Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 13 grudnia 2025 15:56
  • Data zakończenia: 13 grudnia 2025 16:03

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kolejność czynności przy montażu anteny satelitarnej powinna być następująca:

A. złożenie anteny, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu
B. ustawienie kąta elewacji oraz azymutu, złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
C. złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu
D. złożenie anteny, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
Poprawna odpowiedź wskazuje, że montaż anteny satelitarnej powinien zaczynać się od jej zmontowania, co jest kluczowe dla zapewnienia stabilności i funkcjonalności całego systemu. Następnie, zamocowanie anteny w odpowiednim miejscu jest niezbędne, ponieważ musi być ona umiejscowiona w taki sposób, aby miała bezproblemowy dostęp do sygnału satelitarnego. Wykonanie instalacji kablowej to kolejny istotny krok, ponieważ prawidłowe połączenie kabli zapewni efektywne przesyłanie sygnału do odbiornika. Ostatnim etapem jest ustawienie kąta elewacji i azymutu, które są niezbędne do precyzyjnego skierowania anteny na satelitę. Należy pamiętać, że każdy z tych kroków jest ze sobą powiązany i pominięcie jednego z nich może prowadzić do znacznych problemów z jakością sygnału. W praktyce, stosowanie się do tej kolejności zapewnia, że proces montażu będzie przebiegał sprawnie i efektywnie, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej, a także z instrukcjami producentów anten.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Niebieskiego
B. Szarego
C. Czarnego
D. Brązowego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Adres IP bramy w rejestratorze, który jest podłączony do sieci komputerowej, to adres

A. kamery
B. przełącznika
C. rutera
D. serwera DNS
Adres IP bramy w rejestratorze podłączonym do sieci komputerowej to adres rutera, ponieważ ruter pełni rolę punktu komunikacyjnego między różnymi sieciami. W każdej sieci lokalnej ruter działa jako brama, umożliwiając transmisję danych do i z internetu oraz innych sieci. W praktyce, każdy urządzenie w sieci, takie jak kamery czy komputery, musi znać adres bramy, aby móc wysyłać pakiety poza swoją lokalną podsieć. Przykładowo, jeśli kamera IP w sieci lokalnej chce wysłać dane do zdalnego serwera, musi skontaktować się z ruterem, który następnie przekieruje te dane do odpowiedniego miejsca w internecie. Ta struktura jest kluczowa dla funkcjonowania sieci komputerowych i jest zgodna z normami TCP/IP. Właściwe skonfigurowanie adresu bramy jest istotne, aby urządzenia mogły efektywnie komunikować się ze sobą oraz z zewnętrznymi sieciami.

Pytanie 6

Jak monitoruje się jakość sygnału telewizyjnego u poszczególnych abonentów telewizji kablowej?

A. współczynnik szumów w sygnale dostarczanym przez stację czołową do abonentów
B. poziom sygnału wizyjnego w gniazdach abonenckich różnych użytkowników
C. współczynnik szumów w kanale zwrotnym poszczególnych abonentów
D. poziom sygnału przesyłanego przez stację czołową do abonentów
Odpowiedź dotycząca monitorowania jakości sygnału telewizyjnego poprzez współczynnik szumów w kanale zwrotnym poszczególnych abonentów jest trafna, ponieważ kanał zwrotny jest kluczowym elementem w systemach telewizji kablowej. Współczynnik szumów pozwala na ocenę stosunku sygnału do szumów, co jest istotne dla zapewnienia wysokiej jakości transmisji. W praktyce, monitorowanie tego parametru umożliwia szybkie wykrywanie usterek oraz identyfikowanie obszarów, gdzie jakość sygnału może być niedostateczna. Stosowanie standardów, takich jak DOCSIS, zapewnia odpowiednie metodyki pomiarowe, co pozwala operatorom na efektywne zarządzanie siecią. Dzięki tym pomiarom, operatorzy mogą podejmować działania korygujące, takie jak regulacja wzmacniaczy lub dostosowanie konfiguracji sieci, co w konsekwencji prowadzi do zadowolenia abonentów i redukcji skarg dotyczących jakości usług.

Pytanie 7

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. Bluetooth
B. IrDA
C. WiFi
D. NFC
IrDA (Infrared Data Association) to standard komunikacyjny, który wykorzystuje podczerwień do przesyłania danych pomiędzy urządzeniami. W odróżnieniu od pozostałych standardów wymienionych w pytaniu, takich jak WiFi, NFC i Bluetooth, które operują na falach radiowych, IrDA działa w zakresie podczerwieni, co oznacza, że wymaga bezpośredniej linii wzroku między nadajnikiem a odbiornikiem. Przykładem zastosowania IrDA mogą być połączenia między urządzeniami mobilnymi a drukarkami, gdzie dane są przesyłane bezprzewodowo, ale w sposób wymagający precyzyjnego ustawienia obu urządzeń. IrDA była powszechnie stosowana w starszych telefonach komórkowych oraz laptopach do przesyłania plików. Ze względu na swoje ograniczenia, takie jak krótki zasięg oraz konieczność utrzymania linii wzroku, IrDA nie zdołała utrzymać konkurencyjnej pozycji wobec technologii radiowych, które oferują większą wszechstronność i wygodę. Warto również zauważyć, że IrDA była jednym z pierwszych standardów w zakresie bezprzewodowej komunikacji, co czyni ją przykładem historycznym w kontekście rozwoju technologii transmisji danych.

Pytanie 8

Jakie czynności należy podjąć w pierwszej kolejności, udzielając pomocy osobie porażonej prądem elektrycznym?

A. odciąć porażonego od źródła prądu
B. przeprowadzić sztuczne oddychanie
C. zadzwonić po pomoc medyczną
D. wykonać masaż serca
Odpowiedź "uwolnić porażonego spod napięcia" jest prawidłowa, ponieważ w przypadku porażenia prądem elektrycznym najważniejszym krokiem jest zapewnienie bezpieczeństwa zarówno osobie poszkodowanej, jak i osobie udzielającej pomocy. Bezpośredni kontakt z prądem może prowadzić do poważnych obrażeń, a nawet śmierci, dlatego należy najpierw usunąć źródło zagrożenia. Można to zrobić poprzez odłączenie zasilania, użycie narzędzi izolowanych lub, w przypadku braku takiej możliwości, przesunięcie porażonego na bezpieczną odległość za pomocą przedmiotu nieprzewodzącego. Po uwolnieniu osoby z niebezpiecznej sytuacji, można przejść do oceny jego stanu zdrowia i, w razie potrzeby, wezwać pomoc medyczną. Zgodnie z wytycznymi Stowarzyszenia Czerwonego Krzyża, kluczowe jest działanie w taki sposób, aby nie narażać siebie ani innych na dodatkowe niebezpieczeństwo. W praktyce, znajomość procedur udzielania pierwszej pomocy w przypadku porażenia prądem elektrycznym może uratować życie, dlatego ważne jest, aby regularnie brać udział w szkoleniach z zakresu pierwszej pomocy.

Pytanie 9

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. przerwanie jednej z żył
B. błędne podłączenie kabla
C. zbyt dużą rezystancję pętli
D. uszkodzenie izolacji
Zbyt duża rezystancja pętli nie jest bezpośrednio związana ze wzrostem pojemności skutecznej torów transmisyjnych. Wysoka rezystancja w rzeczywistości może wskazywać na problemy z przewodnictwem, takie jak korozja lub nieodpowiednie połączenia, ale nie prowadzi do zwiększenia pojemności. Przerwanie jednej z żył również nie jest odpowiedzialne za wzrost pojemności, lecz za całkowite zablokowanie sygnału, co uniemożliwia transmisję danych. Izolacja kabla, która uległa uszkodzeniu, może wprowadzać dodatkowe pojemności w obwodzie, a przerwanie żyły skutkuje brakiem transmisji sygnału. Nieprawidłowe podłączenie kabla może prowadzić do problemów z połączeniem, jednak nie należy mylić tego z pojemnością. Każdy z tych problemów może być mylnie interpretowany jako przyczyna wzrostu pojemności, co prowadzi do błędnych wniosków. Zrozumienie różnicy między rezystancją, pojemnością i ich wpływem na transmisję danych jest kluczowe dla diagnostyki sieci. Właściwe podejście do analizy stanu kabelków wymaga uwzględnienia wszystkich aspektów ich budowy oraz środowiska, w którym funkcjonują, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 10

Jaką topologię okablowania należy zastosować do zbudowania sieci komputerowej przedstawionej na schemacie?

Ilustracja do pytania
A. Magistrali.
B. Liniową.
C. Gwiazdy.
D. Pierścienia.
Topologia gwiazdy jest jedną z najpopularniejszych architektur sieciowych, szczególnie w zastosowaniach lokalnych, takich jak biura czy domowe sieci komputerowe. W tej konfiguracji każde urządzenie końcowe, takie jak komputery czy drukarki, jest połączone bezpośrednio z centralnym urządzeniem, którym zazwyczaj jest switch lub hub. Dzięki takiemu rozwiązaniu, w przypadku awarii jednego z kabli lub urządzeń końcowych, reszta sieci pozostaje nienauszona, co zwiększa jej niezawodność. Przykładowo, w sieciach Ethernet, standard IEEE 802.3 zaleca stosowanie topologii gwiazdy dla zwiększenia wydajności oraz łatwego zarządzania siecią. W przypadku potrzeby rozbudowy sieci, wystarczy dodać nowe urządzenia do centralnego switcha, co czyni tę topologię elastyczną i dostosowującą się do zmieniających się potrzeb użytkowników. W praktyce, topologia gwiazdy jest często stosowana w złożonych systemach, gdzie wydajność i bezpieczeństwo są kluczowe.

Pytanie 11

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. kondensatorem dostrojczym
B. filtr z regulowaną indukcyjnością
C. potencjometrem
D. cewką regulowaną
Kondensator dostrojczy jest elementem elektronicznym, który jest używany do regulacji częstotliwości obwodów rezonansowych w aplikacjach takich jak radioodbiorniki, nadajniki i systemy komunikacyjne. Działa na zasadzie zmiany pojemności, co wpływa na częstotliwość rezonansową obwodu LC (indukcyjność i kondensator). Przykładem zastosowania kondensatora dostrojczego może być dostrajanie fal radiowych w odbiornikach radiowych, gdzie użytkownik może dostosować pojemność kondensatora, aby odbierać różne stacje. W branży elektronicznej, szczególnie w projektowaniu filtrów pasmowych czy oscylatorów, stosowanie kondensatorów dostrojczych jest standardem, ponieważ pozwala na precyzyjne dostrojenie sygnałów do odpowiednich częstotliwości. Ponadto, dobrą praktyką jest zazwyczaj korzystanie z kondensatorów o wysokiej jakości dielektrycznej, co minimalizuje straty energii i poprawia stabilność działania urządzenia. W kontekście obwodów elektronicznych, znajomość właściwości kondensatorów dostrojczych i ich zastosowań jest kluczowa dla inżynierów i techników zajmujących się elektroniką.

Pytanie 12

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. zasilanych akumulatorowo
B. odpornych na wysoką temperaturę
C. wykonanych z elastycznych tworzyw sztucznych
D. izolowanych
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Montaż wtyku F na kablu koncentrycznym polega na

A. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
B. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
C. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
D. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
Odpowiedź wskazuje na prawidłowy proces montażu wtyku F na przewodzie koncentrycznym. Kluczowym krokiem jest usunięcie odciętej izolacji zewnętrznej, co pozwala na odsłonięcie oplotu. Oplot ten należy prawidłowo ułożyć wzdłuż przewodu, co jest istotne dla zapewnienia dobrego kontaktu elektrycznego oraz ochrony przed zakłóceniami elektromagnetycznymi. Następnie, po usunięciu izolacji żyły, nakręcamy wtyk, co powinno być wykonane z odpowiednią siłą, aby zapewnić solidne połączenie. Praktyczne przykłady zastosowania obejmują instalacje telewizyjne oraz systemy monitoringu, gdzie jakość sygnału jest kluczowa dla poprawnego działania. Dobre praktyki w zakresie montażu wtyków obejmują stosowanie odpowiednich narzędzi, takich jak wyspecjalizowane zaciskarki oraz monitorowanie jakości połączeń za pomocą mierników sygnału. Doświadczeni technicy zwykle przestrzegają standardów branżowych, takich jak ISO/IEC 11801, które zapewniają wytyczne dotyczące instalacji i jakości sygnalizacji w systemach telekomunikacyjnych.

Pytanie 15

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. diody.
B. tyrystora.
C. warystora.
D. tranzystora.
Tyrystor to super ważny element w elektronice, bo pozwala na kontrolowanie dużych prądów i napięć. Jak spojrzysz na jego symbol, to zauważysz, że przypomina diodę, ale ma dodatkową linię, która pokazuje, że to właśnie tyrystor. Często się go używa w prostownikach, regulatorach mocy czy różnych systemach zasilania. Zasada działania tyrystora jest taka, że zaczyna przewodzić prąd tylko wtedy, gdy dostanie sygnał na bramkę, dzięki czemu świetnie nadaje się do zastosowań, gdzie trzeba szybko kontrolować moc. Na przykład w systemach oświetleniowych tyrystory pozwalają na ściemnianie światła, a w silnikach dają możliwość płynnego sterowania prędkością. W elektronice ważne jest, żeby przestrzegać norm jakości i bezpieczeństwa przy projektowaniu układów z tyrystorami, bo to zapewnia ich niezawodność i długowieczność.

Pytanie 16

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. wysuszenie skóry dłoni
B. krwawienie podskórne
C. poparzenie dłoni
D. uszkodzenie wzroku
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 17

Przedstawiony na ilustracji symbol oznacza

Ilustracja do pytania
A. silnik trójfazowy z uzwojeniem aluminiowym o mocy 4,1 kW.
B. punkt recyclingu aluminium.
C. produkt wykonany z aluminium.
D. ekran elektromagnetyczny wykonany z blachy aluminiowej.
Wszystkie niepoprawne odpowiedzi zawierają istotne nieporozumienia dotyczące symboliki oraz funkcji materiałów. Odpowiedzi odnoszące się do ekranu elektromagnetycznego wykonanego z blachy aluminiowej oraz silnika trójfazowego z uzwojeniem aluminiowym wprowadzają zamieszanie, ponieważ nie są związane z symboliką recyklingu. Symbol recyklingu jest używany w celu identyfikacji materiałów, które mogą być przetwarzane ponownie, a nie do opisu produktów urządzeń mechanicznych czy elektronicznych. W przypadku punktu recyclingu aluminium, również jest to błędne zrozumienie, ponieważ symbol nie wskazuje na miejsce zbiórki, lecz na skład materiału. Często błędne odpowiedzi wynikają z powierzchownego zrozumienia oznaczeń materiałowych oraz ich specyfikacji. Kluczowe jest, aby zrozumieć, że oznaczenie materiału powinno być jednoznaczne i dotyczyć pochodzenia surowców, co jest szczególnie ważne w kontekście przepisów dotyczących ochrony środowiska oraz zrównoważonego rozwoju. Wiedza na temat właściwego oznaczania materiałów ma fundamentalne znaczenie dla inżynierów, projektantów oraz producentów, co pozwala im podejmować świadome decyzje dotyczące używanych surowców i procesów produkcyjnych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaki klucz jest używany do luzowania śrub z walcowym łbem oraz sześciokątnym gniazdem?

A. Oczkowy
B. Płaski
C. Nasadowy
D. Imbusowy
Klucz imbusowy, znany również jako klucz sześciokątny, jest idealnym narzędziem do odkręcania śrub z łbem walcowym z gniazdem sześciokątnym. Jego konstrukcja pozwala na efektywne przenoszenie momentu obrotowego, co jest kluczowe w pracy z elementami mocującymi, które mogą być narażone na wysokie obciążenia. Dzięki precyzyjnie wymiarowanym końcówkom, klucz imbusowy minimalizuje ryzyko uszkodzenia łba śruby, co jest częstym problemem przy używaniu innych rodzajów kluczy. Użycie klucza imbusowego jest zgodne z najlepszymi praktykami w inżynierii i mechanice, gdzie precyzyjne dopasowanie narzędzi do rodzajów śrub ma kluczowe znaczenie dla zapewnienia trwałości połączeń. Często stosuje się go w mechanice rowerowej, motocykli i w wielu konstrukcjach metalowych, co czyni go wszechstronnym narzędziem w arsenale każdego majsterkowicza.

Pytanie 21

Jakiego typu konwerter powinien być zastosowany do niezależnego bezpośredniego połączenia czterech tunerów satelitarnych?

A. Quad
B. Quatro
C. Monoblock
D. Twin
Wybór innego typu konwertera, takiego jak Twin, Quatro czy Monoblock, nie będzie odpowiedni dla potrzeby podłączenia czterech tunerów. Konwerter Twin, mimo że posiada dwa wyjścia, nie wystarczy do obsługi czterech urządzeń. Również Quatro, który jest przeznaczony dla systemów multiswitch, wymaga dodatkowych urządzeń do prawidłowej pracy. Jest to konwerter, który dostarcza cztery różne sygnały, ale nie może być używany bez multiswitcha, który umożliwi podłączenie większej liczby tunerów. Z kolei Monoblock to konwerter, który łączy w sobie dwa konwertery w jeden, ale również dostarcza tylko dwa wyjścia, co czyni go niewystarczającym dla czterech tunerów. Problem z wyborem niewłaściwego konwertera często wynika z braku zrozumienia różnicy między poszczególnymi typami konwerterów i ich funkcjonalnością w systemach satelitarnych. Ważne jest, aby dobrze przemyśleć, jakie są rzeczywiste potrzeby użytkowników oraz jak skonfigurowana jest instalacja. Użytkownicy często mogą popełniać błędy w myśleniu, zakładając, że każdy konwerter można łatwo dostosować do ich potrzeb, co nie jest prawdą, szczególnie w zaawansowanych systemach satelitarnych, gdzie każdy element ma swoje specyficzne zastosowanie i ograniczenia. Właściwy dobór komponentów, takich jak konwertery, jest kluczowy dla optymalizacji wydajności i niezawodności całego systemu satelitarnego.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W trakcie udzielania pomocy osobie z lekkim poparzeniem, co należy zrobić z obszarem urazu?

A. zabandażować
B. polewać zimną wodą
C. przemyć spirytusem
D. posmarować tłuszczem
Kiedy udzielamy pierwszej pomocy osobie, która ma lekkie poparzenie, najważniejsze jest, żeby polewać to miejsce zimną wodą. To naprawdę pomaga schłodzić skórę i sprawia, że ból jest mniejszy, a ryzyko dalszych uszkodzeń też maleje. Zimna woda działa jak naturalny środek przeciwzapalny, co może zapobiec powstawaniu bolesnych pęcherzy. Jeśli chodzi o czas, dobrze jest polewać przez przynajmniej 10-20 minut. Pamiętajmy, że woda nie powinna być lodowata, bo to może prowadzić do problemów z hipotermią. Gdy nie ma dostępu do wody, można spróbować użyć chłodzących kompresów. Takie podejście jest ważne, bo szybkie działanie w przypadku poparzenia ma duże znaczenie według wytycznych Międzynarodowej Rady Resuscytacji (ILCOR). Po schłodzeniu warto delikatnie osuszyć skórę i przykryć ranę odpowiednim opatrunkiem, żeby nie doszło do zakażenia. To wszystko, co opisałem, naprawdę ułatwia gojenie i zmniejsza ryzyko powikłań.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Aby ograniczyć niepożądany wpływ zewnętrznych pól elektromagnetycznych na przesył sygnałów cyfrowych przez kable, należy

A. zastosować przewody ekranowane
B. umieścić kable w rurkach z PVC
C. zakopać kable w ziemi na głębokości minimum 0,6 m
D. wykorzystać kable z wzmocnioną izolacją
Zastosowanie przewodów ekranowanych jest kluczowe dla minimalizowania negatywnego wpływu pól elektromagnetycznych na transmisję sygnałów cyfrowych. Ekranowanie polega na otoczeniu przewodów warstwą materiału przewodzącego, który działa jak bariera dla zewnętrznych pól elektromagnetycznych. Dzięki temu, sygnał wewnętrzny jest chroniony przed zakłóceniami, co pozwala na utrzymanie wysokiej jakości transmisji. Ekrany mogą być wykonane z różnych materiałów, takich jak miedź czy aluminium, co wpływa na skuteczność ochrony. Przykładowo, w zastosowaniach przemysłowych, gdzie przewody są narażone na silne pola elektromagnetyczne, stosowanie przewodów ekranowanych zgodnych z normą IEC 60227 jest standardem, który zapewnia niezawodność i stabilność działania systemów. W praktyce, przewody te znalazły zastosowanie w systemach komunikacyjnych, automatyce przemysłowej oraz w aplikacjach audio-wideo, gdzie jakość sygnału jest priorytetem.

Pytanie 26

Symbolem graficznym przedstawionym na rysunku oznacza się

Ilustracja do pytania
A. transformator.
B. autotransformator.
C. stabilizator.
D. przetwornicę.
Symbol, który widzisz na rysunku, to typowe oznaczenie transformatora. Można go znaleźć w normach, jak IEC 60617, które dotyczą symboli elektrycznych. Transformator to bardzo ważne urządzenie w elektroenergetyce, bo przekształca napięcie prądu przemiennego. Dzięki temu możliwe jest efektywne przesyłanie energii na dalekie odległości. Na przykład elektrownie używają transformatorów do podnoszenia napięcia, co zmniejsza straty energii w liniach przesyłowych. Dwa uzwojenia, które widać w symbolu jako równoległe linie, umożliwiają transfer energii między obwodami przy tej samej częstotliwości prądu. W praktyce transformator można też spotkać w różnych zasilaczach, które zmieniają wysokie napięcie sieciowe na niższe, co jest super ważne dla bezpieczeństwa różnych urządzeń elektronicznych. Dlatego znajomość transformatorów jest kluczowa w elektryce i automatyce, a także podczas projektowania obwodów elektrycznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie będzie powiązanie prądu spoczynkowego z temperaturą w tranzystorowej końcówce mocy wzmacniacza m.cz., gdy układ kompensacji temperaturowej nie funkcjonuje?

A. Brak powiązania prądu spoczynkowego z temperaturą
B. Prąd spoczynkowy zmaleje w miarę wzrostu temperatury
C. Prąd spoczynkowy może wzrosnąć lub zmaleć w zależności od użytych tranzystorów
D. Prąd spoczynkowy wzrośnie w miarę zwiększania się temperatury
Wzrost prądu spoczynkowego w tranzystorowej końcówce mocy wzmacniacza m.cz. wraz ze wzrostem temperatury jest zjawiskiem typowym i wynika z charakterystyki pracy tranzystorów bipolarno-junction (BJT). W miarę wzrostu temperatury, energia termiczna zwiększa ruchliwość nośników ładunku, co prowadzi do zwiększenia prądu bazy, a tym samym prądu kolektora. W praktyce oznacza to, że bez układu kompensacji temperaturowej, prąd spoczynkowy może wzrosnąć do wartości, które mogą uszkodzić tranzystor, a w skrajnych przypadkach prowadzić do zjawiska termicznej awarii. W celu zapobiegania tym skutkom, projektanci wzmacniaczy często stosują układy kompensacji temperaturowej, które automatycznie dostosowują prąd spoczynkowy do zmieniających się warunków. Wiedza ta jest niezbędna przy projektowaniu i eksploatacji końcówek mocy, gdzie stabilność parametrów pracy wpływa na jakość sygnału oraz trwałość komponentów. Zrozumienie tej zależności jest kluczowe dla inżynierów zajmujących się elektroniką i audio.

Pytanie 29

Ile wynosi maksymalna prędkość przesyłania danych do urządzenia, którego dane techniczne przedstawiono w tabeli?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM
A. 115 200 B/s
B. 14 400 B/s
C. 1 200 B/s
D. 150 B/s
Poprawna odpowiedź to 14 400 B/s, ponieważ jest to maksymalna prędkość przesyłania danych, która jest zgodna z typowymi standardami komunikacji w urządzeniach elektronicznych. W kontekście urządzeń, które komunikują się z komputerami lub innymi systemami, istnieją różne protokoły, które określają maksymalne prędkości transferu. Na przykład, standard RS-232, który jest powszechnie stosowany w komunikacji szeregowej, może obsługiwać prędkości do 115 200 bps, ale w praktyce wiele urządzeń korzysta z niższych prędkości, aby zapewnić stabilność i niezawodność transferu danych. W przypadku urządzeń, które mają maksymalną prędkość 14 400 B/s, oznacza to, że mogą one efektywnie przesyłać dane, nie przeciążając jednocześnie interfejsu komunikacyjnego. Przykłady zastosowania to modemy czy urządzenia do przesyłania danych, które wymagają stabilnych prędkości transferu, aby zapewnić ich sprawne działanie.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jakie typy złączy są stosowane w kamerach IP w systemach monitoringu?

A. RJ45
B. BNC
C. RJ11
D. SMA
Złącza SMA, BNC i RJ11, mimo że są powszechnie używane w różnych aplikacjach technologicznych, nie są odpowiednie w kontekście kamer IP. Złącze SMA jest stosowane głównie w systemach komunikacji bezprzewodowej, jako złącze antenowe, co czyni je nieprzydatnym dla kamer, które wymagają połączenia Ethernetowego do przesyłania danych. Z kolei złącze BNC jest przestarzałym rozwiązaniem stosowanym głównie w analogowych systemach wideo, takich jak kamery CCTV, gdzie obraz jest przesyłany w postaci sygnału analogowego. W systemach IP, które przesyłają dane w formie cyfrowej, wykorzystanie BNC nie jest zalecane, ponieważ nie obsługuje standardów transmisji IP. Złącze RJ11, znane jako złącze telefoniczne, również nie jest odpowiednie dla kamer IP, ponieważ jego zastosowanie ogranicza się do systemów telefonicznych i nie oferuje wystarczającej przepustowości ani możliwości przesyłania sygnału wideo. Wybór niewłaściwego złącza w systemie monitoringu może prowadzić do problemów z jakością obrazu, opóźnieniami oraz brakiem stabilności połączenia, co jest kluczowe w zabezpieczeniach i monitoringu obiektów.

Pytanie 32

Które urządzenie wchodzące w skład instalacji odbiornika satelitarnego przedstawiono na rysunku?

Ilustracja do pytania
A. Expander.
B. Transponder.
C. Konwerter.
D. Tuner.
Tuner satelitarny to kluczowy element instalacji odbiorczej, który pełni rolę odbiornika sygnału telewizyjnego z satelity. Jego zadaniem jest demodulacja i dekodowanie sygnału satelitarnego, co pozwala na odbiór programów telewizyjnych. W praktyce, tuner jest podłączany do telewizora oraz konwertera, który znajduje się na antenie satelitarnej. Tuner jest często wyposażony w funkcje takie jak nagrywanie programów, dostęp do interaktywnych usług telewizyjnych oraz obsługę różnych formatów kodowania. Współczesne tunery często wspierają różne standardy, takie jak DVB-S2, co pozwala na odbiór sygnału w wysokiej rozdzielczości. W branży telekomunikacyjnej istotne jest również, aby tuner był zgodny z przepisami i standardami UE, aby zapewnić wysoką jakość odbioru sygnału. Wiedza o funkcjach tunera jest niezbędna dla osób zajmujących się instalacjami satelitarnymi oraz użytkowników, którzy chcą maksymalnie wykorzystać możliwości swojego sprzętu.

Pytanie 33

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
B. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
C. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
D. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 34

Przełącznik satelitarny pozwala na podłączenie

A. jednego transpondera do dwóch anten satelitarnych
B. dwóch konwerterów do jednego tunera
C. jednego konwertera do dwóch tunerów
D. dwóch transponderów do jednej anteny satelitarnej
Wybór opcji, która sugeruje podłączenie dwóch transponderów do jednej anteny satelitarnej, jest błędny. Transpondery są komponentami znajdującymi się bezpośrednio na satelitach, które odbierają sygnały radiowe z Ziemi i przesyłają je z powrotem. Antena satelitarna nie może obsługiwać dwóch transponderów jednocześnie, ponieważ transpondery działają na różnych częstotliwościach i mają swoje unikalne parametry sygnałowe. Podobna pomyłka występuje w przypadku opcji, która mówi o podłączeniu jednego konwertera do dwóch tunerów. Tuner to urządzenie, które odbiera sygnał od konwertera, a jeden konwerter jest w stanie obsługiwać tylko jeden tuner w danym momencie, chyba że użyje się specjalnych rozwiązań, jak multiswitch. Z kolei możliwość podłączenia jednego transpondera do dwóch anten satelitarnych jest technicznie nieosiągalna, ponieważ transponder nie wysyła sygnału w sposób, który pozwalałby na jednoczesne odbieranie przez różne anteny. Kluczowe jest zrozumienie, że każdy komponent w systemie satelitarnym ma swoje specyficzne zadania i ograniczenia, a ich błędne zestawienie może prowadzić do degradacji jakości sygnału lub całkowitej jego utraty. Takie pomyłki mogą wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu satelitarnego.

Pytanie 35

W systemie wykorzystano przetwornik o rozdzielczości 8-bitowej. Jaka jest wartość rozdzielczości napięciowej, gdy zakres pomiarowy wynosi od 0 V do 2,56 V?

A. 32 mV
B. 100 mV
C. 320 mV
D. 10 mV
Odpowiedzi 100 mV, 32 mV oraz 320 mV są wynikiem niepoprawnych obliczeń dotyczących rozdzielczości napięciowej przetwornika 8-bitowego. Można zauważyć, że często popełnianym błędem jest mylenie jednostek oraz niewłaściwe interpretowanie zakresu przetwornika. Na przykład, rozdzielczość 100 mV sugerowałaby, że przetwornik reprezentuje tylko 25 poziomów napięcia w skali od 0 V do 2,56 V, co jest niezgodne z jego 256 poziomami. Z kolei rozdzielczość 320 mV w ogóle nie mieści się w zakresie od 0 V do 2,56 V, ponieważ jest większa od maksymalnego napięcia. Niektóre z tych odpowiedzi mogą wynikać z błędnej logiki dzielenia zakresu przez liczbę bitów, zamiast przez liczby poziomów. W praktyce, do obliczania rozdzielczości przetwornika, kluczowe jest zrozumienie, że różnice napięcia muszą być dzielone przez całkowitą liczbę poziomów, co prowadzi do dokładnych i wiarygodnych wyników. Ignorowanie tego fundamentalnego aspektu może prowadzić do poważnych błędów w projektach inżynieryjnych oraz zastosowaniach przemysłowych, gdzie precyzyjne pomiary mają bezpośredni wpływ na efektywność i jakość produkcji.

Pytanie 36

Jakiego środka używa się do oczyszczania płytek drukowanych po zamontowaniu elementów elektronicznych?

A. Benzyny
B. Alkoholu
C. Kwasu
D. Wody
Izopropanol to naprawdę świetny wybór do czyszczenia płytek drukowanych po lutowaniu. Działa jak rozpuszczalnik i szybko odparowuje, co jest mega przydatne, bo dzięki temu zmniejszamy ryzyko uszkodzenia elementów. W branży to już standard – zawsze warto umyć płytki, żeby pozbyć się resztek topnika, olejów i innych brudów, które mogą wpłynąć na to, jak wszystko będzie działać. Jak używasz 99% alkoholu izopropylowego, to skutecznie usuwasz pozostałości po lutowaniu. To z kolei zapobiega takim problemom jak korozja czy zwarcia. No i czyszczenie alkoholem jest zgodne z normami IPC-A-610 i IPC-J-STD-001, więc wiadomo, że to sprawdzone metody. W sumie, to szybkie i efektywne, dlatego wielu w warsztatach wybiera właśnie alkohol do czyszczenia płytek.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby wymienić moduł klawiatury z czytnikiem w systemach kontroli dostępu, co należy zrobić?

A. otworzyć moduł klawiatury, wymienić moduł, wyłączyć i włączyć zasilanie w celu resetu systemu
B. wyłączyć zasilanie systemu, otworzyć moduł klawiatury, wymienić moduł, włączyć zasilanie
C. otworzyć moduł klawiatury, wyłączyć zasilanie systemu, przeprowadzić wymianę modułu, następnie włączyć zasilanie
D. otworzyć moduł klawiatury, dokonać wymiany modułu, sprawdzić działanie systemu, pomierzyć napięcia
Właściwym podejściem do wymiany modułu klawiatury w systemach kontroli dostępu jest wyłączenie zasilania systemu przed rozpoczęciem jakichkolwiek prac. Praktyka ta jest zgodna z zasadami bezpieczeństwa, aby uniknąć uszkodzenia komponentów elektronicznych oraz zabezpieczyć personel przed porażeniem prądem. Po wyłączeniu zasilania można bezpiecznie otworzyć moduł klawiatury, co pozwala na wymianę uszkodzonego elementu. Po zakończeniu wymiany, zasilanie systemu należy ponownie włączyć, aby sprawdzić poprawność działania nowego modułu. W codziennej praktyce techników zajmujących się systemami zabezpieczeń, kluczowe jest przestrzeganie kolejności działań i zapewnienie, że zasilanie jest odłączone, zanim podejmie się jakiekolwiek fizyczne czynności. Przykładem może być sytuacja, gdy w systemie znajduje się wiele klawiatur rozproszonych. W takim przypadku, stosowanie tej procedury minimalizuje ryzyko błędów i uszkodzeń, jednocześnie zapewniając, że system będzie działał niezawodnie po dokonaniu wymiany.

Pytanie 39

Aby zlokalizować metalowy obiekt w systemie automatyki przemysłowej, najbardziej odpowiednim rozwiązaniem będzie czujnik

A. temperatury
B. optyczny
C. pojemnościowy
D. indukcyjny
Wybór czujnika temperatury do wykrywania metalowych przedmiotów jest niewłaściwy, ponieważ ten typ czujnika jest przeznaczony do monitorowania zmian temperatury, a nie detekcji obecności obiektów. Czujniki te działają na zasadzie pomiaru różnicy temperatury i nie mają zdolności do identyfikacji materiałów czy obiektów w swoim polu działania. Innym błędnym podejściem jest wykorzystanie czujnika pojemnościowego, który jest efektywny głównie w detekcji materiałów nieprzewodzących, takich jak plastik czy ciecz. Pojemnościowe czujniki działają poprzez zmianę pojemności elektrycznej, co jest związane z obecnością obiektów, ale ich efektywność w detekcji metali jest ograniczona. Kolejną mylną koncepcją jest zastosowanie czujnika optycznego, który polega na wykrywaniu obecności obiektów przy użyciu światła. Te czujniki są bardziej odpowiednie do detekcji materiałów przezroczystych lub dobrze reflektujących światło, ale ich zastosowanie w kontekście metalu, zwłaszcza w warunkach przemysłowych, może być problematyczne, gdyż metal może zasłaniać lub odbijać światło w sposób, który utrudnia prawidłowe działanie czujnika. Dlatego przy wyborze odpowiedniego czujnika do wykrywania metalowych przedmiotów, kluczowe jest zrozumienie zasad ich działania oraz specyfiki aplikacji, co w tym wypadku prowadzi nas do wyboru czujnika indukcyjnego jako najbardziej odpowiedniego rozwiązania.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.