Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:16
  • Data zakończenia: 8 grudnia 2025 10:24

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Zastosowanie wyłącznika instalacyjnego zwłocznego
B. Zmiana kolejności faz
C. Odłączenie uziemienia silnika
D. Podłączenie kondensatora rozruchowego
Zastosowanie wyłącznika instalacyjnego zwłocznego to rozwiązanie, które pozwala na bezpieczne użytkowanie urządzeń z silnikiem trójfazowym, zwłaszcza w sytuacjach, gdy przy rozruchu silnika występują chwilowe przeciążenia. Wyłącznik zwłoczny działa na zasadzie odroczenia zadziałania na krótki okres, co pozwala na rozruch silnika bez ryzyka natychmiastowego wyłączenia z powodu chwilowego wzrostu prądu. W praktyce, tego rodzaju wyłączniki są często stosowane w instalacjach przemysłowych, gdzie silniki mogą doświadczać większych obciążeń przy starcie. Ponadto, takie wyłączniki zgodne są z normami bezpieczeństwa, które zalecają stosowanie urządzeń chroniących przed przeciążeniem. Należy pamiętać, że w sytuacji, gdy silnik jest sprawny, a problemem jest tylko zbyt duży prąd rozruchowy, ważne jest, aby dobrać odpowiedni wyłącznik, który zminimalizuje ryzyko fałszywych alarmów oraz zapewni ciągłość pracy maszyny. W praktyce, instalatorzy powinni również zwracać uwagę na charakterystykę pracy silnika oraz jego zastosowanie, aby dobrać odpowiedni wyłącznik zwłoczny.

Pytanie 2

Modulacja szerokości impulsu (PWM) w systemach sterujących odnosi się do regulacji poprzez zmianę

A. amplitudy impulsu
B. częstotliwości sygnału
C. szerokości impulsu
D. fazy sygnału
Szerokość impulsu (PWM) odnosi się do metody modulacji, w której czas, przez jaki sygnał jest w stanie wysokim, jest zmieniany w stosunku do czasu, przez jaki jest w stanie niskim. To pozwala na kontrolowanie mocy dostarczanej do obciążenia, co ma kluczowe znaczenie w aplikacjach takich jak regulacja prędkości silników elektrycznych, sterowanie jasnością diod LED czy zarządzanie temperaturą w układach grzewczych. W praktyce, zmiana szerokości impulsu w sygnale PWM pozwala na uzyskanie różnych poziomów mocy bez konieczności zmiany napięcia. Przykładowo, w przypadku silnika DC, poprzez zwiększenie szerokości impulsu można znacząco podnieść jego prędkość obrotową. Stosując PWM, można również osiągnąć większą wydajność energetyczną, co jest istotne w kontekście standardów ochrony środowiska i efektywności energetycznej. Z tego powodu techniki PWM znalazły zastosowanie w wielu nowoczesnych układach automatyki przemysłowej, co podkreśla ich znaczenie w dzisiejszej technologii.

Pytanie 3

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. 0°
B. 45°
C. 90°
D. -90°
Odpowiedź 90° jest prawidłowa w kontekście regulatorów typu PD (proporcjonalno-derywacyjne). W takim regulatorze sygnał wyjściowy jest opóźniony w stosunku do sygnału wejściowego o 90°. Oznacza to, że reakcja na zmiany sygnału wejściowego jest natychmiastowa, jednakże nie uwzględnia wartości sygnału, co prowadzi do przesunięcia fazowego. Praktycznie, w zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, regulator PD jest często stosowany do zwiększenia dynamiki systemu. Na przykład, w systemach kontroli temperatury, zastosowanie regulatora PD może poprawić odpowiedź systemu na zmiany obciążenia, umożliwiając szybsze osiągnięcie zadanej temperatury. Warto również zauważyć, że w praktyce dobór odpowiednich parametrów regulatora PD, tj. wzmocnienia proporcjonalnego i współczynnika pochodnej, ma kluczowe znaczenie dla zachowania stabilności i jakości regulacji. Właściwe zaprojektowanie systemu z wykorzystaniem regulatora PD zwiększa jego wydajność, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki.

Pytanie 4

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. dermatologicznych
B. układu słuchu
C. układu pokarmowego
D. układu sercowego
Zrozumienie wpływu rozgrzanej cieczy hydraulicznej na zdrowie człowieka wymaga znajomości mechanizmów działania substancji chemicznych oraz ich skutków zdrowotnych. Odpowiedzi dotyczące narządu słuchu i serca są mylące, ponieważ mgła olejowa głównie działa na skórę, a nie na te narządy. Problemy ze słuchem mogą być wynikiem hałasu w środowisku pracy, nie zaś kontaktu z mgłą olejową. Mylne jest również myślenie, że mgła olejowa wpływa na serce; skutki zdrowotne związane z substancjami chemicznymi, takimi jak oleje hydrauliczne, nie są bezpośrednio związane z układem sercowo-naczyniowym. Do najczęstszych dolegliwości związanych z narażeniem na oleje i smary należą problemy dermatologiczne, związane z podrażnieniem skóry. Problemy z przewodem pokarmowym w tym kontekście także są nieprawidłowe, ponieważ substancje te nie są wprowadzane do organizmu doustnie, a ich wpływ na układ pokarmowy nie jest bezpośredni. Odpowiedź wskazująca na problemy dermatologiczne uwzględnia natomiast rzeczywiste ryzyko zdrowotne, które może wystąpić w wyniku kontaktu ze szkodliwymi substancjami w formie mgły olejowej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. silnik indukcyjny klatkowy
B. drukarka laserowa
C. chłodziarko-zamrażarka z cyfrowym sterowaniem
D. odtwarzacz płyt CD oraz DVD
Silnik indukcyjny klatkowy to nie to samo, co urządzenie mechatroniczne. Głównie dlatego, że jest to po prostu element maszyny elektrycznej, posługujący się zasadą elektromagnetyzmu. Mechatronika natomiast łączy w sobie różne dziedziny – mechanikę, elektronikę i informatykę, skupiając się na tym, jak te elementy współpracują w różnych urządzeniach. Silniki indukcyjne są ważne w automatyzacji i w robotyce, ale raczej nie mają w sobie cyfrowych komponentów czy systemów sterujących, które charakterystyczne dla mechatroniki. Przykładami mechatronics mogą być różnego rodzaju roboty przemysłowe, inteligentne systemy transportowe, a nawet automatyczne systemy kontroli jakości. Te wszystkie wykorzystują czujniki, aktuatory i algorytmy komputerowe, żeby działać. W skrócie, zrozumienie różnicy pomiędzy tradycyjnymi elementami elektromechanicznymi a nowoczesnymi urządzeniami mechatronicznymi jest mega ważne, jeśli chcesz projektować i wdrażać skomplikowane systemy automatyzacji, które mogą poprawić wydajność i precyzję produkcji.

Pytanie 7

Jakie z czynności związanych z wymianą oleju oraz filtrów w zasilaczu hydraulicznym powinno być zrealizowane jako ostatnie?

A. Odłączyć wszystkie obwody, wyłączyć zasilanie, odkręcić śrubę odpowietrzającą lub wyjąć korek wlewowy i lekko przechylając zasilacz zlać olej
B. Zamienić uszczelkę między zbiornikiem a pokrywą oraz wymienić wkłady filtrujące, a później połączyć zbiornik z pokrywą, przestrzegając zalecanej siły dokręcania
C. Wlać olej do właściwego poziomu i włączyć zasilanie, aby umożliwić samoczynne odpowietrzenie
D. Odkręcić śruby mocujące pokrywę do zbiornika, zdjąć pokrywę, dokładnie oczyścić i przepłukać zbiornik
Wynikający z niewłaściwego wyboru czynności, pomijanie ostatniego etapu, jakim jest wlano oleju do zbiornika oraz włączenie zasilania, prowadzi do wielu problemów z działaniem zasilacza hydraulicznego. Często zdarza się, że osoby z nieodpowiednią wiedzą techniczną mogą pomylić kolejność procesów, co skutkuje niewłaściwym napełnieniem układu lub, co gorsza, jego przegrzaniem. Przy odkręcaniu śrub lub demontażu pokrywy zbiornika, istotne jest, aby najpierw usunąć zużyty olej oraz zanieczyszczenia, a następnie zlać go, co powinno być realizowane przed dodaniem nowego oleju. Ignorowanie tego etapu może prowadzić do kontaminacji nowego oleju, co wpłynie negatywnie na jego właściwości smarne i zabezpieczające. Dodatkowo, niedopilnowanie momentu dokręcania śrub po wymianie filtrów może spowodować wycieki, co jest niezgodne z najlepszymi praktykami konserwacji. Odpowiednia procedura wymiany oleju w zasilaczu hydraulicznym wymaga zrozumienia całego procesu, od odłączenia obwodów, przez spuszczenie oleju, aż po napełnienie nowym płynem i uruchomienie zasilania dla prawidłowego odpowietrzenia. Tylko taka kolejność zapewni, że system hydrauliczny będzie działał efektywnie oraz bezawaryjnie.

Pytanie 8

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo białe
B. Żeliwo szare
C. Stal wysokowęglowa
D. Stal niskowęglowa
Żeliwo białe, żeliwo szare i stal wysokowęglowa to nie najlepsze opcje, jeśli mówimy o konstrukcjach spawanych. Żeliwo białe, przez dużą ilość węgla i krzemu, jest twarde i odporne na ścieranie, ale jego kruchość sprawia, że nie nadaje się za bardzo do spawania. Może występować dużo pęknięć, co sprawia, że trudno uzyskać solidne połączenia. Żeliwo szare jest trochę lepsze w kwestii spawania, ale wciąż nie ma wystarczającej plastyczności, więc nie nadaje się do konstrukcji, które potrzebują dużej wytrzymałości. Z kolei stal wysokowęglowa jest twardsza i bardziej wytrzymała, ale też łatwiej pęka podczas spawania. Duża ilość węgla sprawia, że nie zmienia kształtu podczas spawania, co może sprawiać problemy podczas montażu i późniejszego użytkowania konstrukcji. Dlatego ważne jest, aby dobierać materiał do spawania na podstawie jego właściwości, a stal niskowęglowa wydaje się tu najlepszym wyborem.

Pytanie 9

Zespół tokarki pociągowej zwany konikiem, jest przedstawiony na rysunku

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór odpowiedzi innej niż D może wynikać z braku zrozumienia roli konika tokarskiego w procesie obróbki skrawaniem. Często w takich przypadkach pojawia się mylne przekonanie, że stabilność obrabianego przedmiotu można osiągnąć jedynie poprzez odpowiednie ustawienie narzędzi skrawających lub za pomocą innych elementów tokarki. To podejście pomija kluczowy aspekt, jakim jest wsparcie mechaniczne przy dłuższych elementach, które są szczególnie podatne na odkształcenia. Bez wsparcia w postaci konika, obrabiany materiał ma tendencję do wyginania się, co prowadzi do nieprecyzyjnych wymiarów i obniżonej jakości wykończenia. W praktyce, zaniechanie użycia konika w takich sytuacjach może skutkować nie tylko straconym czasem na poprawki, ale także zwiększonym zużyciem narzędzi skrawających z powodu ich niewłaściwego działania. Dlatego ważne jest, aby zrozumieć, że konik tokarski nie jest jedynie dodatkiem, ale niezbędnym elementem zapewniającym efektywność i jakość procesu obróbczo-skrawającego, zgodnie z najlepszymi praktykami w branży.

Pytanie 10

W siłowniku pneumatycznym dwustronnego działania, w którym średnica tłoka jest dwa razy większa od średnicy tłoczyska, stosunek siły pchającej tłok do siły ciągnącej tłok wynosi

F = S · p
gdzie: p – ciśnienie powietrza, S – czynna powierzchnia tłoka,
S = ¼πD² – dla siły ciągnącej
S = ¼π(D² - d²) – dla siły ciągnącej
gdzie: D – średnica tłoka, d – średnica tłoczyska
A. 3:2
B. 9:8
C. 4:3
D. 9:4
Wybór odpowiedzi 9:8, 4:3 lub 9:4 bazuje na błędnym zrozumieniu zasad działania siłowników pneumatycznych. Często mylnie zakłada się, że stosunek sił pchających i ciągnących jest równy, co jest nieprawidłowe w kontekście różnicy powierzchni czynnych. Siła pchająca tłok przy pełnym ciśnieniu odnosi się do całkowitej powierzchni tłoka, jednak siła ciągnąca działa tylko na powierzchni tłoczyska. Niektórzy mogą błędnie myśleć, że skoro średnica tłoka jest dwa razy większa, to wpływa to liniowo na proporcje sił, co jest niezgodne z prawem Pascala, które mówi o rozkładzie ciśnienia w cieczy czy gazie. Ta nieprawidłowa interpretacja prowadzi do nieporozumień w obliczeniach i może skutkować wyborem niewłaściwych komponentów w systemach pneumatycznych. W rzeczywistości, skomplikowanie układów pneumatycznych wymaga analizy nie tylko średnic, ale także ciśnień roboczych oraz charakterystyki zastosowania siłowników. Uznawanie niewłaściwych proporcji sił w praktyce może doprowadzić do uszkodzenia elementów systemu i obniżenia efektywności maszyn. Warto zatem przywiązywać dużą wagę do precyzyjnego obliczania stosunków sił oraz właściwego projektowania układów zgodnie z normami, które zapewniają efektywność oraz bezpieczeństwo operacyjne.

Pytanie 11

Który siłownik przedstawiony na ilustracjach, należy zamontować w układzie w miejscu oznaczonym cyfrą 5.

Ilustracja do pytania
A. Siłownik 1.
B. Siłownik 3.
C. Siłownik 4.
D. Siłownik 2.
Siłownik 4 to naprawdę dobry wybór do montażu w miejscu oznaczonym cyfrą 5. Spełnia wszystkie techniczne i funkcjonalne wymagania układu hydraulicznego, który widzimy na schemacie. Co ważne, ten siłownik jest liniowy, więc dobrze radzi sobie z generowaniem prostoliniowego ruchu, co jest istotne tam, gdzie zależy nam na precyzyjnych położeniach. W branży hydraulicznej dobór odpowiedniego siłownika jest kluczowy dla efektywności działania całego systemu. Siłownik 4 sprawdzi się tam, gdzie trzeba wygenerować dużą siłę, a jednocześnie ma małe wymiary, co czyni go świetnym wyborem w ograniczonych przestrzeniach. Pamiętaj, że przy wyborze siłownika warto zwrócić uwagę na takie parametry jak ciśnienie robocze, skok tłoka czy rodzaj medium. Dzięki zastosowaniu siłownika 4 w odpowiednim miejscu, można znacząco poprawić działanie całego układu hydraulicznego.

Pytanie 12

Materiał o których właściwościach należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
A.2,7040
B.2,75320
C.7,70320
D.8,8535
A. B.
B. A.
C. C.
D. D.
Wybór odpowiedzi B jest właściwy, ponieważ materiał ten ma kluczowe właściwości, które spełniają wymagania dla konstrukcji lekkiej i odpornej na odkształcenia. Gęstość materiału wynosząca 2,75 g/cm³ sprawia, że jego masa jest zredukowana, co jest istotne w przypadku urządzeń mechatronicznych, gdzie waga ma bezpośredni wpływ na mobilność i wydajność. Ponadto, granica plastyczności 320 MPa oznacza, że materiał jest w stanie wytrzymać znaczne obciążenia bez trwałych deformacji. Przykładowe zastosowania obejmują elementy konstrukcyjne w robotyce oraz podzespoły w przenośnych urządzeniach, które muszą zachować swoją formę podczas użytkowania. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór materiałów o niskiej gęstości i wysokiej wytrzymałości jest kluczowy dla zapewnienia efektywności energetycznej i niezawodności urządzeń. W branży mechatronicznej często wykorzystuje się materiały kompozytowe, które łączą te pożądane właściwości, co dodatkowo podkreśla znaczenie odpowiedniego doboru materiałów.

Pytanie 13

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 3 bar, pABS = 4 bar
B. pNAD = 1 bar, pABS = 2 bar
C. pNAD = 2 bar, pABS = 1 bar
D. pNAD = 3 bar, pABS = 3 bar
Wartości ciśnienia podane w niepoprawnych odpowiedziach wskazują na nieporozumienia dotyczące podstawowych zasad ciśnienia. Często zdarza się, że mylnie przyjmuje się, iż ciśnienie względne jest równe ciśnieniu absolutnemu, co prowadzi do błędnych obliczeń. Na przykład, odpowiedzi, które wskazują pNAD = 2 bar czy pNAD = 1 bar, ignorują podstawowy fakt, że ciśnienie względne dodaje się do ciśnienia atmosferycznego, a nie je zastępuje. W przypadku gdy pNAD wynosi 2 bary, ciśnienie absolutne wynosiłoby tylko 3 bary, co jest sprzeczne z danymi w pytaniu. Również koncepcja, w której pNAD = 3 bar i pABS = 3 bar, jest błędna, ponieważ ciśnienie absolutne nie może być niższe lub równe ciśnieniu nadciśnienia. W rzeczywistości, aby właściwie zrozumieć relacje między ciśnieniem względnym a ciśnieniem absolutnym, ważne jest, aby wiedzieć, że pABS zawsze musi być równe lub wyższe od pNAD, co wynika z definicji tych parametrów. W praktyce, w inżynierii mechanicznej i procesowej istotne jest zrozumienie i poprawne obliczanie tych ciśnień, aby zapewnić bezpieczeństwo oraz efektywność przy projektowaniu systemów, takich jak zbiorniki ciśnieniowe, które muszą spełniać odpowiednie normy, takie jak dyrektywa ciśnieniowa 2014/68/UE.

Pytanie 14

Na płytce drukowanej w miejscach oznaczonych cyframi 1, 2, 3 należy zamontować

Ilustracja do pytania
A. 1 - kondensator elektrolityczny, 2 - diodę prostowniczą, 3 - rezystor.
B. 1 - kondensator elektrolityczny, 2 - rezystor, 3 - diodę prostowniczą.
C. 1 - diodę prostowniczą, 2 - kondensator elektrolityczny, 3 - rezystor.
D. 1 - diodę prostowniczą, 2 - rezystor, 3 - kondensator elektrolityczny.
Twoja odpowiedź jest prawidłowa. Miejsce oznaczone cyfrą 1 jest przeznaczone na diodę prostowniczą, co można zidentyfikować po charakterystycznym symbolu diody, który często przedstawia trójkąt i linię. Dioda prostownicza jest kluczowym elementem w obwodach elektronicznych, gdzie pełni funkcję prostowania prądu, co jest istotne w zasilaczach i układach rectifier. Miejsce oznaczone cyfrą 2 jest przeznaczone na kondensator elektrolityczny. Kondensatory te są używane głównie do filtracji w zasilaczach oraz do stabilizacji napięcia, co jest niezbędne dla prawidłowego działania układów elektronicznych. Ostatnie miejsce, oznaczone cyfrą 3, jest przeznaczone na rezystor. Rezystory są powszechnie stosowane do ograniczenia przepływu prądu w obwodach oraz do regulacji napięcia. Zrozumienie funkcji tych komponentów jest kluczowe w projektowaniu i analizie obwodów elektronicznych, a ich prawidłowy montaż na płytce drukowanej zgodnie z oznaczeniami jest niezbędny dla stabilności i bezpieczeństwa całego układu.

Pytanie 15

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. pierścieniowe.
B. elastyczne kłowe.
C. jednokierunkowe.
D. elastyczne palcowe.
Sprzęgło elastyczne kłowe, które zauważyłeś na zdjęciu, jest znane z tego, że potrafi radzić sobie z drobnymi odchyleniami w osi i kącie pomiędzy dwoma wałami. Czerwone elementy kłowe to kluczowa część tego sprzęgła, a ich elastyczność pozwala na tłumienie wibracji i zmniejsza ryzyko uszkodzeń. Wiesz, w przemyśle często korzysta się z takich sprzęgieł w silnikach elektrycznych lub przekładniach, gdzie są obecne jakieś ekscentryczne ruchy. Co ciekawe, ich konstrukcja sprawia, że są bardziej odporne na obciążenia dynamiczne, co spełnia normy ISO dotyczące sprzęgieł mechanicznych. No i warto dodać, że używanie tych sprzęgieł może poprawić efektywność energetyczną systemów, bo zmniejsza straty wynikające z wibracji. Dobrze jest zrozumieć, jak działa sprzęgło elastyczne kłowe, zwłaszcza dla inżynierów, którzy projektują systemy mechaniczne, bo to pozwala na lepszą wydajność i trwałość urządzeń.

Pytanie 16

Przedstawiony na rysunku schemat podłączenia dwóch niezależnych źródeł napięcia stałego jest stosowany do zasilania silnika prądu stałego

Ilustracja do pytania
A. obcowzbudnego.
B. szeregowo-bocznikowego.
C. bocznikowego.
D. szeregowego.
W przypadku silnika szeregowego, uzwojenie wzbudzenia jest połączone w szereg z uzwojeniem twornika, co oznacza, że prąd wzbudzenia zależy bezpośrednio od prądu płynącego przez silnik. W efekcie, zmiana obciążenia silnika wpływa na jego moment obrotowy, co nie jest zgodne z opisaną w pytaniu konfiguracją. Silnik bocznikowy z kolei charakteryzuje się tym, że uzwojenie wzbudzenia jest podłączone równolegle do uzwojenia twornika, co również nie spełnia warunków przedstawionego schematu, gdzie źródła napięcia są niezależne. Silnik szeregowo-bocznikowy łączy cechy obu wcześniej opisanych typów, ale również nie wykorzystuje niezależnego źródła zasilania dla uzwojenia wzbudzenia. Wszystkie te podejścia skupiają się na zasilaniu uzwojenia wzbudzenia z tego samego źródła, co może prowadzić do ograniczeń w kontroli momentu obrotowego oraz prędkości silnika. W praktyce, wybór odpowiedniego typu silnika powinien być oparty na szczegółowej analizie wymagań aplikacji, a stosowanie silników obcowzbudnych, które oferują bardziej elastyczne możliwości regulacji, jest zalecane w sytuacjach, gdzie precyzyjne sterowanie jest kluczowe.

Pytanie 17

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
B. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających
C. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
D. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
Demontaż urządzenia mechatronicznego wymaga precyzyjnego podejścia, a niektóre z zaproponowanych kolejności działań mogą prowadzić do poważnych problemów. Na przykład, rozpoczynanie demontażu od wyciągnięcia elementów zabezpieczających bez wcześniejszego odłączenia instalacji zewnętrznych jest niebezpieczne. Tego typu podejście może prowadzić do przypadkowego uruchomienia urządzenia albo porażenia prądem. W kontekście kolejności działań przy demontażu, niezwykle istotne jest, aby najpierw zadbać o bezpieczne usunięcie źródeł zasilania oraz innych podłączonych systemów, zanim przystąpi się do rozkręcania lub wyjmowania jakichkolwiek elementów. Kolejnym błędem jest pomijanie kolejności przy zdjęciu osłon i pokryw, co może skutkować uszkodzeniem delikatnych części wewnętrznych czy narzędzi. Niepoprawne podejścia do demontażu są często wynikiem braku wiedzy na temat struktury urządzenia i znaczenia zachowania odpowiedniej sekwencji działań. Zrozumienie mechaniki działania urządzenia oraz przestrzeganie standardów bezpieczeństwa to kluczowe elementy, które mają na celu nie tylko skuteczność demontażu, ale także ochronę osoby dokonującej tych czynności oraz samego urządzenia. Ignorowanie tych zasad prowadzi do błędów, które mogą skutkować kosztownymi naprawami i narażeniem zdrowia pracowników.

Pytanie 18

W celu uzupełnienia smaru w łożysku przedstawionym na rysunku należy użyć

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Aby skutecznie uzupełnić smar w łożysku, kluczowe jest wykorzystanie odpowiednich narzędzi, takich jak smarownica, co potwierdza poprawność odpowiedzi D. Smarownice, w porównaniu do innych narzędzi, oferują precyzyjne i kontrolowane dozowanie smaru, co jest istotne dla efektywności i trwałości łożysk. Właściwe smarowanie łożysk jest nie tylko kwestią wydajności, ale także wpływa na bezpieczeństwo całego mechanizmu, w którym się znajdują. W praktyce, stosowanie smarownic jest zgodne z najlepszymi praktykami w zakresie konserwacji maszyn, ponieważ pozwala na minimalizowanie ryzyka przepełnienia lub niedoboru smaru, co może prowadzić do uszkodzenia łożysk. Regularne stosowanie smarownic w ramach planowanych przeglądów technicznych nie tylko zapewnia długotrwałą wydajność, ale również zmniejsza koszty związane z naprawami, co jest zgodne z zasadami zarządzania majątkiem i efektywności operacyjnej w branży. Z tego powodu, znajomość i umiejętność stosowania smarownicy jest kluczowa dla każdej osoby zajmującej się konserwacją maszyn.

Pytanie 19

Enkoder to urządzenie przetwarzające

A. prędkość obrotową na regulowane napięcie stałe
B. prędkość obrotową na impulsy elektryczne
C. kąt obrotu na regulowane napięcie stałe
D. kąt obrotu na impulsy elektryczne
Wszystkie zaproponowane odpowiedzi, z wyjątkiem poprawnej, zawierają błędne interpretacje funkcji i zastosowania enkoderów. Przede wszystkim, enkodery nie przekształcają prędkości obrotowej na impulsy elektryczne, co sugeruje jedna z błędnych odpowiedzi. W rzeczywistości, enkoder mierzy kąt obrotu, a nie prędkość. Prędkość obrotowa jest pochodną kąta obrotu w czasie, co oznacza, że można ją obliczyć na podstawie danych z enkodera, ale sam enkoder nie dokonuje tego pomiaru bezpośrednio. Drugą nieprawidłową koncepcją jest przekształcanie kąta obrotu na regulowane napięcie stałe. Chociaż niektóre systemy mogą wykorzystywać sygnały analogowe, większość nowoczesnych enkoderów generuje impulsy cyfrowe, a nie sygnały analogowe. Zastosowanie regulowanego napięcia stałego jest typowe dla innych rodzajów czujników, takich jak potencometry, które działają na innej zasadzie. Błędne przekonanie, że enkoder jest odpowiedzialny za przekształcanie sygnału na napięcie stałe, prowadzi do mylnych wniosków o jego funkcjonowaniu. Kluczowym jest zrozumienie, że enkoder jest precyzyjnym urządzeniem do pomiaru ruchu, a nie do generowania sygnałów analogowych, co jest istotnym aspektem przy projektowaniu systemów automatyzacji i robotyki.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 2,3 ?
B. 529 ?
C. 23 k?
D. 460 ?
Wynik 2,3 Ω to zdecydowanie za mało dla żarówki przy zadanym napięciu i mocy. To sugeruje, że żarówka by przewodziła ogromne prądy, co byłoby niebezpieczne. A 23 kΩ? No, to już za dużo, bo sugeruje, że żarówka w ogóle nie przewodzi prądu, co mija się z rzeczywistością. 460 Ω mogłoby być efektem złych obliczeń dotyczących mocy lub napięcia, ale to też nie pasuje do praktycznych zastosowań. W obliczeniach rezystancji trzeba brać pod uwagę zarówno napięcie, jak i moc, inaczej możemy dojść do błędnych konkluzji. Najczęstsze pomyłki to na przykład mylenie jednostek czy błędne przekształcanie wzorów. W projektowaniu obwodów niezwykle istotne jest, żeby dobrze rozumieć rezystancję komponentów, bo ma to wpływ na ich dobór, a przez to na wydajność i bezpieczeństwo całego systemu elektrycznego.

Pytanie 24

Zestyk K1, oznaczony na schemacie czerwoną ramką, odpowiada za

Ilustracja do pytania
A. podtrzymanie zasilania cewek przekaźników K1 i K2
B. włączenie zasilania cewek przekaźników K1 i K2
C. blokowanie jednoczesnego załączenia cewek przekaźników K1 i K2
D. wyłączenie zasilania cewek przekaźników K1 i K2
Zestyk K1, oznaczony na schemacie czerwoną ramką, pełni funkcję samopodtrzymania, co oznacza, że po zamknięciu obwodu przez przycisk S1, jest w stanie podtrzymać zasilanie cewek przekaźników K1 i K2. Po zwolnieniu przycisku S1, zestyk K1 zapewnia, że obwód pozostaje zamknięty, co pozwala na kontynuowanie pracy przekaźników. Tego rodzaju rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie istotne jest, aby urządzenia mogły pracować autonomicznie po aktywacji przez operatora. Przykładem praktycznym mogą być systemy sterowania silnikami, gdzie samopodtrzymujące się obwody zapewniają, że silnik pozostanie włączony do momentu, gdy nie zostanie podjęta decyzja o wyłączeniu go. W kontekście standardów, takie podejście jest zgodne z zasadami projektowania systemów automatyki, które zalecają minimalizację punktów awarii oraz zapewnienie ciągłości działania. Wiedza o funkcji samopodtrzymania jest kluczowa dla zrozumienia działania bardziej skomplikowanych systemów sterujących oraz ich bezpieczeństwa.

Pytanie 25

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego izotropowego
B. z litego materiału magnetycznego anizotropowego
C. z pakietu blach elektrotechnicznych nie izolowanych od siebie
D. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
Sugerowanie, że rdzeń wirnika silnika indukcyjnego można wykonać z litego materiału magnetycznego anizotropowego, jest nieprawidłowe z perspektywy inżynierii elektrycznej. Anizotropowość materiału oznacza, że jego właściwości magnetyczne są różne w różnych kierunkach, co w przypadku rdzenia wirnika byłoby niekorzystne. W silnikach indukcyjnych istotne jest, aby rdzeń miał jednorodne właściwości magnetyczne, co zapewnia optymalne zachowanie się pola magnetycznego. Lite materiały mogą prowadzić do powstawania silnych prądów wirowych, co zwiększa straty mocy i obniża efektywność silnika. Użycie pakietów blach elektrotechnicznych, które są wzajemnie izolowane, z kolei pozwala na ograniczenie tych strat. Zastosowanie litego materiału magnetycznego izotropowego nie rozwiązuje problemu strat prądów wirowych, ponieważ chociaż materiał jest jednorodny, to nadal sprzyja powstawaniu strat energetycznych poprzez generowanie prądów wirowych w strukturze. Wreszcie, wykonanie rdzenia z pakietu blach elektrotechnicznych nieizolowanych od siebie jest również nieprawidłowe. Takie podejście prowadziłoby do znacznych strat energii, a także do przegrzewania się rdzenia, co mogłoby wpłynąć na bezpieczeństwo i trwałość silnika. W przemyśle i inżynierii energetycznej stosuje się blachy elektrotechniczne o odpowiedniej grubości i właściwościach magnetycznych, aby zoptymalizować wydajność i niezawodność urządzeń elektrycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
B. HT - ester syntetyczny, najlepiej ulegający biodegradacji
C. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
D. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 29

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. buty ochronne
B. kask ochronny
C. okulary ochronne
D. maskę przeciwpyłową
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 30

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Epoksyt
B. Teflon
C. Polistyren
D. Żeliwo białe
Teflon, znany również jako politetrafluoroetylen (PTFE), jest materiałem, który ze względu na swoje unikalne właściwości, jest powszechnie stosowany w produkcji łożysk ślizgowych. Jego niska współczynnik tarcia, wysoka odporność na chemikalia oraz doskonałe właściwości dielektryczne czynią go idealnym wyborem w aplikacjach, gdzie minimalizacja tarcia jest kluczowa. Teflon jest często wykorzystywany w łożyskach w przemyśle motoryzacyjnym oraz w różnych maszynach przemysłowych, gdzie wymagana jest wysoka wydajność i długotrwała niezawodność. W produkcji łożysk ślizgowych Teflon może być stosowany samodzielnie lub w połączeniu z innymi materiałami, co pozwala na osiągnięcie jeszcze lepszych parametrów. Jako materiał o wysokiej wytrzymałości na ściskanie, Teflon może pracować w trudnych warunkach, co jest istotne w kontekście standardów jakości, takich jak ISO 9001, które podkreślają znaczenie trwałości i niezawodności komponentów przemysłowych. Dodatkowo, ze względu na swoje właściwości samosmarujące, łożyska wykonane z Teflonu wymagają mniejszej konserwacji, co przekłada się na obniżenie kosztów operacyjnych.

Pytanie 31

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. ochrony prądowej systemu
B. czujnika poziomu światła
C. wskaźnika działania systemu
D. przełącznika instalacyjnego systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 32

Demontaż przekładni pasowej zaczyna się od

A. zdemontowania koła pasowego o mniejszej średnicy
B. demontażu wałów
C. poluzowania naciągu pasów
D. zdemontowania koła pasowego o większej średnicy
Poluzowanie naciągu pasów jest kluczowym krokiem w demontażu przekładni pasowych, ponieważ pozwala na swobodne odłączenie elementów układu. W praktyce, zanim przystąpimy do demontażu, ważne jest, aby zminimalizować napięcie w pasach, co zapewnia łatwe usunięcie kół pasowych, zarówno większych, jak i mniejszych. Podczas pracy z przekładniami pasowymi, zgodnie z normami branżowymi, należy zawsze rozpoczynać demontaż od poluzowania naciągu, aby uniknąć uszkodzeń komponentów oraz zapewnić bezpieczeństwo. Przykładowo, w wielu zakładach przemysłowych, przed demontażem przekładni, technicy wykonują inspekcję stanu pasów oraz kół pasowych, aby upewnić się, że nie ma widocznych uszkodzeń. Taki proces pozwala na uniknięcie niepotrzebnych kosztów związanych z wymianą uszkodzonych elementów, a także przyspiesza proces konserwacji maszyn. Dlatego, poluzowanie naciągu pasów jest nie tylko procedurą techniczną, ale także praktycznym podejściem do zarządzania zasobami w zakładzie.

Pytanie 33

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Sprężarka pneumatyczna.
B. Silnik pneumatyczny.
C. Pompa hydrauliczna.
D. Silnik hydrauliczny.
Pompa hydrauliczna to takie urządzenie, które zamienia energię mechaniczną na hydrauliczną. To ważny element w wielu systemach hydraulicznych, więc warto o nim wiedzieć. Na rysunku można zobaczyć symbol graficzny, który pokazuje cechy pompy. Kształt koła to wirnik lub tłok, a trójkąt pokazuje, w którą stronę płynie medium. Pompy hydrauliczne znajdują zastosowanie w różnych dziedzinach, jak budownictwo, motoryzacja czy przemysł maszynowy. Jest nawet norma ISO 4413, która mówi, jakie powinny być wymagania dla systemów hydraulicznych. Dlatego znajomość tych symboli i ich zastosowania jest kluczowa, szczególnie dla inżynierów i techników, którzy projektują hydraulikę. Wybranie odpowiedniej pompy ma wpływ na efektywność i bezpieczeństwo całego systemu. Generalnie, zrozumienie, jak działają pompy hydrauliczne, pozwala na lepsze projektowanie i użytkowanie tych systemów, co w efekcie przynosi oszczędności i większą wydajność.

Pytanie 34

Zawory zwrotno-dławiące, w przedstawionym na rysunku układzie sterowania pneumatycznego, realizują dławienie

Ilustracja do pytania
A. na wylocie - zawór 1V1 i na wlocie - zawór 1V2
B. na wlocie - zawór 1VI i na wylocie - zawór 1V2
C. na wylocie - zawory 1V1 i 1V2
D. na wlocie - zawory 1V1 i 1V2
Zawory zwrotno-dławiące 1V1 i 1V2 są umieszczone na wlocie do siłownika pneumatycznego, co jest naprawdę ważne dla tego jak działa cały układ pneumatyczny. Dławienie na początku pozwala na lepszą kontrolę nad przepływem medium, a to z kolei wpływa na prędkość ruchu siłownika. Przykładowo, w automatyzacji przemysłowej, gdzie precyzja ma kluczowe znaczenie, użycie tych zaworów na wlocie pozwala na płynniejsze i bardziej kontrolowane ruchy. Z mojego doświadczenia, to podejście zwiększa efektywność systemu i zmniejsza ryzyko uszkodzenia siłownika przez zbyt szybki ruch. Warto też zauważyć, że dobrze ustawione zawory zwrotno-dławiące są zgodne z normami ISO, co gwarantuje optymalne warunki pracy i bezpieczeństwo. No i nie zapominajmy, że swobodny powrót medium z siłownika do zbiornika jest kluczowy, żeby uniknąć opóźnień w reakcji układu, co jest ważne w dynamicznych zastosowaniach.

Pytanie 35

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Spawanie gazowe
B. Spawanie elektryczne
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 36

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. Ku=12/230
B. Ku=12/0,83
C. Ku=230/12
D. Ku=80/0,83
Odpowiedź Ku=230/12 jest poprawna, ponieważ przekładnia napięciowa transformatora jest definiowana jako stosunek napięcia na uzwojeniu pierwotnym do napięcia na uzwojeniu wtórnym. W przypadku tego konkretnego transformatora, napięcie pierwotne wynosi 230V, a napięcie wtórne wynosi 12V. Dlatego, stosując wzór Ku = U1/U2, uzyskujemy wartości 230V/12V, co daje przekładnię 230/12. Przekładnia ta jest kluczowa w projektowaniu systemów zasilania, ponieważ pozwala określić, jak zmienia się napięcie w transformatorze. W praktyce, odpowiednia przekładnia napięciowa jest istotna dla zapewnienia, że urządzenia zasilane z transformatora działają w optymalnych warunkach. Na przykład, w instalacjach oświetleniowych oraz w systemach zasilania różnego rodzaju urządzeń elektronicznych, znajomość przekładni napięciowej pozwala inżynierom na właściwe dobieranie transformatorów do konkretnych aplikacji, co jest zgodne z najlepszymi praktykami w dziedzinie elektrotechniki i elektroniki.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 5 napędów
B. 4 napędy
C. 6 napędów
D. 3 napędy
Odpowiedź wskazująca na pięć napędów w manipulatorze jest prawidłowa, ponieważ wiele nowoczesnych manipulatorów wykorzystuje zaawansowane systemy napędowe, które pozwalają na precyzyjne sterowanie ruchem. W przypadku pięciu napędów, każdy z nich może odpowiadać za różne osie ruchu, co zapewnia większą elastyczność i dokładność podczas wykonywania zadań. Na przykład, w robotyce przemysłowej, manipulatory z pięcioma napędami są w stanie wykonać bardziej skomplikowane operacje, takie jak montaż, pakowanie czy manipulowanie delikatnymi przedmiotami. W praktyce, stosowanie pięciu napędów pozwala na uzyskanie większej liczby stopni swobody, co jest kluczowe w wielu aplikacjach. Dobre praktyki w projektowaniu manipulatorów sugerują również, że większa liczba napędów może poprawić zdolności adaptacyjne robota, umożliwiając mu lepsze dostosowanie się do zmiennych warunków pracy. Ponadto, zgodnie z normami ISO 10218 dotyczącymi bezpieczeństwa robotów przemysłowych, odpowiednia liczba napędów może wpłynąć na poprawę stabilności i bezpieczeństwa operacji, co jest kluczowe w środowisku przemysłowym.

Pytanie 39

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
B. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Wiele osób myli funkcję filtrów dolnoprzepustowych, co prowadzi do błędnych wniosków. W przypadku pierwszej odpowiedzi, wskazanie, że filtr dolnoprzepustowy przepuszcza sygnały o częstotliwości większej od granicznej jest sprzeczne z definicją jego działania. Filtr dolnoprzepustowy ma na celu eliminację tych wyższych częstotliwości, a nie ich przepuszczanie. W praktyce, może to prowadzić do poważnych problemów w projektowaniu układów elektronicznych, gdzie konieczne jest zachowanie jakości sygnału. Z kolei odpowiedź mówiąca o wzmacnianiu sygnałów o częstotliwości mniejszej od granicznej jest również myląca. Filtry dolnoprzepustowe nie wzmacniają sygnałów, lecz je tłumią lub przepuszczają w zależności od ich częstotliwości. W realnych zastosowaniach, takie nieporozumienia mogą prowadzić do błędnych decyzji w konstrukcji układów, które nie będą działały zgodnie z zamierzeniem. Zrozumienie pracy filtrów dolnoprzepustowych jest kluczowe w inżynierii sygnałowej, gdzie efektywność filtracji wpływa na jakość końcowego sygnału oraz zgodność z normami branżowymi. Typowe błędy myślowe, takie jak mylenie funkcji wzmacniania z przepuszczaniem, mogą prowadzić do poważnych usterek w projektach elektronicznych, a także do obniżenia jakości usług w systemach komunikacyjnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.