Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 grudnia 2025 23:10
  • Data zakończenia: 7 grudnia 2025 23:42

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Udostępniono w sieci lokalnej jako udział specjalny folder o nazwie egzamin znajdujący się na komputerze o nazwie SERWER_2 w katalogu głównym dysku C:. Jak powinna wyglądać ścieżka dostępu do katalogu egzamin, w którym przechowywany jest folder macierzysty dla konta użytkownika o określonym loginie?

A. SERWER_2$egzamin$\%USERNAME%
B. SERWER_2$egzamin\%USERNAME%
C. SERWER_2egzamin$\%USERNAME%
D. SERWER_2egzamin$\%$USERNAME%
Niepoprawne odpowiedzi bazują na błędnych założeniach dotyczących składni ścieżek dostępu i sposobu, w jaki zasoby są udostępniane w sieciach lokalnych. Poprzednie propozycje nie uwzględniają faktu, że w systemie Windows użycie znaku dolara ($) w nazwie folderu udostępnionego wzmacnia jego ukrytość, co jest kluczowe w kontekście bezpieczeństwa danych. W odpowiedziach, które nie zawierają znaku dolara, brakuje istotnego elementu, który informuje system o tym, że folder jest dostępny tylko dla wybranych użytkowników. Ponadto, w przypadku użycia znaku „\” przed zmienną środowiskową, jak w odpowiedziach błędnych, nie jest to akceptowalna praktyka. Zmienne środowiskowe w systemie Windows są interpretowane w kontekście komend i muszą być używane zgodnie z określoną składnią, aby działały poprawnie. Błędne użycie ścieżki, jak na przykład 'SERWER_2egzamin$\%$USERNAME%', świadczy o nieporozumieniu związanym z umiejscowieniem znaku dolara i procentów, co prowadzi do błędnych interpretacji przez system operacyjny. W kontekście udostępniania folderów, kluczowe jest zrozumienie, że każda zmiana w składni ścieżki może skutkować brakiem dostępu do danych lub ich niewłaściwą lokalizacją, co jest typowym błędem w konfiguracji zasobów sieciowych.

Pytanie 2

Planowana sieć należy do kategorii C. Została ona podzielona na 4 podsieci, z których każda obsługuje 62 urządzenia. Która z poniższych masek będzie odpowiednia do tego zadania?

A. 255.255.255.240
B. 255.255.255.224
C. 255.255.255.192
D. 255.255.255.128
Maski 255.255.255.128, 255.255.255.224 oraz 255.255.255.240 są niewłaściwe dla podziału sieci klasy C na cztery podsieci z 62 urządzeniami w każdej. Maska 255.255.255.128, odpowiadająca /25, pozwala na utworzenie dwóch podsieci, z maksymalnie 126 hostami w każdej, co jest znacznie więcej niż potrzebne, a tym samym nieefektywne. Z kolei maska 255.255.255.224, reprezentująca /27, umożliwia jedynie utworzenie ośmiu podsieci, ale zaledwie 30 dostępnych adresów w każdej, co nie spełnia wymaganego kryterium 62 urządzeń. Ostatecznie, maska 255.255.255.240, przyporządkowana /28, pozwala na stworzenie 16 podsieci, z zaledwie 14 hostami w każdej, co czyni ją absolutnie niewłaściwą do tego planu. Właściwy dobór maski sieciowej jest kluczowy dla efektywnej organizacji adresacji w sieciach IP, a błędne rozumienie podstawowych zasad podziału na podsieci może prowadzić do niedoboru adresów IP lub ich nieefektywnego wykorzystania. Prawidłowe zrozumienie przydzielania adresów IP oraz zastosowań masek podsieciowych jest istotne dla administratorów sieci, aby zapewnić ich odpowiednią konfigurację i działanie zgodnie z normami i praktykami branżowymi.

Pytanie 3

Liczba 100110011 zapisana w systemie ósemkowym wynosi

A. 463
B. 346
C. 333
D. 383
Liczba 100110011 w systemie binarnym można przekształcić na system ósemkowy, grupując bity w trójki, począwszy od prawej strony. Grupa 100 to 4 w systemie ósemkowym, 110 to 6, a ostatnia grupa 011 to 3. Łącząc te wartości, otrzymujemy 463 jako wynik konwersji. Praktyczne zastosowanie tego procesu jest szczególnie istotne w informatyce, gdzie konwersja między systemami liczbowymi jest często wykorzystywana w programowaniu i inżynierii oprogramowania. Warto zwrócić uwagę na standardy konwersji, takie jak IEEE 754 dla liczb zmiennoprzecinkowych, które często wymagają takich przekształceń. Dzięki znajomości konwersji między systemami liczbowymi można lepiej zrozumieć, jak komputery przechowują i przetwarzają dane w różnorodnych formatach.

Pytanie 4

Jaką maksymalną liczbę hostów można przypisać w lokalnej sieci, dysponując jedną klasą C adresów IPv4?

A. 512
B. 254
C. 255
D. 510
Maksymalna liczba hostów, które można zaadresować w sieci lokalnej przy użyciu jednego bloku klas C adresów IPv4, wynosi 254. Adresy klasy C mają maskę podsieci 255.255.255.0, co daje możliwość zaadresowania 256 adresów IP. Jednakże, dwa z nich są zarezerwowane: jeden dla adresu sieci (w tym przypadku 192.168.1.0) oraz jeden dla adresu rozgłoszeniowego (w tym przypadku 192.168.1.255). W związku z tym, z 256 adresów, możemy użyć 254 do przydzielenia hostom. W praktyce, w lokalnych sieciach komputerowych, takie podejście jest powszechnie stosowane, zwłaszcza w małych sieciach domowych lub biurowych, gdzie nie jest potrzebna większa liczba urządzeń. Znajomość tych zasad jest istotna w projektowaniu oraz zarządzaniu sieciami, zapewniając skuteczność i wydajność przydzielania zasobów IP w danej infrastrukturze.

Pytanie 5

Sieć lokalna posiada adres IP 192.168.0.0/25. Który adres IP odpowiada stacji roboczej w tej sieci?

A. 192.168.0.100
B. 192.168.0.192
C. 192.168.1.1
D. 192.160.1.25
Adresy IP 192.168.1.1, 192.160.1.25 i 192.168.0.192 są nieprawidłowe dla sieci lokalnej o adresie 192.168.0.0/25, ponieważ nie mieszczą się w odpowiednim zakresie adresów. Adres 192.168.1.1 znajduje się w innej podsieci, a dokładniej w sieci 192.168.1.0/24. Ta sytuacja może prowadzić do nieporozumień w zarządzaniu siecią, ponieważ urządzenia w różnych podsieciach nie mogą się ze sobą komunikować bez odpowiedniej konfiguracji routingu. Adres 192.160.1.25 jest całkowicie nieprawidłowy, ponieważ nie zgodny z klasą C, do której należy sieć 192.168.x.x, a także nie pasuje do zakresu prywatnych adresów IP. Z kolei adres 192.168.0.192, mimo że należy do tej samej sieci, jest adresem rozgłoszeniowym (broadcast) dla podsieci 192.168.0.0/25, co oznacza, że jest używany do wysyłania pakietów do wszystkich urządzeń w tej podsieci. W rezultacie, przydzielanie adresu, który jest adresem rozgłoszeniowym, jest błędem, ponieważ nie może być przypisany do konkretnego urządzenia. Kluczowe jest, aby przydzielając adresy IP, kierować się zasadami podziału i zarządzania adresacją IP, aby uniknąć konfliktów oraz zapewnić prawidłową komunikację w sieci.

Pytanie 6

Jakie urządzenie sieciowe funkcjonuje w warstwie fizycznej modelu ISO/OSI, transmitując sygnał z jednego portu do wszystkich pozostałych portów?

A. Przełącznik
B. Koncentrator
C. Modem
D. Karta sieciowa
Wybór modemu, przełącznika lub karty sieciowej jako odpowiedzi jest związany z pewnymi nieporozumieniami dotyczącymi ich funkcji i warstw w modelu ISO/OSI. Modem, który działa na warstwie dostępu do sieci oraz warstwie aplikacji, jest odpowiedzialny za modulację sygnału i umożliwienie komunikacji między różnymi typami sieci, w tym między siecią lokalną a Internetem. Z tego powodu nie jest on odpowiedni jako urządzenie przesyłające sygnał z portu do portów w warstwie fizycznej. Przełącznik natomiast, mimo że również działa w sieci i łączy urządzenia, funkcjonuje na warstwie drugiej modelu OSI, gdzie analizuje pakiety danych i przesyła je tylko do odpowiednich portów, co znacznie zwiększa efektywność sieci i redukuje kolizje. Karta sieciowa, będąca interfejsem pomiędzy komputerem a siecią, również działa na wyższych warstwach modelu OSI i nie przesyła sygnału w sposób charakterystyczny dla koncentratora. Zrozumienie tych różnic jest kluczowe w projektowaniu i zarządzaniu sieciami, ponieważ wybór odpowiedniego urządzenia wpływa na wydajność oraz bezpieczeństwo komunikacji w sieci.

Pytanie 7

Który z elementów szafy krosowniczej został pokazany na ilustracji?

Ilustracja do pytania
A. Maskownica 1U
B. Wieszak do kabli 2U
C. Panel krosowy 1U
D. Przepust kablowy 2U
Panel krosowy 1U jest kluczowym elementem infrastruktury sieciowej, który umożliwia organizację i zarządzanie okablowaniem w szafach krosowniczych. Dzięki swojej konstrukcji pozwala na łatwe przypisywanie portów i bezproblemową zmianę połączeń, co jest nieocenione w dynamicznych środowiskach IT. Panel krosowy 1U jest zgodny ze standardami przemysłowymi takimi jak TIA/EIA-568, co zapewnia jego kompatybilność z różnymi systemami okablowania. Zwykle jest wyposażony w odpowiednią liczbę portów RJ-45, które pozwalają na podłączenie kabli kategorii 5e, 6 lub nawet wyższych. W praktyce, panel krosowy jest podstawą dla zarządzanych sieci w biurach, centrach danych oraz instytucjach, gdzie kluczowe jest utrzymanie wysokiej jakości i organizacji sieci. Użycie paneli krosowych pozwala na uporządkowanie kabli i ułatwia diagnozowanie problemów sieciowych poprzez szybki dostęp do poszczególnych portów. Montaż panelu w szafie krosowniczej jest prosty, a jego obsługa intuicyjna, co czyni go powszechnym rozwiązaniem w branży IT.

Pytanie 8

Protokół trasowania wewnętrznego, który opiera się na analizie stanu łącza, to

A. OSPF
B. BGP
C. RIP
D. EGP
RIP, czyli Routing Information Protocol, to taki prosty protokół trasowania, który działa na zasadzie wektora odległości. Używa metryki liczby przeskoków, żeby określić najlepszą trasę do celu. Ale ma swoje wady, bo w większych sieciach nie radzi sobie zbyt dobrze, jak chodzi o skalowalność czy efektywność. Gdy w sieci zmienia się coś, to RIP może nie nadążać, co prowadzi do problemów, bo trasy mogą być nieaktualne. EGP i BGP to inne protokoły, które są używane głównie do wymiany informacji między różnymi systemami w Internecie. EGP to protokół starszy, który już nie jest popularny, podczas gdy BGP ma większą złożoność i działa na innej warstwie. Czasami ludzie myślą, że wszystkie protokoły trasowania są sobie równe, albo że takie prostsze jak RIP wystarczą w dużych sieciach. I to nie zawsze jest prawda, bo może to prowadzić do złych wyborów i problemów z optymalizacją trasowania, co w końcu wpłynie na wydajność sieci.

Pytanie 9

Jaką funkcję pełni mechanizm umożliwiający przechowywanie fragmentów dużych plików programów i danych, które nie mogą być w pełni załadowane do pamięci?

A. menadżer zadań
B. schowek systemu
C. edytor rejestru
D. plik stronicowania
Menadżer zadań to narzędzie, które służy do monitorowania i zarządzania procesami działającymi w systemie operacyjnym. Jego główną funkcją jest wyświetlanie aktualnie aktywnych aplikacji oraz umożliwienie użytkownikowi zamykania nieodpowiadających programów. Jednak menadżer zadań nie pełni roli w przechowywaniu danych i programów, lecz jedynie zarządza ich wykorzystaniem w pamięci, co sprawia, że nie jest właściwą odpowiedzią. Edytor rejestru to narzędzie do zarządzania ustawieniami systemu operacyjnego Windows, które pozwala na edytowanie rejestru systemowego, ale jego zastosowanie nie dotyczy bezpośrednio zarządzania pamięcią i przechowywaniem danych. Schowek systemu z kolei to mechanizm umożliwiający tymczasowe przechowywanie danych, takich jak tekst czy obrazy, które użytkownik może skopiować i wkleić w różne miejsca, ale jego pojemność jest ograniczona i nie ma on zastosowania w kontekście większych plików, które nie mieszczą się w pamięci. Wszystkie te podejścia są istotne w różnych kontekstach użytkowania systemu operacyjnego, jednak żadne z nich nie osiąga funkcji pliku stronicowania, który jest kluczowym elementem zarządzania pamięcią w nowoczesnych systemach operacyjnych, pozwalającym na efektywne wykorzystanie zasobów sprzętowych.

Pytanie 10

Zidentyfikuj najprawdopodobniejszą przyczynę pojawienia się komunikatu "CMOS checksum error press F1 to continue press DEL to setup" podczas uruchamiania systemu komputerowego?

A. Uszkodzona karta graficzna.
B. Rozładowana bateria podtrzymująca ustawienia BIOS-u
C. Wyczyszczona pamięć CMOS.
D. Zniknięty plik konfiguracyjny.
Nieprawidłowe odpowiedzi koncentrują się na innych potencjalnych przyczynach błędu CMOS, jednak nie uwzględniają one podstawowego problemu związanego z pamięcią CMOS i jej wymaganą baterią. Usunięcie pliku setup w kontekście BIOS-u jest mało prawdopodobne, ponieważ BIOS przechowuje swoje ustawienia w pamięci, a nie w plikach na dysku twardym. Tego rodzaju informacja może prowadzić do mylnego przekonania, że problem jest związany z systemem operacyjnym, a nie z samym sprzętem. Z drugiej strony, uszkodzona karta graficzna może prowadzić do innych rodzajów błędów, takich jak problemy z wyświetlaniem obrazu, ale nie jest bezpośrednio związana z komunikatem o błędzie CMOS. Wreszcie, skasowana zawartość pamięci CMOS na ogół jest wynikiem rozładowania baterii. Zrozumienie, że to bateria pełni kluczową rolę w zasilaniu pamięci CMOS, pozwala uniknąć typowych błędów myślowych. Użytkownicy często mylnie identyfikują problemy z BIOS-em jako związane z innymi komponentami, co może prowadzić do nieefektywnych napraw i niepotrzebnych kosztów. Dlatego ważne jest, aby rozpoznać, że wiele problemów z komputerami ma swoje źródło w podstawowych aspektach konserwacyjnych, jakim jest wymiana baterii CMOS.

Pytanie 11

Kluczowym mechanizmem zabezpieczającym dane przechowywane na serwerze jest

A. uruchomienie ochrony systemu
B. generowanie punktu przywracania systemu
C. tworzenie kopii bezpieczeństwa
D. automatyczne realizowanie kompresji danych
Tworzenie kopii bezpieczeństwa to fundamentalny element strategii ochrony danych na serwerze. Umożliwia to zabezpieczenie danych przed ich utratą w wyniku awarii sprzętu, błędów ludzkich czy ataków złośliwego oprogramowania. W praktyce, regularne tworzenie kopii bezpieczeństwa, na przykład codziennie lub co tydzień, powinno być integralną częścią procedur zarządzania danymi. W przypadku incydentu, administratorzy mogą szybko przywrócić dane do stanu sprzed awarii. Dobrą praktyką jest stosowanie zasady 3-2-1, która zaleca posiadanie trzech kopii danych na dwóch różnych nośnikach, z jedną kopią przechowywaną w innym miejscu. Standardy takie jak ISO/IEC 27001 kładą nacisk na zarządzanie ryzykiem związanym z utratą danych, a regularne kopie bezpieczeństwa są kluczowym elementem tego procesu. Warto również brać pod uwagę różne metody tworzenia kopii zapasowych, takie jak pełne, przyrostowe i różnicowe, aby optymalizować czas i miejsce przechowywania.

Pytanie 12

Jak nazywa się program, który pozwala na interakcję pomiędzy kartą sieciową a systemem operacyjnym?

A. middleware.
B. komunikator.
C. detektor.
D. sterownik.
Sterownik to oprogramowanie, które umożliwia komunikację między kartą sieciową a systemem operacyjnym. Odpowiada za przekazywanie poleceń z systemu operacyjnego do sprzętu oraz z powrotem, zapewniając prawidłowe funkcjonowanie urządzenia w systemie komputerowym. Przykładem zastosowania sterownika jest jego rola w konfiguracji i zarządzaniu typowymi operacjami sieciowymi, np. w przypadku drukowania przez sieć, gdzie sterownik drukarki komunikuje się z systemem operacyjnym, aby zapewnić prawidłowe przesyłanie danych. Dobre praktyki w branży obejmują regularne aktualizowanie sterowników, co pozwala na poprawę wydajności, bezpieczeństwa i wsparcia dla nowych funkcjonalności. Utrzymywanie aktualnych sterowników jest kluczowe dla minimalizacji problemów z kompatybilnością oraz zapewnienia optymalizacji działania podzespołów sprzętowych. Ponadto, sterowniki są często zgodne z określonymi standardami, takimi jak Plug and Play, co ułatwia ich instalację i konfigurację.

Pytanie 13

Jakiego rodzaju interfejsem jest UDMA?

A. interfejsem równoległym, który został zastąpiony przez interfejs SATA
B. interfejsem równoległym, stosowanym między innymi do łączenia kina domowego z komputerem
C. interfejsem szeregowym, używanym do podłączania urządzeń wejściowych
D. interfejsem szeregowym, który umożliwia wymianę danych pomiędzy pamięcią RAM a dyskami twardymi
Interfejsy równoległe i szeregowe różnią się fundamentalnie w sposobie przesyłania danych, co jest kluczowe dla zrozumienia, dlaczego niektóre odpowiedzi są błędne. Odpowiedzi podające, że UDMA jest interfejsem szeregowym, mylą jego charakterystykę z innymi technologiami, takimi jak SATA, które rzeczywiście korzystają z przesyłu szeregowego. Szeregowy transfer danych, jak w przypadku SATA, pozwala na przesyłanie bitów danych jeden po drugim, co przyczynia się do większej efektywności w dłuższej perspektywie, ale UDMA, jako interfejs równoległy, przesyła wiele bitów jednocześnie, co w danym kontekście daje mu przewagę, gdyż umożliwia szybszy transfer na krótszych dystansach. Warto również zauważyć, że UDMA nie jest używane do podłączania urządzeń wejścia, co stanowi błąd w zrozumieniu jego zastosowania. UDMA ma na celu wymianę danych pomiędzy pamięcią RAM a dyskami twardymi, a nie urządzeniami peryferyjnymi. Pojęcia związane z interfejsem UDMA muszą być właściwie zrozumiane, aby uniknąć typowych błędów myślowych, takich jak pomylenie interfejsów równoległych z szeregowymi, co może prowadzić do niewłaściwego doboru sprzętu lub technologii w projektach informatycznych.

Pytanie 14

Jakiego systemu operacyjnego powinien nabyć użytkownik, aby zmodernizowany komputer miał możliwość uruchamiania gier obsługujących DirectX12?

A. Windows 8
B. Windows XP
C. Windows 10
D. Windows 8.1
Windows 10 jest systemem operacyjnym, który w pełni wspiera DirectX 12, co czyni go idealnym wyborem dla graczy poszukujących najnowszych technologii w grach komputerowych. DirectX 12 wprowadza szereg zaawansowanych funkcji, takich jak lepsza obsługa wielordzeniowych procesorów, co pozwala na bardziej efektywne wykorzystanie zasobów sprzętowych. Dzięki temu, gry mogą działać w wyższej jakości z bardziej szczegółową grafiką oraz płynniejszymi animacjami. W praktyce, korzystanie z Windows 10 umożliwia graczom dostęp do najnowszych tytułów, które wymagają tego standardu, a także do poprawionych wersji starszych gier, które stały się bardziej optymalne po aktualizacjach. Warto również zaznaczyć, że Windows 10 regularnie otrzymuje aktualizacje, co zapewnia wsparcie dla nowych urządzeń i technologii, a także poprawia bezpieczeństwo oraz stabilność. Dla każdego nowoczesnego gracza, wybór Windows 10 jest więc podstawą zapewniającą długoterminowe wsparcie i rozwój w obszarze gier komputerowych.

Pytanie 15

W systemie Ubuntu, które polecenie umożliwia bieżące monitorowanie działających procesów i aplikacji?

A. sysinfo
B. proc
C. top
D. ps
Polecenie 'top' jest narzędziem służącym do monitorowania systemu w czasie rzeczywistym w systemie operacyjnym Ubuntu (i innych dystrybucjach opartych na Unixie). Pokazuje ono aktualnie uruchomione procesy, ich użycie CPU oraz pamięci, a także inne istotne informacje, takie jak czas działania systemu czy liczba użytkowników. To narzędzie jest niezwykle przydatne dla administratorów systemów, którzy mogą szybko zidentyfikować procesy obciążające system i podejmować odpowiednie działania, takie jak zakończenie nieefektywnych procesów. Przykładowo, podczas analizy wydajności serwera, administratorzy mogą użyć 'top', aby zlokalizować procesy, które wykorzystują nadmierne zasoby, co pozwala na optymalizację działania systemu. Dobrą praktyką jest również korzystanie z opcji sortowania w 'top', aby na bieżąco identyfikować najcięższe procesy. Dodatkowo, 'top' może być konfigurowany, co daje użytkownikom elastyczność w dostosowywaniu widoku do ich potrzeb.

Pytanie 16

W celu kontrolowania przepustowości sieci, administrator powinien zastosować aplikację typu

A. quality manager
B. task manager
C. package manager
D. bandwidth manager
Wybierając odpowiedzi inne niż 'bandwidth manager', można wpaść w pułapkę nieporozumienia dotyczącego ról różnych narzędzi w zarządzaniu systemami informatycznymi. Programy takie jak 'package manager' są używane do zarządzania oprogramowaniem, umożliwiając instalację, aktualizacje i usuwanie pakietów oprogramowania w systemach operacyjnych i nie mają związku z kontrolowaniem transferu danych w sieci. Podobnie, 'quality manager' nie jest narzędziem do zarządzania przepustowością, lecz odnosi się raczej do zarządzania jakością w szerszym kontekście, co może obejmować różne aspekty jakości produktów i usług, ale nie odnosi się bezpośrednio do technik zarządzania ruchem sieciowym. Ostatecznie 'task manager' jest narzędziem do monitorowania i zarządzania procesami działającymi w systemie operacyjnym, co również nie ma zastosowania w kontekście zarządzania przepustowością sieci. Kluczowym błędem w myśleniu jest zrozumienie, że każde z tych narzędzi ma swoje specyficzne funkcje i zastosowania, a ich mylenie może prowadzić do niewłaściwego zarządzania zasobami sieciowymi, co z kolei może skutkować obniżeniem wydajności i jakości usług sieciowych.

Pytanie 17

Natychmiast po dostrzeżeniu utraty istotnych plików na dysku twardym, użytkownik powinien

A. zainstalować narzędzie diagnostyczne
B. wykonać test S.M.A.R.T. tego dysku
C. przeprowadzić defragmentację dysku
D. uchronić dysk przed zapisaniem nowych danych
Przeprowadzenie testu S.M.A.R.T. na dysku twardym jest istotne, ale nie jest pierwszym krokiem, który należy wykonać po wykryciu utraty plików. S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) to technologia, która monitoruje stan dysku w celu przewidywania potencjalnych awarii. Choć test ten może dostarczyć cennych informacji o kondycji dysku, jego wyniki nie mają wpływu na odzyskiwanie danych. W przypadku utraty plików, kluczowe jest ich zabezpieczenie przed nadpisywaniem, a nie diagnozowanie stanu sprzętu. Właściwe postępowanie powinno skupić się na wykorzystaniu narzędzi do odzyskiwania danych, które mogą zminimalizować ryzyko utraty informacji. Instalacja oprogramowania diagnostycznego również nie jest priorytetem, ponieważ w momencie, gdy zauważasz utratę plików, najważniejsze jest ich zabezpieczenie. Defragmentacja dysku z kolei jest procesem, który służy do optymalizacji wydajności dysku poprzez organizację fragmentów plików, ale w przypadku utraty danych jest całkowicie nieodpowiednia. Defragmentacja może prowadzić do nadpisania obszarów, gdzie znajdowały się utracone pliki, co czyni ten krok jeszcze bardziej ryzykownym. Typowe błędy myślowe związane z tymi odpowiedziami obejmują skupienie się na diagnostyce sprzętu zamiast na ochronie danych oraz niewłaściwe zrozumienie, jakie czynności są krytyczne w sytuacjach awaryjnych związanych z danymi.

Pytanie 18

W systemie Windows harmonogram zadań umożliwia przydzielenie

A. maksymalnie czterech terminów realizacji dla wskazanego programu
B. maksymalnie pięciu terminów realizacji dla wskazanego programu
C. więcej niż pięciu terminów realizacji dla wskazanego programu
D. maksymalnie trzech terminów realizacji dla wskazanego programu
Harmonogram zadań w systemie Windows umożliwia przypisywanie wielu terminów wykonania dla wskazanych programów, co jest kluczowym elementem zarządzania zadaniami i optymalizacji procesów. W rzeczywistości, użytkownicy mogą skonfigurować harmonogram w taki sposób, aby uruchamiać dany program w różnych terminach i okolicznościach, co pozwala na zwiększenie efektywności działania systemu. Przykładem może być sytuacja, w której administrator systemu ustawia zadania do automatycznej aktualizacji oprogramowania w regularnych odstępach czasu, takich jak codziennie, co tydzień lub co miesiąc. Taka elastyczność pozwala na lepsze wykorzystanie zasobów systemowych oraz minimalizuje ryzyko przestojów. Ponadto, zgodnie z zaleceniami Microsoftu, harmonogram zadań można używać w połączeniu z innymi narzędziami, takimi jak PowerShell, co umożliwia bardziej zaawansowane operacje oraz integrację z innymi systemami. Stanowi to przykład najlepszych praktyk w zarządzaniu infrastrukturą IT.

Pytanie 19

Wskaź, które zdanie dotyczące zapory sieciowej jest nieprawdziwe?

A. Jest zainstalowana na każdym przełączniku
B. Stanowi składnik systemu operacyjnego Windows
C. Jest narzędziem ochronnym sieci przed atakami
D. Jest częścią oprogramowania wielu routerów
Stwierdzenie, że zapora sieciowa jest zainstalowana na każdym przełączniku, jest fałszywe, ponieważ nie wszystkie przełączniki posiadają funkcjonalność zapory. Zaporą sieciową nazywamy system zabezpieczeń, który kontroluje ruch sieciowy na podstawie ustalonych reguł. W przypadku większości przełączników, ich podstawową rolą jest przekazywanie pakietów danych w sieci lokalnej, a nie filtrowanie ruchu. Zabezpieczenie sieciowe często jest realizowane na poziomie routerów lub dedykowanych urządzeń zaporowych. Praktyczne zastosowanie zapór sieciowych obejmuje ochronę przed atakami z zewnątrz, co jest kluczowe w kontekście bezpieczeństwa informacji oraz zgodności z regulacjami takimi jak RODO czy PCI DSS. Dlatego zrozumienie, gdzie i jak umieszczać zapory, jest kluczowe dla budowy bezpiecznej infrastruktury IT.

Pytanie 20

W systemie Linux narzędzie top pozwala na

A. zidentyfikowanie katalogu zajmującego najwięcej przestrzeni na dysku twardym
B. ustalenie dla użytkownika najwyższej wartości limitu quoty
C. porządkowanie plików według ich rozmiaru w kolejności rosnącej
D. monitorowanie wszystkich bieżących procesów
Program top jest jednym z podstawowych narzędzi dostępnych w systemie Linux, służącym do monitorowania aktywnych procesów w czasie rzeczywistym. Umożliwia on użytkownikom śledzenie zużycia zasobów systemowych, takich jak CPU, pamięć, a także identyfikację procesów, które mogą wpływać na wydajność systemu. W interfejsie top można sortować procesy według różnych kryteriów, co ułatwia zrozumienie, które z nich są najbardziej zasobożerne. Przykładowo, administrator systemu może użyć polecenia top, aby szybko zidentyfikować procesy obciążające CPU i podjąć odpowiednie działania, takie jak ich zatrzymanie lub optymalizacja. Ponadto, top jest zgodny z najlepszymi praktykami zarządzania systemem, umożliwiając administratorom monitorowanie stanu serwerów i wykrywanie problemów, co jest kluczowe w zapewnieniu stabilności i wydajności infrastruktur IT.

Pytanie 21

Na schemacie przedstawionej płyty głównej zasilanie powinno być podłączone do gniazda oznaczonego numerem

Ilustracja do pytania
A. 6
B. 3
C. 5
D. 7
Złącze numer 6 to faktycznie najlepsze miejsce do podłączenia zasilania na płycie głównej. Z reguły złącza zasilające są umieszczane w okolicy krawędzi, co zdecydowanie ułatwia dostęp i porządkowanie kabli w obudowie. Wiesz, że to wszystko jest zgodne z normami ATX? Te standardy mówią nie tylko o typach złączy, ale też o ich rozmieszczeniu. To złącze, które jest oznaczone jako ATX 24-pin, jest kluczowe, bo to dzięki niemu płyta główna dostaje odpowiednie napięcia do działania, od procesora po pamięć RAM czy karty rozszerzeń. Jeśli wszystko dobrze podłączysz, komputer działa stabilnie i nie grozi mu uszkodzenie. Pamiętaj, żeby na etapie montażu skupić się na prawidłowym wpięciu wtyczek z zasilacza – to nie tylko wpływa na porządek w środku komputera, ale także na jego wydajność i bezpieczeństwo. A tak przy okazji, dobrym pomysłem jest, żeby ogarnąć te kable, bo lepsza organizacja poprawia przepływ powietrza, co zdecydowanie wpływa na chłodzenie. Rekomenduję używanie opasek zaciskowych i innych gadżetów do kabli, bo dzięki temu łatwiej będzie utrzymać porządek.

Pytanie 22

Program, który ocenia wydajność zestawu komputerowego, to

A. sniffer
B. kompilator
C. debugger
D. benchmark
Sniffer, debugger i kompilator to narzędzia, które pełnią różne funkcje w obszarze informatyki, ale nie są odpowiednie w kontekście oceny wydajności zestawu komputerowego. Sniffer to aplikacja używana do monitorowania i analizowania ruchu w sieci, co pozwala na identyfikowanie problemów związanych z bezpieczeństwem lub wydajnością sieci, jednak nie dostarcza informacji o wydajności sprzętu komputerowego. Debugger to narzędzie służące do wykrywania i eliminowania błędów w kodzie programu, umożliwiające programistom analizę działania aplikacji w czasie rzeczywistym, jednak jego zastosowanie nie dotyczy oceny wydajności hardware'u. Kompilator natomiast przekształca kod źródłowy napisany w jednym języku programowania na kod maszynowy, co jest kluczowe dla uruchamiania aplikacji, ale nie ma on nic wspólnego z pomiarem wydajności zestawu komputerowego. Wybór niewłaściwego narzędzia do oceny wydajności, takiego jak sniffer czy debugger, wynika często z braku zrozumienia ich funkcji i zastosowania w praktyce. Użytkownicy mogą mylnie sądzić, że każde narzędzie do analizy może być użyte do oceny wydajności, co jest nieprawidłowe. Dlatego ważne jest, aby zrozumieć, jakie narzędzia są odpowiednie do konkretnych zadań oraz jakie są różnice między nimi, aby uniknąć nieporozumień i skutecznie oceniać wydajność sprzętu.

Pytanie 23

Jakie złącze, które pozwala na podłączenie monitora, znajduje się na karcie graficznej pokazanej na ilustracji?

Ilustracja do pytania
A. DVI-D (Single Link), DP, HDMI
B. DVI-A, S-VIDEO, DP
C. DVI-D (Dual Link), HDMI, DP
D. DVI-I, HDMI, S-VIDEO
Odpowiedź DVI-D (Dual Link) HDMI DP jest trafna. Na karcie graficznej, którą widzimy, są te złącza, a to są te, które najczęściej spotkasz w nowoczesnych monitorach. DVI-D (Dual Link) to cyfrowe złącze, które pozwala na wyższe rozdzielczości, nawet do 2560x1600 pikseli. To jest mega ważne w branży, gdzie jakość obrazu się liczy. HDMI za to to uniwersalne złącze, które przesyła zarówno obraz, jak i dźwięk, więc sprawdza się świetnie w zastosowaniach multimedialnych. To standard, który znajdziesz w telewizorach, monitorach, a nawet projektorach. A DisplayPort, czyli DP, to nowoczesne złącze, które również obsługuje dźwięk oraz dodatkowe funkcje, jak łączenie kilku monitorów. Co ciekawe, DP jest szybsze od HDMI, co jest ważne, gdy mówimy o ultra wysokich rozdzielczościach. Dlatego te złącza - DVI-D (Dual Link), HDMI i DP - dają dużą elastyczność w podłączaniu różnych monitorów i są zgodne z tym, co się aktualnie dzieje w technologiach IT.

Pytanie 24

Aby uzyskać dostęp do adresu serwera DNS w ustawieniach karty sieciowej w systemie z rodziny Windows, należy wprowadzić polecenie

A. ipconfig /all
B. ipconfig
C. arp -a
D. ping
Polecenie 'ipconfig /all' jest kluczowym narzędziem w systemach operacyjnych Windows, które umożliwia uzyskanie szczegółowych informacji o konfiguracji sieciowej. Wykorzystując to polecenie, użytkownik może zobaczyć adresy serwerów DNS, maski podsieci, adresy IP, oraz inne istotne dane dotyczące połączenia sieciowego. To szczególnie przydatne w diagnostyce problemów z połączeniem internetowym lub w przypadku konfigurowania sieci lokalnej. Dodatkowo, w kontekście praktycznych zastosowań, administratorzy systemów oraz technicy IT regularnie korzystają z 'ipconfig /all', aby zweryfikować konfigurację urządzeń oraz wprowadzone zmiany. Zgodnie z najlepszymi praktykami, znajomość tych poleceń jest niezbędna dla każdego, kto zajmuje się zarządzaniem siecią, a umiejętność ich wykorzystania może znacznie ułatwić proces rozwiązywania problemów. Warto również wspomnieć, że 'ipconfig' bez dodatkowych parametrów pokaże jedynie podstawowe informacje, co czyni 'ipconfig /all' bardziej wszechstronnym narzędziem do analizy.

Pytanie 25

Sieć komputerowa, która obejmuje wyłącznie urządzenia jednej organizacji, w której dostępne są usługi realizowane przez serwery w sieci LAN, takie jak strony WWW czy poczta elektroniczna to

A. Infranet
B. Extranet
C. Intranet
D. Internet
Internet to globalna sieć komputerowa, która łączy miliony urządzeń na całym świecie, umożliwiając wymianę informacji między użytkownikami z różnych lokalizacji. W związku z tym nie jest ograniczona do jednej organizacji, co sprawia, że nie może być traktowana jako wewnętrzna sieć. Z tego powodu wiele osób błędnie interpretuje Internet jako intranet, myląc ich funkcje i przeznaczenie. Extranet to z kolei sieć, która pozwala na dostęp do określonych zasobów organizacji wybranym podmiotom zewnętrznym, takim jak partnerzy czy klienci, co również odbiega od definicji intranetu. Infranet jest terminem, który nie jest powszechnie stosowany w kontekście sieci komputerowych, co może prowadzić do wątpliwości co do jego znaczenia. W obliczu tych nieporozumień, kluczowe jest zrozumienie, że intranet jest skoncentrowany na wewnętrznej komunikacji i zarządzaniu danymi w organizacji, podczas gdy Internet i extranet rozszerzają ten zasięg na zewnętrzne źródła. Typowymi błędami myślowymi w tym kontekście są generalizowanie pojęcia sieci komputerowej na podstawie jej globalnych funkcji, co prowadzi do zamieszania w zakresie definicji i zastosowań. Znajomość różnic między tymi typami sieci jest kluczowa w zarządzaniu informacjami oraz w zabezpieczaniu danych w organizacji.

Pytanie 26

Jeśli rozdzielczość myszy wynosi 200dpi, a monitor ma rozdzielczość Full HD, to aby przesunąć kursor wzdłuż ekranu, należy przesuń mysz o

A. około 35 cm
B. 1080px
C. około 25cm
D. 480i
Odpowiedź "około 25cm" jest na pewno trafna. Przy rozdzielczości 200dpi, jeśli przesuwasz kursor na ekranie o 1920 pikseli (czyli to szerokość monitora Full HD), to myszka musi się przesunąć właśnie o jakieś 25cm. To dlatego, że 200dpi to oznacza, że na każdy cal jest 200 punktów, a w przeliczeniu na piksele wychodzi właśnie tak. Można to obliczyć używając wzoru: liczba pikseli dzielona przez dpi, a potem pomnożyć przez 2.54. W naszym przypadku: 1920 podzielić przez 200, a potem pomnożyć przez 2.54, co daje jakieś 24.5 cm. A wiesz, że znajomość tej rozdzielczości jest mega ważna? Szczególnie w projektowaniu interfejsów i ergonomii pracy. Wysoka rozdzielczość myszy to klucz do lepszej precyzji, co jest szczególnie przydatne w aplikacjach graficznych i grach, gdzie liczy się każdy ruch.

Pytanie 27

Główną czynnością serwisową w drukarce igłowej jest zmiana pojemnika

A. z fluidem
B. z taśmą
C. z tonerem
D. z atramentem
Wybór odpowiedzi związanych z atramentem, tonerem czy fluidem jest błędny, ponieważ nie odpowiadają one podstawowemu mechanizmowi pracy drukarek igłowych. Drukarki atramentowe używają wkładów z atramentem, które nanoszą kolor za pomocą mikroskopijnych dysz. W przypadku tonerów, są one stosowane w drukarkach laserowych, gdzie obraz jest tworzony na zasadzie elektrostatycznej. Wykorzystywanie fluidów jest bardziej typowe w kontekście niektórych urządzeń do druku sublimacyjnego czy specjalistycznych procesów druku, które są całkowicie różne od technologii igłowej. Typowym błędem myślowym jest mylenie technologii drukowania z różnymi rodzajami drukarek. Każda technologia ma swoje charakterystyczne cechy i zastosowania, a zrozumienie ich różnic jest kluczowe dla prawidłowego doboru sprzętu do zadania. W praktyce, dla osób pracujących z drukarkami, ważne jest, aby znały one rodzaj posiadanego sprzętu i odpowiednie materiały eksploatacyjne, co pozwala uniknąć nieporozumień i zapewnić efektywność pracy. Dlatego fundamentalne jest prawidłowe rozumienie, że igły w drukarkach igłowych nie współpracują z atramentem ani tonerami, lecz z taśmami barwiącymi.

Pytanie 28

W drukarce laserowej do stabilizacji druku na papierze używane są

A. bęben transferowy
B. głowice piezoelektryczne
C. promienie lasera
D. rozgrzane wałki
Promienie lasera, bęben transferowy oraz głowice piezoelektryczne to technologie, które mogą być mylone z procesem utrwalania w drukarkach laserowych, jednak nie mają one kluczowego wpływu na ten etap. Promienie lasera są używane do naświetlania bębna światłoczułego, co jest pierwszym krokiem w procesie tworzenia obrazu na papierze, ale nie mają one bezpośredniego związku z utrwalaniem wydruku. Proces ten opiera się na zastosowaniu toneru, który następnie musi zostać utrwalony. Bęben transferowy również nie jest odpowiedzialny za utrwalanie, a raczej za przenoszenie obrazu z bębna światłoczułego na papier. Głowice piezoelektryczne są stosowane w drukarkach atramentowych i nie mają zastosowania w drukarkach laserowych. Często błędnie zakłada się, że wszystkie technologie związane z drukiem są ze sobą powiązane, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że każda z tych technologii pełni swoją rolę na różnych etapach procesu druku, a nie można ich mylić z fazą utrwalania. Dla efektywnego działania drukarki laserowej konieczne jest zrozumienie specyfiki pracy tych urządzeń oraz umiejętność identyfikacji ich poszczególnych elementów i procesów.

Pytanie 29

Użytkownik dysponuje komputerem o podanej konfiguracji i systemie Windows 7 Professional 32bit. Która z opcji modernizacji komputera NIE przyczyni się do zwiększenia wydajności?

Płyta głównaASRock Z97 Anniversary Z97 DualDDR3-1600 SATA3 RAID HDMI ATX z czterema slotami DDR3 i obsługą RAID poziomu 0,1
Procesori3
Pamięć1 x 4 GB DDR3
HDD2 x 1 TB
A. Zwiększenie pamięci RAM do 8GB pamięci DDR3
B. Ustawienie dysków do działania w trybie RAID 0
C. Ustawienie dysków do działania w trybie RAID 1
D. Wymiana pamięci na 2x2GB DDR3 Dual Channel
Rozbudowa pamięci RAM do 8GB może wydawać się logicznym krokiem, aby poprawić wydajność komputera. Jednak w przypadku systemu Windows 7 Professional 32bit istnieje ograniczenie dotyczące ilości pamięci RAM, którą system może efektywnie wykorzystać. Maksymalna ilość pamięci RAM obsługiwana przez ten system wynosi około 3,5 GB. Oznacza to, że zainstalowanie większej ilości pamięci RAM, na przykład 8GB, nie przyniesie wzrostu wydajności, ponieważ system operacyjny nie będzie w stanie użyć tej dodatkowej pamięci. W praktyce najlepszym rozwiązaniem dla użytkowników systemu 32bitowego, którzy potrzebują korzystać z większej ilości pamięci, jest przejście na wersję 64bitową, o ile sprzęt na to pozwala. Rozbudowa pamięci RAM jest efektywna tylko wtedy, gdy system operacyjny jest w stanie ją w pełni spożytkować, co w przypadku Windows 7 32bit jest niemożliwe przy 8GB RAM. Dlatego najpierw należy sprawdzić możliwości systemu, zanim zainwestuje się w dodatkowe komponenty.

Pytanie 30

Jakim poleceniem w systemie Linux można ustalić trasę pakietu do celu?

A. tracert
B. pathping
C. netstat
D. traceroute
Polecenie 'traceroute' jest fundamentem w diagnostyce sieci, pozwalającym na śledzenie trasy, którą pokonują pakiety danych od źródła do docelowego urządzenia. Wykorzystuje ono protokoły ICMP (Internet Control Message Protocol) oraz UDP (User Datagram Protocol) do określenia, przez jakie routery przechodzą pakiety w drodze do określonego adresu IP. Przykładowo, uruchamiając polecenie 'traceroute www.example.com', użytkownik otrzyma listę wszystkich routerów, przez które dane przechodzą, wraz z czasem odpowiedzi każdego z nich. To narzędzie jest nieocenione w identyfikacji problemów z opóźnieniami w sieci, zrywami połączeń, czy też w kontroli jakości usług. Zgodnie z najlepszymi praktykami branżowymi, regularne monitorowanie tras pakietów może pomóc w optymalizacji sieci, a także w planowaniu rozbudowy infrastruktury. Zrozumienie działania 'traceroute' oraz umiejętność interpretacji jego wyników to kluczowe umiejętności dla każdego specjalisty zajmującego się administracją sieci.

Pytanie 31

Aby zamontować przedstawioną kartę graficzną, potrzebna jest płyta główna posiadająca złącze

Ilustracja do pytania
A. AGP x8
B. AGP x2
C. PCI-E x16
D. PCI-E x4
Złącze PCI-E x16 jest obecnie standardem dla kart graficznych ze względu na swoją szeroką przepustowość i elastyczność. PCI Express, w skrócie PCI-E, to nowoczesna technologia łącząca komponenty wewnątrz komputera, umożliwiająca przesyłanie danych z dużą prędkością. Wariant x16 oznacza, że gniazdo posiada 16 linii transmisyjnych, co zapewnia karty graficzne dużą przepustowość wymaganą do przetwarzania intensywnych graficznie danych w czasie rzeczywistym. Dzięki tej szerokiej przepustowości, karty graficzne mogą obsługiwać zaawansowane aplikacje graficzne, gry w wysokiej rozdzielczości oraz rendering wideo. PCI-E x16 jest kompatybilne z najnowszymi standardami kart graficznych, co czyni je niezbędnym w nowoczesnych systemach komputerowych. W praktyce stosowanie złącza PCI-E x16 pozwala na wykorzystanie pełnej mocy kart graficznych, co jest kluczowe dla profesjonalistów zajmujących się edycją wideo, projektowaniem 3D czy też entuzjastów gamingowych. Wybór tego złącza gwarantuje wydajność oraz przyszłościową kompatybilność sprzętową, zgodną z rozwijającymi się technologiami graficznymi.

Pytanie 32

Która norma w Polsce definiuje zasady dotyczące okablowania strukturalnego?

A. PN-EN 50173
B. ISO/IEC 11801
C. TSB-67
D. EIA/TIA 568-A
Norma PN-EN 50173 jest kluczowym dokumentem określającym wymagania dotyczące okablowania strukturalnego w budynkach. Stanowi ona podstawę dla projektowania, instalacji oraz użytkowania systemów okablowania, które muszą spełniać wysokie standardy jakości oraz wydajności. Zawiera wytyczne dotyczące różnych typów systemów okablowania, w tym transmisji danych, głosu oraz obrazu. Przykładem zastosowania normy PN-EN 50173 może być projektowanie sieci lokalnych w biurowcach, gdzie ważne jest, aby system okablowania był zgodny z wymaganiami dotyczącymi przepustowości i elastyczności w rozbudowie infrastruktury. Dodatkowo, norma ta uwzględnia aspekty związane z bezpieczeństwem, takie jak odporność na zakłócenia elektromagnetyczne, co jest niezwykle istotne w dobie rosnącej liczby urządzeń elektronicznych. Stosowanie PN-EN 50173 zapewnia, że zainstalowane systemy będą miały długą żywotność oraz będą w stanie efektywnie obsługiwać rosnące potrzeby użytkowników.

Pytanie 33

Na ilustracji przedstawiono ustawienie karty sieciowej, której adres MAC wynosi

Ilustracja do pytania
A. FE80::E890:BE2B:4C6C:5AA9
B. 192.168.56.1
C. FEC0:0:0:FFFF::2
D. 0A-00-27-00-00-07
Adres MAC jest unikalnym identyfikatorem przypisanym do karty sieciowej przez producenta. Składa się z 48 bitów, co zazwyczaj przedstawiane jest jako 12-cyfrowy adres zapisany w formacie szesnastkowym, np. 0A-00-27-00-00-07. Ten adres jest kluczowy w komunikacji na poziomie warstwy łącza danych w modelu OSI, umożliwiając urządzeniom wzajemne rozpoznawanie się w sieci lokalnej. Standard IEEE dla adresów MAC określa, że pierwsze 24 bity to identyfikator producenta (OUI), a pozostałe 24 bity są unikalne dla danego urządzenia. Zastosowanie adresów MAC jest szerokie, od filtrowania w sieciach Wi-Fi po konfigurację reguł bezpieczeństwa w sieciach LAN. W praktyce, znajomość adresu MAC jest nieoceniona przy diagnozowaniu problemów sieciowych oraz przy konfiguracji sprzętu sieciowego, gdzie identyfikacja urządzeń fizycznych jest niezbędna. W porównaniu do adresów IP, które mogą się zmieniać (szczególnie w przypadku DHCP), adresy MAC pozostają stałe, zapewniając spójność identyfikacji w długim okresie użytkowania.

Pytanie 34

Wynik wykonania polecenia ```ls -l``` w systemie Linux przedstawia poniższy rysunek

Ilustracja do pytania
A. C
B. A
C. B
D. D
Wynik polecenia ls -l w systemie Linux przedstawia szczegółowe informacje o plikach i katalogach w danym katalogu. Obraz C przedstawia wynik polecenia top które pokazuje procesy działające w systemie a nie pliki co jest zupełnie inną funkcją. Obraz B pokazuje listę plików z minimalnymi informacjami co odpowiadałoby wynikowi polecenia ls bez opcji -l które rozszerza wyjście o szczegółowe dane takie jak prawa dostępu liczba dowiązań właściciel grupa wielkość data i czas modyfikacji oraz nazwa pliku. Jest to nieadekwatne do pełnego wyjścia ls -l. Obraz A przedstawia wynik polecenia free które pokazuje statystyki pamięci RAM i swap a nie listę plików. Typowe nieporozumienia polegają na myleniu poleceń Linuxa które choć mogą wyglądać na podobne w terminologii mają różne zastosowania i są używane do innych zadań. Zrozumienie funkcji każdego polecenia jest kluczowe w efektywnym zarządzaniu systemem Linux co jest istotne dla administratorów oraz użytkowników dbających o bezpieczeństwo i wydajność systemu. Właściwe rozpoznawanie komend i ich wyników pozwala na skuteczne wykonywanie zadań administracyjnych i unikanie błędów które mogą prowadzić do problemów w pracy z systemem operacyjnym.

Pytanie 35

Jakie są nazwy licencji, które umożliwiają korzystanie z programu w pełnym zakresie, ale ograniczają liczbę uruchomień do określonej, niewielkiej ilości od momentu instalacji?

A. Adware
B. Donationware
C. Box
D. Trialware
Trialware to rodzaj licencji, która pozwala użytkownikom na korzystanie z oprogramowania przez określony czas lub do momentu osiągnięcia limitu uruchomień. Głównym celem trialware jest umożliwienie potencjalnym klientom przetestowania funkcji i możliwości programu przed podjęciem decyzji o zakupie. Zazwyczaj oferuje on pełną funkcjonalność, aby użytkownik mógł ocenić wartość oprogramowania. Przykładowo, wiele programów do edycji grafiki oraz aplikacji biurowych dostępnych jest w wersjach trialowych, które po upływie określonego czasu lub po wykorzystaniu limitu uruchomień przestają działać. W branży oprogramowania przyjęto standard, że trialware powinno być jasno oznaczone, aby użytkownik wiedział, że korzysta z wersji testowej, co jest zgodne z dobrą praktyką transparentności wobec klientów. Dobrze zaprojektowany trialware nie tylko przyciąga nowych użytkowników, ale również buduje zaufanie w marce, co może prowadzić do wyższej konwersji na płatne subskrypcje lub licencje.

Pytanie 36

Jakie procesory można wykorzystać w zestawie komputerowym z płytą główną wyposażoną w gniazdo procesora typu Socket AM3?

A. Pentium D
B. Core i7
C. Itanium
D. Phenom II
W przypadku wyboru procesora Core i7, należy zauważyć, że jest to jednostka stworzona przez firmę Intel, która korzysta z zupełnie innego gniazda, takiego jak LGA 1156 czy LGA 2011 w zależności od konkretnej generacji. Procesory Intel z rodziny Core mają komplementarne architektury i funkcjonalności, które nie są kompatybilne z gniazdem Socket AM3, co czyni je niewłaściwym wyborem. Itanium, z kolei, to architektura opracowana przez Intela dla serwerów i aplikacji wymagających dużej mocy obliczeniowej, która również nie jest zgodna z Socket AM3, ponieważ jest przeznaczona do zupełnie innych zastosowań oraz wymaga specjalnych płyt głównych. Wybór Pentium D jest również nietrafiony; jest to procesor już przestarzały, który bazuje na starszej architekturze, a co ważniejsze, nie jest zgodny z gniazdem AM3. Takie błędne podejścia, jak mylenie architektur oraz standardów gniazd, są typowymi pułapkami, w które wpadają osoby mniej zaznajomione z budową komputerów. Zrozumienie, że nie każde gniazdo obsługuje wszystkie procesory, jest kluczowe przy budowie własnych systemów komputerowych. W kontekście standardów branżowych, stosowanie komponentów, które są zgodne ze sobą, jest podstawową zasadą zapewniającą sprawność i długowieczność całego zestawu.

Pytanie 37

Jakie wartości logiczne otrzymamy w wyniku działania podanego układu logicznego, gdy na wejścia A i B wprowadzimy sygnały A=1 oraz B=1?

Ilustracja do pytania
A. W=0 i C=1
B. W=1 i C=1
C. W=1 i C=0
D. W=0 i C=0
Podstawowym błędem przy analizie wyników układu logicznego jest nieprawidłowe zrozumienie działania bramek logicznych w kontekście podanych sygnałów wejściowych. Bramka OR, stosowana w tym układzie, ma właściwość, że wyjście przyjmuje wartość 1, jeśli przynajmniej jedno z jej wejść ma wartość 1. W tym problemie, przy sygnałach A=1 i B=1, wyjście z bramki OR jest równe 1, ale to nie oznacza, że całe wyjście układu przyjmuje tę wartość. Bramka AND, obecna w drugim segmencie układu, zwraca wartość 1 tylko wtedy, gdy wszystkie jej wejścia przyjmują wartość 1. W kontekście podanych sygnałów, wyjście C prawidłowo wynosi 1. Zatem niepoprawne zrozumienie działania tych dwóch bramek w połączeniu może prowadzić do błędnych wniosków o rezultatach układu. Często spotykanym błędem jest nadmierne uproszczenie działania układu, kiedy projektanci przyjmują błędnie założenia o stałych wynikach dla pojedynczych bramek zamiast analizować ich współdziałanie. W rzeczywistości, aby prawidłowo zrozumieć działanie takich układów, niezbędne jest dokładne przeanalizowanie każdego elementu i jego roli w całościowym funkcjonowaniu, co jest kluczowe dla unikania nieporozumień w cyfrowych systemach sterowania i projektowaniu złożonych sieci logicznych. Prawidłowe zrozumienie tego mechanizmu jest nieodzowne w realnych aplikacjach, takich jak układy automatyki przemysłowej czy systemy komputerowe, gdzie dokładność operacji logicznych jest kluczowa dla wydajności i bezpieczeństwa systemu. Dzięki temu wiedza na temat prawidłowego działania bramek logicznych oraz właściwego interpretowania wyników ich działania jest nieoceniona w praktyce inżynierskiej oraz w projektowaniu efektywnych i niezawodnych systemów cyfrowych.

Pytanie 38

Moduł Mini-GBiCSFP pełni funkcję

A. zwiększania zasięgu sieci WIFI
B. spawania włókien światłowodowych
C. podłączania światłowodu do switcha
D. krosowania switchów przy wykorzystaniu złącz GG45
Moduł Mini-GBiCSFP jest kluczowym elementem w architekturze nowoczesnych sieci telekomunikacyjnych, umożliwiającym podłączanie światłowodów do przełączników. Dzięki zastosowaniu złącza SFP (Small Form-factor Pluggable) jego wymiana i instalacja są wyjątkowo proste i szybkie, co jest istotne w kontekście dynamicznego rozwoju infrastruktury sieciowej. Zastosowanie światłowodów w komunikacji sieciowej zwiększa przepustowość oraz zasięg, a także minimalizuje zakłócenia elektromagnetyczne. Przykładem praktycznego zastosowania Mini-GBiCSFP może być budowa sieci lokalnej w biurze, gdzie wymagana jest wysoka wydajność i niezawodność połączeń. Warto również zauważyć, że zgodność z międzynarodowymi standardami, takimi jak IEEE 802.3, zapewnia interoperacyjność z różnymi urządzeniami, co jest kluczowe w środowiskach wielokrotnych dostawców.

Pytanie 39

Aby oddzielić komputery pracujące w sieci z tym samym adresem IPv4, które są podłączone do przełącznika zarządzalnego, należy przypisać

A. używane interfejsy do różnych VLAN-ów
B. statyczne adresy MAC komputerów do używanych interfejsów
C. statyczne adresy MAC komputerów do nieużywanych interfejsów
D. nieużywane interfejsy do różnych VLAN-ów
Odpowiedź, że używane interfejsy należy przypisać do różnych VLAN-ów, jest poprawna, ponieważ VLAN-y (Virtual Local Area Network) służą do segmentacji sieci, co pozwala na odseparowanie ruchu sieciowego pomiędzy różnymi grupami urządzeń w tej samej infrastrukturze fizycznej. Przydzielając różne VLAN-y do interfejsów, można zdefiniować logiczne podziały w sieci, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i zarządzania ruchem. Na przykład, komputery z ograniczonym dostępem do danych mogą być przypisane do jednego VLAN-u, podczas gdy te, które mają dostęp do bardziej krytycznych informacji, mogą być w innym VLAN-ie. Taki podział pozwala na zastosowanie polityk bezpieczeństwa i uproszczenie zarządzania ruchami sieciowymi. W praktyce, administratorzy sieci często stosują VLAN-y do izolacji różnych działów firmy, co zwiększa zarówno bezpieczeństwo, jak i wydajność sieci, ograniczając niepożądany ruch między grupami użytkowników.

Pytanie 40

Na przedstawionym schemacie wtyk (złącze męskie modularne) stanowi zakończenie kabla

Ilustracja do pytania
A. koncentrycznego
B. F/UTP
C. światłowodowego
D. U/UTP
Złącza światłowodowe mają zupełnie inną konstrukcję niż wtyki RJ-45, które są stosowane do kabli miedzianych, a nie światłowodowych. Złącza światłowodowe, takie jak LC, SC czy ST, służą do przesyłania danych za pomocą światła, co wymaga innych materiałów i kształtu złącza. Złącze koncentryczne jest typowym zakończeniem dla kabli koncentrycznych, które są używane do przesyłania sygnałów telewizyjnych czy w sieciach kablowych. Mają one jeden centralny przewód otoczony izolacją i ekranem, co znacznie różni się od konstrukcji kabla skręconego i jego złącza. Kable U/UTP są nieekranowanymi parami skręconymi, co oznacza brak jakiejkolwiek formy ekranowania. Chociaż są podobne do F/UTP pod względem zastosowania, brak folii ekranowej sprawia, że są mniej odporne na zakłócenia elektromagnetyczne. U/UTP są zwykle stosowane w mniej wymagających środowiskach, gdzie zakłócenia nie są problemem, ale nadal różnią się od F/UTP, które mimo nieekranowanych par, mają dodatkową ochronę całego kabla. Pomyłka w rozróżnieniu tych typów kabli prowadzi do nieodpowiedniego doboru okablowania, co może skutkować problemami z jakością sygnału w bardziej wymagających środowiskach sieciowych. Dlatego ważne jest zrozumienie różnic w konstrukcji i zastosowaniach różnych typów kabli i ich złącz, aby zapewnić optymalne działanie sieci. Każdy typ kabla ma swoje specyficzne zastosowania, a ich właściwy dobór jest kluczowy w projektowaniu i utrzymaniu infrastruktury sieciowej.