związanych z przyszłymi rozbudowami lub modernizacjami infrastruktury. Zrozumienie roli punktów rozdzielczych w kontekście normy PN-EN 50174 jest kluczowe dla prawidłowego projektowania i funkcjonowania sieci telekomunikacyjnych w budynkach.

Pytanie 24

Do ilu sieci należą komputery o podanych w tabeli adresach IP i standardowej masce sieci?

komputer 1172.16.15.5
komputer 2172.18.15.6
komputer 3172.18.16.7
komputer 4172.20.16.8
komputer 5172.20.16.9
komputer 6172.21.15.10
A. Dwóch.
B. Czterech.
C. Sześciu.
D. Jednej.
Wybierając jedną z pozostałych odpowiedzi, można popaść w błąd związany z interpretacją adresacji IP i stosowania masek podsieci. Niektórzy mogą myśleć, że komputery o adresach IP 172.16.1.10, 172.18.2.20, 172.20.3.30 i 172.21.4.40 należą do mniej niż czterech różnych sieci, co jest nieprawidłowe. Przy masce 255.255.0.0, pierwsze dwa oktety adresu IP służą do identyfikacji sieci, co oznacza, że każdy z kombinowanych adresów IP z różnych drugich oktetów, takich jak 16, 18, 20 i 21, stanowi odrębną sieć. Często występującym błędem jest pomijanie znaczenia drugiego oktetu w adresie IP, co prowadzi do nieprawidłowego wnioskowania o przynależności do sieci. W praktyce, administratorzy sieci muszą być świadomi, że każdy unikalny adres sieciowy, wynikający z połączenia pierwszych dwóch oktetów, oznacza oddzielną sieć. Dodatkowo, przy projektowaniu sieci, kluczowe jest, aby zrozumieć zasady przydzielania adresów IP, co pozwala na efektywne zarządzanie zasobami w sieciach komputerowych. Zatem wybór odpowiedzi wskazującej na mniejszą liczbę sieci jest prostym błędem w logice adresacji IP oraz interpretacji używanych masek podsieci.

Pytanie 25

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 252 komputery
B. 256 komputerów
C. 255 komputerów
D. 254 komputery
Wybór 256 komputerów jako maksymalnej liczby hostów w sieci klasy C jest błędny z kilku istotnych powodów. Liczba ta wynika z niepełnego zrozumienia struktury adresu IP. Klasa C, zgodnie z definicją, przeznacza 8 bitów na identyfikację hostów, co teoretycznie rzeczywiście daje 256 adresów. Jednak w praktyce dwa z tych adresów są zarezerwowane. Adres sieci, który jest używany do identyfikacji samej sieci, oraz adres rozgłoszeniowy, który służy do komunikacji z wszystkimi hostami w sieci, nie mogą być przydzielane do urządzeń. To fundamentalna zasada w projektowaniu sieci, która często bywa pomijana przez osoby nieposiadające doświadczenia w tej dziedzinie. Wybierając 255 komputerów, również można popełnić błąd w myśleniu, gdyż znów nie uwzględnia to rezerwacji adresu rozgłoszeniowego, a zatem wciąż nie jest to prawidłowa liczba. Podobnie, 252 komputery mogą wydawać się logicznym wyborem, ale nie uwzględnia to pełnej możliwości wykorzystania adresów zarezerwowanych wyłącznie dla hostów. W praktyce, skuteczne zarządzanie adresacją IP wymaga zrozumienia tych zasad oraz ich konsekwencji dla projektowania i operacyjności sieci. Brak tej wiedzy może prowadzić do problemów z komunikacją i zarządzaniem siecią, co jest krytyczne w każdym środowisku IT.

Pytanie 26

Jakim skrótem oznacza się zbiór zasad filtrujących dane w sieci?

A. VLAN
B. ACL
C. QoS
D. PoE
Wybór VLAN, QoS lub PoE jako zestawu reguł filtrujących ruch w sieci jest błędny i wynika z nieporozumienia dotyczącego roli tych technologii w zarządzaniu siecią. VLAN, czyli Virtual Local Area Network, jest technologią, która segreguje ruch w sieci na różne segmenty, co umożliwia izolację grup użytkowników lub urządzeń. Chociaż VLANy mogą pomóc w organizacji sieci, nie definiują one reguł dostępu ani nie blokują ruchu, co jest kluczowe w kontekście bezpieczeństwa. Z kolei QoS, czyli Quality of Service, odnosi się do zarządzania przepustowością i priorytetowaniem ruchu, co ma na celu poprawę wydajności aplikacji niezbędnych do funkcjonowania w sieci, ale nie kontroluje dostępu do zasobów. PoE, czyli Power over Ethernet, to technologia, która umożliwia przesyłanie zasilania przez kable Ethernet, co jest użyteczne w kontekście zasilania urządzeń, takich jak kamery IP czy punkty dostępowe, ale nie ma wpływu na zasady filtrowania ruchu. Te nieporozumienia mogą prowadzić do błędnych wniosków i niewłaściwej konfiguracji sieci, co w rezultacie może obniżyć bezpieczeństwo i wydajność systemów. Wiedza o tym, jak te technologie funkcjonują i jakie mają zastosowanie, jest niezbędna dla każdego profesjonalisty zajmującego się zarządzaniem siecią.

Pytanie 27

Aby w systemie Windows dodać użytkownika jkowalski do grupy lokalnej pracownicy należy wykonać polecenie

A. net group pracownicy jkowalski /ADD
B. net localgroup jkowalski pracownicy /ADD
C. net localgroup pracownicy jkowalski /ADD
D. net group jkowalski pracownicy /ADD
Odpowiedź "net localgroup pracownicy jkowalski /ADD" jest poprawna, ponieważ polecenie to jest zgodne z syntaksą używaną w systemach Windows do zarządzania grupami użytkowników. W tym przypadku "localgroup" wskazuje, że operacja dotyczy lokalnej grupy użytkowników, a "pracownicy" to nazwa grupy, do której chcemy dodać użytkownika "jkowalski". Poprawne użycie polecenia z parametrem /ADD umożliwia dodanie użytkownika do wskazanej grupy. Ważne jest, aby znać różnicę między "localgroup" a "group" - pierwsze odnosi się do lokalnych grup na danym komputerze, podczas gdy drugie może być używane w odniesieniu do grup domenowych w środowisku Active Directory. Przykładem praktycznego zastosowania tej komendy może być zarządzanie uprawnieniami w firmie, gdzie administrator może szybko przypisać odpowiednie prawa dostępu do zasobów lokalnych dla zespołów pracowników, co jest kluczowe dla bezpieczeństwa i organizacji pracy w środowisku biurowym. Stosowanie właściwych poleceń i ich parametrów jest zgodne z najlepszymi praktykami w zakresie administracji systemami operacyjnymi.

Pytanie 28

Który z dostępnych standardów szyfrowania najlepiej ochroni sieć bezprzewodową?

A. WPA-PSK(TKIP)
B. WPA2-PSK(AES)
C. WEP 64
D. WEP 128
WPA2-PSK(AES) to obecnie jeden z najbezpieczniejszych standardów szyfrowania dla sieci bezprzewodowych. Używa on algorytmu AES (Advanced Encryption Standard), który jest bardziej zaawansowany niż starsze metody, takie jak TKIP, używane w WPA-PSK. AES oferuje znacznie wyższy poziom bezpieczeństwa dzięki zastosowaniu silniejszego klucza szyfrowania oraz bardziej skomplikowanej architektury, co czyni go odpornym na wiele znanych ataków. Przykładem zastosowania WPA2-PSK(AES) może być konfiguracja domowej sieci Wi-Fi, gdzie użytkownicy mogą łatwo ustawić silne hasło, a także korzystać z bezpiecznego dostępu do internetu. Warto podkreślić, że zgodnie z najlepszymi praktykami branżowymi, zaleca się regularną aktualizację haseł oraz monitorowanie urządzeń podłączonych do sieci, aby zminimalizować ryzyko nieautoryzowanego dostępu. Co więcej, wiele nowoczesnych urządzeń sieciowych wspiera WPA3, kolejny krok w ewolucji bezpieczeństwa sieci bezprzewodowych, oferujący jeszcze wyższy poziom ochrony.

Pytanie 29

Gdy komputer K1 wykonuje polecenie ping, otrzymuje odpowiedź od komputera K2. Natomiast po wysłaniu polecenia ping w odwrotnym kierunku komputer K2 nie dostaje odpowiedzi od K1. Oba urządzenia działają na systemie Windows 7 lub 10. Jaka może być przyczyna tej sytuacji?

A. Nieprawidłowa konfiguracja kart sieciowych w komputerach K1 i K2.
B. Ustawienia domyślne zapory na komputerze K1 są skonfigurowane.
C. Karta sieciowa komputera K2 jest uszkodzona.
D. Zapora sieciowa jest wyłączona na komputerach K1 oraz K2.
W przypadku odpowiedzi sugerujących wyłączenie zapory sieciowej na obu komputerach K1 i K2, można zauważyć podstawowy błąd w rozumieniu działania zabezpieczeń sieciowych. Wyłączenie zapory na komputerach nie jest zalecane, ponieważ naraża system na ataki z zewnątrz. Zapory sieciowe mają za zadanie kontrolować ruch sieciowy, a ich wyłączenie wprowadza ryzyko nieautoryzowanego dostępu. Odpowiedź odnosząca się do nieprawidłowej konfiguracji kart sieciowych również nie jest trafna, gdyż jeśli jedna karta sieciowa działa poprawnie i odpowiada na polecenie ping, to nie można jednoznacznie uznać, że konfiguracja obu kart jest błędna. Istotnym błędem logicznym jest też myślenie, że uszkodzenie karty sieciowej K2 mogłoby prowadzić do braku odpowiedzi na ping z K1, podczas gdy w rzeczywistości, skoro K1 odpowiada, to karta sieciowa K1 działa poprawnie. Uszkodzona karta sieciowa K2 mogłaby prowadzić do zupełnego braku komunikacji, a nie jedynie do braku odpowiedzi na ping. Kluczowe w tej sytuacji jest zrozumienie, że zapory sieciowe są pierwszą linią obrony w zabezpieczaniu sieci, a ich domyślne ustawienia często mają na celu ograniczenie typu ruchu ICMP, co w przypadku braku odpowiedzi jest najbardziej prawdopodobnym rozwiązaniem opisanej sytuacji.

Pytanie 30

Która para: protokół – warstwa, w której dany protokół funkcjonuje, jest prawidłowo zestawiona według modelu TCP/IP?

A. RARP – warstwa transportowa
B. DNS – warstwa aplikacyjna
C. DHCP – warstwa dostępu do sieci
D. TCP – warstwa Internetu
Wybór odpowiedzi, która łączy RARP z warstwą transportową, jest błędny, ponieważ RARP (Reverse Address Resolution Protocol) działa na warstwie dostępu do sieci, a nie transportowej. RARP jest używany do mapowania adresów MAC na adresy IP, co jest kluczowe dla urządzeń w sieci lokalnej, które potrzebują informacji o swoim adresie IP w oparciu o adres sprzętowy. Poza tym, DHCP (Dynamic Host Configuration Protocol) również nie działa na warstwie dostępu do sieci, lecz na warstwie aplikacji, ponieważ służy do dynamicznego przydzielania adresów IP i innych parametrów konfiguracyjnych urządzeniom w sieci. Przypisanie TCP do warstwy Internetu jest także błędne, ponieważ TCP (Transmission Control Protocol) działa na warstwie transportowej. Warstwa transportowa jest odpowiedzialna za zapewnienie komunikacji między hostami, oferując usługi takie jak kontrola błędów oraz zapewnienie dostarczania. Dobrym przykładem zastosowania tych protokołów jest to, jak aplikacje korzystające z TCP zapewniają niezawodne przesyłanie danych, co jest kluczowe w przypadku transmisji plików czy transmisji wideo. Dlatego zrozumienie, w której warstwie działają konkretne protokoły, jest istotne dla prawidłowego projektowania i zarządzania sieciami komputerowymi.

Pytanie 31

Podczas przetwarzania pakietu przez ruter jego czas życia TTL

A. pozostaje bez zmian
B. ulega zmniejszeniu
C. ulega zwiększeniu
D. przyjmuje przypadkową wartość
W przypadku, gdy odpowiedź zakłada, że czas życia pakietu (TTL) nie ulega zmianie, lub że rośnie, może to wynikać z nieporozumienia na temat mechanizmu działania TTL w protokole IP. TTL jest zaprojektowany tak, aby ograniczyć czas, jaki pakiet spędza w sieci, zapobiegając sytuacjom, w których pakiety mogłyby krążyć w nieskończoność z powodu błędów w routingu. Wartość TTL jest zmniejszana z każdym ruterem, co oznacza, że w miarę przechodzenia przez sieć, TTL maleje, aż osiągnie zero, co skutkuje odrzuceniem pakietu. Twierdzenie, że TTL może przyjmować losową wartość, jest również błędne, ponieważ TTL jest ustawiany na wartość początkową w momencie tworzenia pakietu, a następnie modyfikowany wyłącznie przez rutery w ścisłym zakresie, co eliminując losowość. W praktyce błędne zrozumienie działania TTL może prowadzić do trudności w diagnozowaniu problemów z siecią, takich jak opóźnienia czy utrata pakietów, gdzie nieprzemyślane zmiany w TTL mogą wpłynąć na routing i jakość usług. Dlatego ważne jest zrozumienie, że TTL działa na zasadzie precyzyjnego ograniczenia, a nie swobodnego przydzielania wartości.

Pytanie 32

Fragment pliku httpd.conf serwera Apache wygląda następująco:

Listen 8012
Server Name localhost:8012

Aby zweryfikować prawidłowe funkcjonowanie strony WWW na serwerze, należy wprowadzić w przeglądarkę

A. http://localhost
B. http://localhost:8012
C. http://localhost:8080
D. http://localhost:apache
Odpowiedź http://localhost:8012 jest jak najbardziej poprawna, bo to właśnie ten adres wskazuje, na którym porcie serwer Apache czeka na żądania. W pliku httpd.conf mamy 'Listen 8012', co oznacza, że serwer będzie obsługiwał połączenia na tym porcie. Dodatkowo, 'Server Name localhost:8012' pokazuje, że serwer jest gotowy na przyjmowanie żądań z adresu localhost na podanym porcie. W praktyce, żeby dostać się do jakiejś aplikacji webowej, trzeba wpisać odpowiedni adres URL, który wskazuje i na hosta (czyli localhost), i na port (czyli 8012). Fajnie też pamiętać, że różne aplikacje mogą korzystać z różnych portów, a używanie odpowiedniego portu jest kluczowe, żeby wszystko działało jak należy. Na przykład port 80 jest standardowy dla HTTP, a 443 dla HTTPS. Więc jeśli aplikacja działa na innym porcie, tak jak 8012, to użytkownik musi o tym pamiętać w adresie URL.

Pytanie 33

Instalator jest w stanie zamontować 5 gniazd w ciągu jednej godziny. Ile wyniesie całkowity koszt materiałów i instalacji 20 natynkowych gniazd sieciowych, jeśli cena jednego gniazda to 5,00 zł, a stawka za roboczogodzinę instalatora wynosi 30,00 zł?

A. 350,00 zł
B. 700,00 zł
C. 130,00 zł
D. 220,00 zł
Poprawna odpowiedź to 220,00 zł, co można obliczyć, biorąc pod uwagę koszty materiałów oraz robocizny. Koszt samego materiału na 20 gniazd wynosi 20 gniazd x 5,00 zł/gniazdo = 100,00 zł. Instalator montuje 5 gniazd w ciągu godziny, więc na zamontowanie 20 gniazd potrzebuje 20 gniazd ÷ 5 gniazd/godzinę = 4 godziny. Koszt robocizny wynosi 4 godziny x 30,00 zł/godzinę = 120,00 zł. Sumując te dwa koszty: 100,00 zł (materiały) + 120,00 zł (robocizna) = 220,00 zł. Takie podejście do obliczeń jest zgodne z najlepszymi praktykami w branży, które zalecają zawsze dokładne oszacowanie zarówno kosztów materiałów, jak i pracy. Dobrą praktyką jest również uwzględnianie ewentualnych kosztów dodatkowych, takich jak transport czy opłaty za materiały, co może mieć miejsce w rzeczywistych projektach.

Pytanie 34

W systemach z rodziny Windows Server, w jaki sposób definiuje się usługę serwera FTP?

A. w usłudze plików
B. w serwerze aplikacji
C. w usłudze zasad i dostępu sieciowego
D. w serwerze sieci Web
Wybór serwera aplikacji jako miejsca definiowania usługi FTP jest błędny, gdyż ta kategoria serwerów jest przeznaczona do hostowania aplikacji, które obsługują logikę biznesową i procesy interaktywne, a nie do zarządzania protokołami komunikacyjnymi, takimi jak FTP. Serwer aplikacji koncentruje się na obsłudze żądań HTTP, a nie na transferze plików. Z kolei usługa zasad i dostępu sieciowego służy do zarządzania dostępem do sieci, a nie do zarządzania plikami. Nie ma zatem możliwości pełnienia przez nią roli serwera FTP, ponieważ nie zajmuje się przesyłaniem i udostępnianiem plików w sposób, w jaki robi to serwer FTP. Podobnie, usługa plików, choć związana z zarządzaniem danymi, nie jest odpowiednia jako samodzielny element do definiowania usługi FTP. W praktyce, usługa plików odnosi się do przechowywania i udostępniania plików w sieci, ale nie obejmuje protokołów komunikacyjnych. Tego typu nieporozumienia często wynikają z braku zrozumienia podstawowych funkcji różnych ról serwerów w architekturze IT. Warto pamiętać, że każda rola ma swoje specyficzne zadania i funkcjonalności, co podkreśla znaczenie znajomości ich zastosowań w praktyce.

Pytanie 35

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 100 kHz
B. do 1 MHz
C. do 100 MHZ
D. do 16 MHz
Wybierając odpowiedzi wskazujące na niższe pasma częstotliwości, można wpaść w pułapkę błędnych założeń dotyczących standardów skrętek komputerowych. Odpowiedzi do 100 kHz, 1 MHz czy 16 MHz dotyczą przestarzałych technologii, które nie są odpowiednie dla nowoczesnych aplikacji sieciowych. Na przykład, kategoria 5e, która jest standardem dla pasma do 100 MHz, już nie spełnia wymogów wydajnościowych dla standardów Ethernet powyżej 1 Gbps, które są powszechnie używane w nowoczesnych środowiskach biurowych i technologicznych. Wybór parametrów dotyczących pasma częstotliwości jest kluczowy, ponieważ wpływa na przepustowość i jakość transmisji danych. Współczesne zastosowania, takie jak strumieniowanie wideo w wysokiej rozdzielczości, wymagają niezawodnych połączeń, które są możliwe tylko dzięki odpowiedniemu doborowi kabli i ich klas. Używanie przestarzałych standardów może prowadzić do problemów z wydajnością sieci, zakłóceń oraz obniżonej jakości usług, co w dłuższej perspektywie rodzi dodatkowe koszty i frustrację użytkowników.

Pytanie 36

Ile równych podsieci można utworzyć z sieci o adresie 192.168.100.0/24 z wykorzystaniem maski 255.255.255.192?

A. 16 podsieci
B. 2 podsieci
C. 8 podsieci
D. 4 podsieci
Wszystkie inne odpowiedzi są błędne z kilku powodów, które wynikają z niepełnego zrozumienia pojęć związanych z adresowaniem IP i maskowaniem sieci. Odpowiedzi sugerujące 2 podsieci lub 8 podsieci wynikają z błędnych obliczeń dotyczących liczby dostępnych adresów w danej masce. Na przykład, w przypadku wskazania 2 podsieci myśli się o masce /25, co z kolei daje 128 adresów na każdą z podsieci, co jest niewłaściwe w kontekście tego pytania. Podobnie, wybór 8 podsieci sugerowałby zastosowanie maski /27, co nie jest zgodne z podanymi wartościami. Każdy błąd w myśleniu o podziale na podsieci często wynika z nieścisłości w zrozumieniu, jak działa binarne liczenie oraz jak maski wpływają na liczbę dostępnych adresów. Ważne jest, aby dobrze zrozumieć podstawowe zasady, takie jak to, że każdy bit w masce sieciowej może wpływać na podział sieci, a także, że każdy przydzielony adres w podsieci musi być traktowany z uwagą, aby zachować poprawną strukturę. Stosowanie kreacji podsieci jest kluczowym elementem zarządzania zasobami sieciowymi, a nieprawidłowe podejście może prowadzić do problemów z wydajnością sieci oraz rozproszeniem ruchu. Zrozumienie, jak prawidłowo dzielić sieci, jest niezbędne dla każdego specjalisty w dziedzinie IT.

Pytanie 37

Które z poniższych zdań charakteryzuje protokół SSH (Secure Shell)?

A. Protokół umożliwiający zdalne operacje na odległym komputerze bez kodowania transmisji
B. Sesje SSH przesyłają dane w formie niezaszyfrowanego tekstu
C. Bezpieczny protokół terminalowy, który oferuje szyfrowanie połączeń
D. Sesje SSH nie umożliwiają weryfikacji autentyczności punktów końcowych
Protokół SSH (Secure Shell) jest standardowym narzędziem wykorzystywanym do bezpiecznej komunikacji w zdalnych połączeniach sieciowych. Główne zalety tego protokołu obejmują szyfrowanie danych przesyłanych między urządzeniami, co znacząco zwiększa bezpieczeństwo. Dzięki mechanizmom autoryzacji, takim jak użycie kluczy publicznych i prywatnych, SSH pozwala na potwierdzenie tożsamości użytkowników oraz serwerów, co minimalizuje ryzyko ataków typu 'man-in-the-middle'. Przykładowe zastosowanie protokołu SSH obejmuje zdalne logowanie do serwera, gdzie administratorzy mogą zarządzać systemami bez obawy o podsłuch danych. Ponadto SSH umożliwia tunelowanie portów oraz przesyłanie plików za pomocą protokołu SCP lub SFTP, co czyni go wszechstronnym narzędziem w administracji IT. W praktyce, organizacje stosują SSH, aby chronić wrażliwe dane i zapewnić zgodność z najlepszymi praktykami bezpieczeństwa, takimi jak regulacje PCI DSS czy HIPAA, które wymagają szyfrowania danych w tranzycie.

Pytanie 38

Protokół stworzony do nadzorowania oraz zarządzania urządzeniami w sieci, oparty na architekturze klient-serwer, w którym jeden menedżer kontroluje od kilku do kilkuset agentów to

A. SNMP (Simple Network Management Protocol)
B. HTTP (Hypertext Transfer Protocol)
C. SMTP (Simple Mail Transfer Protocol)
D. FTP (File Transfer Protocol)
SNMP, czyli Simple Network Management Protocol, to standardowy protokół sieciowy, który umożliwia monitorowanie i zarządzanie urządzeniami w sieci IP. Opiera się na architekturze klient-serwer, gdzie agent (urządzenie zarządzane) przekazuje dane do menedżera (systemu zarządzającego). Dzięki SNMP administratorzy sieci mogą zbierać dane o stanie urządzeń, takich jak routery, przełączniki czy serwery, co pozwala na szybką identyfikację problemów, optymalizację wydajności oraz planowanie zasobów. Protokół SNMP jest szeroko stosowany w branży IT, będąc częścią standardów IETF. Przykładem zastosowania może być monitorowanie obciążenia serwera w czasie rzeczywistym, co pozwala na podejmowanie decyzji na podstawie zebranych danych. Ponadto, SNMP wspiera różne poziomy bezpieczeństwa i wersje, co pozwala na dostosowanie go do specyficznych potrzeb organizacji. Standardy SNMP są zgodne z najlepszymi praktykami, co daje pewność, że system zarządzania siecią będzie działał w sposób efektywny i bezpieczny.

Pytanie 39

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 32 zł
B. 50 zł
C. 40 zł
D. 45 zł
Koszt brutto kabla UTP Cat 6 dla pięciu punktów abonenckich można obliczyć, stosując się do określonych kroków. Najpierw obliczamy długość kabla potrzebną do połączenia punktów abonenckich z punktem dystrybucyjnym. Dla każdego z pięciu punktów abonenckich mamy średnią odległość 8 m. W związku z tym, całkowita długość kabla wynosi 5 punktów x 8 m = 40 m. Następnie dodajemy zapas 2 m dla każdego punktu abonenckiego, co daje dodatkowe 5 punktów x 2 m = 10 m. Sumując te wartości, otrzymujemy całkowitą długość kabla wynoszącą 40 m + 10 m = 50 m. Cena za 1 m kabla wynosi 1 zł, więc koszt brutto 50 m kabla to 50 zł. Takie podejście uwzględnia nieprzewidziane okoliczności, co jest zgodne z dobrymi praktykami w zakresie instalacji kablowych, gdzie zawsze warto mieć zapas materiałów, aby zminimalizować ryzyko błędów podczas montażu.

Pytanie 40

IMAP (Internet Message Access Protocol) to protokół

A. transmisji plików w sieci Internet
B. odbierania wiadomości email
C. przesyłania tekstów
D. wysyłania wiadomości email
IMAP, czyli Internet Message Access Protocol, jest standardowym protokołem stosowanym do odbierania poczty elektronicznej. Umożliwia użytkownikom dostęp do wiadomości e-mail przechowywanych na serwerze zdalnym, co oznacza, że nie są one pobierane na urządzenie lokalne, a tylko wyświetlane. Dzięki temu użytkownicy mogą zarządzać swoją pocztą z różnych urządzeń, takich jak komputery, tablety czy smartfony, zachowując pełną synchronizację. Przykładowo, jeśli użytkownik przeczyta wiadomość na telefonie, stanie się ona oznaczona jako przeczytana również na komputerze. IMAP obsługuje foldery, co pozwala na organizację wiadomości w sposób hierarchiczny, a także zapewnia możliwość przeszukiwania treści e-maili bezpośrednio na serwerze. Warto również zaznaczyć, że IMAP jest zgodny z wieloma standardami branżowymi, co zapewnia jego szeroką kompatybilność z różnymi klientami pocztowymi. W praktyce, korzystanie z protokołu IMAP jest rekomendowane w środowiskach, gdzie ważna jest mobilność i dostęp do e-maili w czasie rzeczywistym.