Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 lutego 2026 12:50
  • Data zakończenia: 4 lutego 2026 13:12

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
B. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 2

Na którym rysunku pokazano jednofazowy wyłącznik różnicowoprądowy?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Jednofazowy wyłącznik różnicowoprądowy, przedstawiony na rysunku A, pełni kluczową rolę w ochronie instalacji elektrycznych przed porażeniem prądem oraz w zapobieganiu pożarom spowodowanym przez prądy upływowe. Główną cechą wyróżniającą to urządzenie są dwa zaciski przyłączeniowe, które odpowiadają za podłączenie przewodów fazowego i neutralnego, a także charakterystyczny przycisk testowy oznaczony literą 'T', który pozwala na sprawdzenie poprawności działania wyłącznika. W praktyce, jednofazowe wyłączniki różnicowoprądowe są powszechnie stosowane w domowych instalacjach elektrycznych, zwłaszcza w obwodach z gniazdami, aby zabezpieczyć użytkowników przed potencjalnymi zagrożeniami. Zgodnie z normami branżowymi, takie urządzenia powinny być montowane w każdym nowym budynku, co znacząco zwiększa poziom bezpieczeństwa użytkowników. Dodatkowo, regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich sprawności, dlatego rekomenduje się przeprowadzanie testów co najmniej raz na trzy miesiące.

Pytanie 3

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na pół roku
B. raz na rok
C. co najmniej raz na 10 lat
D. co najmniej raz na 5 lat
Wybierając częstotliwość badania instalacji elektrycznej i piorunochronnej, można napotkać wiele nieporozumień związanych z niewłaściwymi podejściami do tego tematu. Odpowiedzi sugerujące, że kontrole powinny odbywać się raz na pół roku, raz na rok, czy co najmniej raz na 10 lat, mogą wynikać z mylnego wrażenia, że częstotliwość badań powinna być uzależniona od intensywności użytkowania instalacji lub warunków zewnętrznych. Niemniej jednak, jest to podejście z gruntu błędne, ponieważ przepisy prawa budowlanego i normy dotyczące bezpieczeństwa elektrycznego jasno określają, iż standardowy okres pomiędzy badaniami powinien wynosić co najmniej 5 lat. Częstsze kontrole, takie jak raz na pół roku lub raz na rok, mogą nie tylko generować niepotrzebne koszty, ale również prowadzić do zbytniego obciążenia specjalistów, co może skutkować wypaleniem zawodowym i negatywnym wpływem na jakość przeprowadzanych badań. Z kolei nawiązanie do 10-letniego okresu między przeglądami jest zupełnie niezgodne z aktualnymi zaleceniami i normami, co może prowadzić do poważnych zagrożeń, gdyż długi okres bez kontroli stwarza ryzyko, że niebezpieczne usterki lub degradacja instalacji mogą pozostać niezauważone. W praktyce, niewłaściwe podejście do okresowości badań może nie tylko zagrażać bezpieczeństwu użytkowników, ale również wpływać na odpowiedzialność prawną właścicieli budynków, którzy są zobowiązani do zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 4

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. uzwojenia fazowego.
B. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
C. izolacji pomiędzy zaciskami uzwojeń silnika.
D. pętli zwarciowej.
Pomiar rezystancji izolacji jest kluczowym zagadnieniem w diagnostyce silników elektrycznych, dlatego błędne podejścia do tego tematu mogą prowadzić do poważnych konsekwencji. Udzielenie odpowiedzi dotyczącej uzwojeń fazowego lub izolacji pomiędzy zaciskami uzwojeń a korpusem silnika wskazuje na niezrozumienie podstawowych zasad stosowanych w pomiarach elektrycznych. Uzwojenia fazowe są elementem, który nie powinien być bezpośrednio analizowany w kontekście izolacji, ponieważ ich pomiar odnosi się bardziej do stanu pracy silnika, a nie do izolacji. Izolacja pomiędzy zaciskami uzwojeń a korpusem silnika, chociaż istotna, nie jest punktem odniesienia przy tak skonstruowanym pomiarze, ponieważ skupia się na wykryciu problemów wewnętrznych, które mogą nie manifestować się w takim pomiarze. Inną niewłaściwą koncepcją jest pomiar pętli zwarciowej, który jest zupełnie innym procesem, wymagającym innej konfiguracji oraz celów, zazwyczaj związanych z bezpieczeństwem systemów elektrycznych. W praktyce, pomiar rezystancji izolacji powinien być wykonywany z użyciem odpowiednich przyrządów, które są zaprojektowane do tego celu, aby uniknąć błędów pomiarowych i zapewnić rzetelność wyników. Ignorowanie tych zasad prowadzi do nieprawidłowych wniosków i potencjalnych zagrożeń związanych z bezpieczeństwem urządzenia.

Pytanie 5

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 4,0 kV
B. 1,5 kV
C. 2,5 kV
D. 6,0 kV
Odpowiedź 1,5 kV to absolutnie trafny wybór, bo odpowiada normie PN-IEC 664-1, która mówi o tym, jakie wymagania powinny spełniać urządzenia elektryczne w instalacjach niskonapięciowych. Kategoria I, na którą to pytanie wskazuje, dotyczy obwodów narażonych na różne niekorzystne warunki, więc ta wartość 1,5 kV naprawdę działa jako solidna ochrona przed przepięciami, na przykład z powodu uderzeń piorunów. To kluczowe z punktu widzenia bezpieczeństwa i trwałości naszych instalacji. W praktyce, używając urządzeń o tej wytrzymałości w budynkach, zmniejszamy ryzyko uszkodzeń sprzętu, a to sprawia, że wszystko działa stabilniej. Nie bez powodu zgodność z normami jest istotna; wpływa na efektywność i żywotność naszych urządzeń oraz pozwala uniknąć niepotrzebnych kosztów napraw czy wymiany sprzętu.

Pytanie 6

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do łączenia przewodów dowolnego typu.
B. Do zaciskania końcówek tulejkowych na przewodach.
C. Do wykonywania połączeń bez zdejmowania izolacji.
D. Do zdejmowania izolacji z przewodów dwużyłowych.
Odpowiedź 'Do łączenia przewodów dowolnego typu' jest jak najbardziej trafna, bo złączka WAGO właśnie do tego służy. Łączy przewody elektryczne – zarówno te jednożyłowe, jak i wielożyłowe. Takie złączki są teraz mega popularne w nowoczesnych instalacjach, bo są łatwe w użyciu i naprawdę niezawodne. Dzięki nim można szybko i bezpiecznie połączyć przewody, bez potrzeby lutowania czy innych skomplikowanych metod, co na pewno przyspiesza całą robotę. Co więcej, złączki WAGO spełniają normy IEC 60998 i IEC 60529, więc można mieć pewność, że są solidne i bezpieczne. Używanie ich w pracy to też sposób na oszczędność czasu i minimalizację błędów, bo nie trzeba ręcznie łączyć przewodów. W praktyce świetnie się sprawdzają w instalacjach oświetleniowych, automatyce budynkowej czy w rozdzielnicach elektrycznych, gdzie ważna jest jakość połączeń. No i ich konstrukcja pozwala na wielokrotne użycie, co czyni je fajnym rozwiązaniem na dłuższą metę.

Pytanie 7

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Impulsowy.
B. Wielofunkcyjny.
C. Czasowy.
D. Priorytetowy.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 8

Oprawa oświetleniowa pokazana na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem

Ilustracja do pytania
A. E27
B. MR16
C. GU10
D. E14
Wybór odpowiedzi MR16, E27 czy E14 wskazuje na brak zrozumienia podstawowych różnic pomiędzy różnymi typami trzonków żarówek. Trzonek MR16, mimo że również stosowany w oświetleniu, ma dwa wąskie bolce, które są umiejscowione w inny sposób i nie posiadają wypustek, co czyni go nieodpowiednim do tej oprawy. Z kolei trzonki E27 i E14 są gwintowane, co oznacza, że nie pasują do przedstawionej oprawy, która wymaga mocowania na bolce. Często mylące jest, że różne standardy trzonków mogą wyglądać podobnie, jednak ich zastosowanie i mechanizm mocowania są całkowicie różne. W praktyce, wybór niewłaściwego trzonka może prowadzić do problemów z montażem oraz funkcjonowaniem oświetlenia, co z kolei może wpłynąć na bezpieczeństwo oraz efektywność energetyczną instalacji. Użytkownicy powinni zwracać szczególną uwagę na specyfikacje techniczne opraw oświetleniowych oraz kompatybilność z żarówkami, co jest kluczowe dla uzyskania optymalnych wyników i zapobiegania awariom. Zrozumienie tych różnic jest fundamentem nie tylko dla instalacji domowych, ale także dla profesjonalnych projektów oświetleniowych, gdzie nieodpowiedni dobór komponentów może prowadzić do znacznych strat czasowych i finansowych.

Pytanie 9

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjną klatkową.
B. Synchroniczną jawnobiegunową.
C. Synchroniczną z biegunami utajonymi.
D. Komutatorową prądu przemiennego.
Wybierając odpowiedzi, które wskazują na inne rodzaje maszyn, użytkownik może napotkać nieporozumienia związane z podstawowymi zasadami działania maszyn elektrycznych. Maszyna indukcyjna klatkowa, na przykład, nie ma wyraźnie zaznaczonych biegunów magnetycznych, co jest kluczowym elementem dla poprawnej identyfikacji maszyny na rysunku. Indukcyjne maszyny klatkowe działają na zasadzie indukcji elektromagnetycznej, gdzie wirnik nie ma stałych biegunów, a moment obrotowy jest generowany przez różnicę prędkości między wirnikiem a polem magnetycznym. Z kolei maszyny synchroniczne z biegunami utajonymi również różnią się pod względem budowy, ponieważ ich bieguny nie są bezpośrednio widoczne, co może prowadzić do pomyłek. W przypadku maszyn komutatorowych prądu przemiennego, kluczowe są inne mechanizmy pracy, w których używane są komutatory do zmiany kierunku prądu w uzwojeniach wirnika. Zrozumienie różnic między tymi typami maszyn jest istotne, aby móc prawidłowo identyfikować ich zastosowania w przemyśle. W praktyce, wiele z tych błędnych odpowiedzi wynika z niepełnego zrozumienia zasad działania i konstrukcji tych maszyn, co może prowadzić do niewłaściwego doboru urządzeń w aplikacjach przemysłowych, a tym samym do obniżenia efektywności systemów elektrycznych.

Pytanie 10

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę halogenową.
B. Żarówkę wolframową.
C. Świetlówkę kompaktową.
D. Lampę neonową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 11

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Dwubiegunowy.
B. Podwójny schodowy.
C. Podwójny krzyżowy.
D. Świecznikowy.
Odpowiedź jest prawidłowa, ponieważ na zdjęciu przedstawiono łącznik elektryczny typu podwójnego schodowego. Tego rodzaju łącznik posiada dwa niezależne przyciski, z których każdy służy do sterowania oddzielnym obwodem oświetleniowym. Jest to niezwykle przydatne rozwiązanie w przypadku schodów, gdzie możliwe jest włączanie i wyłączanie oświetlenia zarówno z dołu, jak i z góry. Przykładowo, instalacja takiego łącznika w domu jednorodzinnym pozwala na komfortowe korzystanie z oświetlenia nawet po zmroku. Dodatkowo, zgodnie z normami i najlepszymi praktykami w dziedzinie instalacji elektrycznych, stosowanie łączników schodowych zwiększa bezpieczeństwo w ruchu oraz komfort użytkowników, minimalizując ryzyko poślizgnięć i upadków. Warto również zauważyć, że często łącznik podwójny schodowy jest wykorzystywany w systemach automatyki budowlanej, co pozwala na integrację z różnymi źródłami światła i systemami sterowania. Dzięki temu możliwe jest dostosowanie oświetlenia do indywidualnych potrzeb użytkowników.

Pytanie 12

Na którym rysunku przedstawiono przewód SMYp przeznaczony do podłączenia taśmy LED?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Przewód oznaczony jako 'D' jest właściwym wyborem, ponieważ jest to przewód typu SMYp, który charakteryzuje się budową płaską oraz wielodrutową strukturą. Takie przewody są typowo wykorzystywane w instalacjach oświetleniowych, szczególnie w przypadku podłączania taśm LED. Dzięki swojej elastyczności, przewody SMYp doskonale nadają się do prowadzenia w trudno dostępnych miejscach oraz w przestrzeniach ograniczonych, co jest często spotykane w zastosowaniach LED. Dodatkowo, przewody te są zgodne z normami IEC oraz PN-EN, co zapewnia ich bezpieczeństwo oraz niezawodność w eksploatacji. Użycie przewodów tego typu pozwala na minimalizację strat energii oraz zapewnia wysoką wydajność świetlną. W praktyce, instalując taśmy LED, należy zwrócić szczególną uwagę na odpowiednią grubość przewodu oraz jego właściwości izolacyjne, aby uniknąć przegrzewania oraz uszkodzeń. Zastosowanie przewodu SMYp w tych przypadkach jest najlepszym rozwiązaniem, które zwiększa trwałość oraz efektywność całej instalacji oświetleniowej.

Pytanie 13

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla zmywarki
B. oddzielnego dla urządzeń gospodarstwa domowego
C. zasilającego gniazdka w łazience oraz kuchni
D. zasilającego gniazdka jedynie w kuchni
Zasilanie zmywarki z obwodu z gniazda w łazience i kuchni jest nieodpowiednie, ponieważ takie podejście może prowadzić do wielu problemów związanych z bezpieczeństwem oraz funkcjonalnością. Przede wszystkim, gniazda w łazience są zaprojektowane z myślą o niskiej mocy i specyficznych wymaganiach urządzeń, a ich użycie do zasilania zmywarki może skutkować przeciążeniem obwodu. Użycie wspólnego obwodu dla różnych urządzeń, zwłaszcza w kontekście sprzętu AGD, może prowadzić do nieprzewidywalnych sytuacji, takich jak wyzwolenie zabezpieczeń. Kolejnym problemem jest to, że gniazda w łazience muszą spełniać rygorystyczne normy ochrony przed porażeniem elektrycznym, co w przypadku zmywarki, która działa w wodzie, stwarza dodatkowe ryzyko. Zasilanie zmywarki z jednego obwodu z innym sprzętem gospodarstwa domowego, takim jak lodówka, również jest niewłaściwe, ponieważ może doprowadzić do przeciążeń, co w konsekwencji może skutkować uszkodzeniem urządzeń. Warto więc przestrzegać zasad dotyczących oddzielnych obwodów dla dużych urządzeń, co jest zgodne z normami bezpieczeństwa oraz praktyką instalatorską, aby zapewnić efektywne i bezpieczne działanie wszystkich urządzeń w domu.

Pytanie 14

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. przyłącza kablowego
B. instalacji wewnętrznej
C. wewnętrznej linii zasilającej
D. przyłącza napowietrznego
Odpowiedź "wewnętrzna linia zasilająca" jest poprawna, ponieważ odnosi się do połączenia elektrycznego, które służy do dostarczania energii elektrycznej wewnątrz budynków. Tego rodzaju linie zasilające są kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, zapewniając stabilne i bezpieczne przesyłanie energii do urządzeń i systemów odbiorczych. W praktyce, wewnętrzne linie zasilające są projektowane zgodnie z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa, jakości oraz efektywności energetycznej. Stosowanie odpowiednich materiałów, takich jak przewody miedziane lub aluminiowe oraz odpowiednie zabezpieczenia, takie jak wyłączniki nadprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku budynków komercyjnych, takich jak biura czy hale produkcyjne, projektowanie wewnętrznych linii zasilających wymaga szczególnej uwagi na obciążenia energetyczne oraz możliwość przyszłej rozbudowy instalacji.

Pytanie 15

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,50 Ω
B. 1,25 Ω
C. 2,50 Ω
D. 2,75 Ω
Problemy związane z błędnymi odpowiedziami najczęściej wynikają z nieprawidłowego zrozumienia zasad działania obwodów elektrycznych oraz błędnych obliczeń związanych z prawem Ohma. Użytkownicy mogą mylić jednostki miary lub źle interpretować różnice napięć w obwodzie. Na przykład, jeśli ktoś obliczał impedancję, wykorzystując różne wartości napięcia bez uwzględnienia spadku napięcia, mógłby uzyskać błędne wyniki, takie jak 1,50 Ω czy 1,25 Ω. Takie odpowiedzi mogą wynikać z przeoczenia, że do obliczeń należy używać jedynie różnicy napięcia przy zamkniętym i otwartym wyłączniku, a nie pojedynczych pomiarów. Z kolei wybór 2,75 Ω jako wartości impedancji może oznaczać, że osoba ta nie zrozumiała, jak funkcjonują obwody prądu przemiennego lub nie doceniła wpływu prądu na pomiar. Błędy te mogą również wynikać z braku znajomości praktycznych zastosowań i norm dotyczących instalacji elektrycznych, takich jak PN-IEC 60364. Właściwe obliczenia i zrozumienie wpływu impedancji pętli zwarcia na bezpieczeństwo instalacji elektrycznych są kluczowe dla każdego inżyniera elektryka. Ignorując te zasady, można stworzyć potencjalnie niebezpieczne warunki w obwodach elektrycznych, dlatego dokładność obliczeń i znajomość podstawowej teorii jest niezbędna w tej dziedzinie.

Pytanie 16

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/500 V
B. 100/100 V
C. 450/750 V
D. 300/300 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 17

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. II
B. I
C. 0
D. III
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 18

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. hotelowy.
B. dwubiegunowy.
C. schodowy.
D. świecznikowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 19

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
B. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
C. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
D. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
No, wybrałeś dobrą odpowiedź! Do montażu oprawy oświetleniowej potrzebujesz paru specjalnych narzędzi. Wiertarka jest mega ważna, bo to ona pozwala nawiercić otwory w ścianie, żeby wsadzić dyble. Klucz nasadowy przyda się do wkręcania śrub, a to ważne, żeby oprawa była stabilna. Wkrętak płaski może być użyty do drobnych poprawek, żeby wszystko ładnie pasowało. Nóż monterski z kolei dobrze posłuży do przygotowania przewodów, a ściągacz izolacji to konieczność, by pozbyć się izolacji z końców, bo musimy je dobrze podłączyć. Jak znasz te narzędzia i wiesz, do czego służą, to już jesteś na dobrej drodze w elektrotechnice, a to zwiększa bezpieczeństwo i jakość naszej pracy.

Pytanie 20

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i L3
B. L1 i L3
C. N i PE
D. L1 i PE
Odpowiedzi L1 i PE, N i L3 oraz L1 i L3 są błędne z kilku powodów. Przede wszystkim, przy analizie wyników pomiarów rezystancji kluczowe jest zrozumienie, że rezystancja wynosząca 0 Ω wskazuje na bezpośrednie zwarcie, podczas gdy nieskończona rezystancja (∞) sugeruje odseparowane obwody. Wybranie odpowiedzi L1 i PE sugeruje, że te przewody są ze sobą zwarte, co jest sprzeczne z wynikami pomiarów. Takie błędne wnioski mogą wynikać z nieprawidłowej interpretacji danych pomiarowych. Z kolei odpowiedź N i L3 implikuje, że przewód neutralny jest w połączeniu z przewodem fazowym, co w rzeczywistości jest niewłaściwe, ponieważ nie powinno się łączyć przewodów fazowych z neutralnymi w sposób, który mógłby prowadzić do zwarcia. Odpowiedź L1 i L3 także jest błędna, ponieważ nie wykazuje żadnego zwarcia, a w praktyce powinna być traktowana jako odrębne obwody. Te nieporozumienia mogą wskazywać na brak zrozumienia przyczyn i skutków oraz standardów bezpieczeństwa elektrycznego, takich jak PN-IEC 60364, które zalecają szczegółowe analizy i stosowanie właściwych metod pomiarowych w celu zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 21

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 22

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 3.
C. Symbolem 2.
D. Symbolem 4.
Odpowiedź oznaczona symbolem 4 jest poprawna, ponieważ w schematach ideowych instalacji elektrycznych stosuje się ściśle określone symbole graficzne. Łącznik świecznikowy, będący kluczowym elementem w instalacjach oświetleniowych, posiada swój specyficzny symbol, który wyróżnia go spośród innych urządzeń. W kontekście norm, takich jak PN-EN 60617, symbol ten jest przedstawiany jako wyłącznik z dodatkowym oznaczeniem, co sugeruje możliwość regulacji oświetlenia. Przykładowo, w praktyce instalacyjnej, łącznik świecznikowy jest często stosowany w pomieszczeniach mieszkalnych, gdzie użytkownik ma potrzebę łatwego włączania i wyłączania oświetlenia, a także jego przyciemniania. Prawidłowe rozpoznanie symboli w schematach ideowych jest kluczowe dla właściwego montażu i późniejszej eksploatacji instalacji elektrycznej, co z kolei ma wpływ na bezpieczeństwo użytkowników oraz efektywność energetyczną budynku.

Pytanie 23

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H07V2-U
B. H03VVH2-F
C. H03VV-F
D. H07V-K
Wybór niewłaściwych typów przewodów, takich jak H07V-K, H03VVH2-F czy H07V2-U, może prowadzić do poważnych błędów w projektowaniu instalacji elektrycznych. H07V-K jest przewodem sztywnym, przeznaczonym do instalacji stacjonarnych, co czyni go nieodpowiednim do zastosowań wymagających elastyczności. Z kolei H03VVH2-F jest przewodem elastycznym, jednak jego parametry techniczne i zastosowanie są inne niż w przypadku H03VV-F. H03VVH2-F posiada dodatkową izolację, co czyni go bardziej odpornym na uszkodzenia, ale nie jest typowym rozwiązaniem dla niskonapięciowych urządzeń przenośnych. H07V2-U to kolejny przewód sztywny, co ogranicza jego zastosowanie. Wybierając niewłaściwy typ przewodu, można narazić urządzenia na uszkodzenie, a także stwarzać zagrożenie pożarowe lub porażenia prądem. Zrozumienie różnic pomiędzy tymi typami przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby zwracać uwagę na konkretne parametry przewodów oraz ich zastosowanie zgodnie z aktualnymi normami branżowymi.

Pytanie 24

Na ilustracji przedstawiono

Ilustracja do pytania
A. badanie skuteczności ochrony podstawowej.
B. pomiar rezystancji izolacji przewodów ochronnych.
C. pomiar impedancji pętli zwarcia.
D. sprawdzanie ciągłości przewodów ochronnych.
Na schemacie widać bardzo charakterystyczny układ: połączenie między zaciskiem ochronnym gniazda a szyną PEN/PE oraz prosty obwód z żarówką i źródłem zasilania. Taki rysunek łatwo pomylić z innymi pomiarami ochronnymi, bo dotyczy elementów PE i PEN, ale jego cel jest zupełnie inny niż pomiar impedancji pętli zwarcia czy rezystancji izolacji. Kluczowe jest to, że mierzymy ciągłość metalicznego połączenia, a nie parametry zwarciowe ani izolacyjne. W pomiarze impedancji pętli zwarcia wykorzystuje się napięcie sieciowe i specjalny miernik, który na bardzo krótko wprowadza prąd pomiarowy w rzeczywistą pętlę: faza – przewód ochronny lub PEN – źródło. Wynikiem jest impedancja Zs, na podstawie której sprawdza się, czy zabezpieczenie nadprądowe zadziała w wymaganym czasie. Na rysunku nie ma ani wpięcia do przewodu fazowego, ani typowego miernika pętli, ani odniesienia do napięcia sieci – jest tylko prosty obwód kontrolny, więc nie jest to pomiar impedancji pętli zwarcia. Pomyłka często wynika z tego, że ludzie widzą PEN i od razu kojarzą z pętlą zwarcia. Badanie skuteczności ochrony podstawowej też tu nie pasuje, bo ochrona podstawowa dotyczy głównie izolacji części czynnych, osłon, obudów, odległości i stopnia ochrony IP, a w pomiarach – najczęściej rezystancji izolacji między żyłami czynnymi a ziemią. Tutaj testujemy wyłącznie tor ochronny, czyli ochronę przy uszkodzeniu, a nie ochronę przed dotykiem bezpośrednim. Równie myląco brzmi pomiar rezystancji izolacji przewodów ochronnych – w praktyce mierzy się rezystancję izolacji między przewodami czynnymi a PE, ale nie bada się samej „izolacji przewodu ochronnego” w takim sensie, jak sugeruje odpowiedź. Do testu izolacji używa się miernika z napięciami 250–1000 V DC, a na schemacie tego nie ma, jest tylko niski potencjał i kontrola ciągłości. Typowym błędem jest wrzucanie do jednego worka wszystkich pomiarów związanych z ochroną przeciwporażeniową. Tymczasem norma PN‑HD 60364‑6 wyraźnie rozróżnia: osobno pomiar ciągłości przewodów ochronnych, osobno pomiar rezystancji izolacji, osobno pomiar impedancji pętli zwarcia i sprawdzanie działania RCD. Ten schemat to najprostsza forma sprawdzenia, czy między zaciskiem PE w gnieździe a szyną ochronną istnieje pewne, niskoomowe połączenie – i tylko tyle, ale aż tyle, bo od tego zależy skuteczność całej ochrony przy uszkodzeniu.

Pytanie 25

W jakim celu należy użyć przyrządu przedstawionego na rysunku?

Ilustracja do pytania
A. Pomiaru prędkości obrotowej wałów.
B. Wykrywania przewodów pod tynkiem.
C. Punktowego przenoszenia wysokości.
D. Pomiaru natężenia oświetlenia.
Wykrywanie przewodów pod tynkiem jest kluczowym zastosowaniem detektora, który pozwala na bezpieczne przeprowadzanie prac remontowych i budowlanych. Urządzenia tego typu, takie jak detektor przewodów firmy Bosch, są zaprojektowane w taki sposób, aby identyfikować metalowe elementy oraz przewody pod napięciem w ścianach, sufitach i podłogach. Przed rozpoczęciem wiercenia lub montażu, korzystanie z detektora pozwala na uniknięcie poważnych uszkodzeń instalacji elektrycznej, co może prowadzić do kosztownych napraw oraz zagrożeń dla bezpieczeństwa. Praktyczne zastosowanie detektora obejmuje zarówno prace domowe, jak i profesjonalne remonty, gdzie precyzyjne określenie lokalizacji kabli jest niezbędne. Zgodnie z najlepszymi praktykami, przed rozpoczęciem jakichkolwiek prac budowlanych zawsze zaleca się użycie detektora, aby zminimalizować ryzyko i zapewnić bezpieczeństwo. Warto również zaznaczyć, że nowoczesne modele detektorów mogą wykrywać nie tylko przewody, ale także inne elementy konstrukcyjne, co zwiększa ich wszechstronność.

Pytanie 26

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielodrutowy nieuzbrojony.
B. Jednożyłowy uzbrojony.
C. Jednodrutowy nieuzbrojony.
D. Wielożyłowy uzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 27

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów rozruchowych i regulacyjnych
B. Impregnację uzwojeń i wyważenie wirnika
C. Pomiar rezystancji izolacji i próbne uruchomienie
D. Sprawdzenie układów sterowania i sygnalizacji
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 28

Które zaciski listwy zaciskowej transformatora trójfazowego obniżającego napięcie należy połączyć, aby uzyskać połączenie uzwojenia górnego napięcia w gwiazdę, a uzwojenia dolnego napięcia w trójkąt?

Ilustracja do pytania
A. 4-5-6 oraz 8-10, 9-11, 7-12
B. 2-4, 3-5, 1-6 oraz 7-8-9
C. 2-4, 3-5, 1-6 oraz 8-10, 9-11, 7-12
D. 4-5-6 oraz 7-8-9
W tym zadaniu łatwo „pogubić się” w numerach, jeśli patrzy się tylko na listwę, a nie na zasadę łączenia gwiazda–trójkąt. Kluczowe jest rozumienie, co fizycznie oznacza gwiazda i co oznacza trójkąt dla uzwojeń transformatora. W gwieździe trzy końce uzwojeń muszą być złączone w jeden wspólny punkt neutralny, a trzy początki są wyprowadzone jako L1, L2, L3. W trójkącie natomiast każde uzwojenie jest wpięte pomiędzy dwie fazy, a koniec jednego uzwojenia łączy się z początkiem następnego, tak aby powstał zamknięty pierścień. Propozycje, w których łączone są zaciski 4-5-6 oraz 7-8-9, sugerują, że ktoś próbował „na czuja” zrobić dwa punkty gwiazdowe – po jednym dla każdej strony transformatora. To jest błąd koncepcyjny, bo po stronie dolnego napięcia nie ma być gwiazda, tylko zamknięty trójkąt. Zwarte 7-8-9 tworzy co prawda wspólny punkt, ale nie powiąże uzwojeń w układ Δ, więc nie spełni wymaganej konfiguracji Y/Δ. Z kolei odpowiedzi, gdzie pojawiają się mostki 2-4, 3-5, 1-6, próbują zbudować po stronie GN trójkąt, czyli połączyć początek jednego uzwojenia z końcem następnego. To typowy błąd: pomylenie tego, która strona ma być w gwiazdę, a która w trójkąt. W połączeniu Y/Δ dla transformatora obniżającego napięcie zwykle to właśnie strona wyższego napięcia jest w gwiazdę, żeby mieć dostęp do punktu neutralnego i lepszą izolację względem ziemi, a strona niższego napięcia pracuje w trójkącie. Jeśli więc po stronie GN zamiast zwarcia 4-5-6 buduje się układ 2-4, 3-5, 1-6, to w praktyce uzwojenia pierwotne nie będą miały wspólnego punktu neutralnego, tylko zostaną zamknięte w trójkąt, co zmienia całkowicie charakterystykę pracy transformatora. Z mojego doświadczenia najczęstsze potknięcie przy takich zadaniach to patrzenie na same numerki, bez śledzenia, który zacisk jest początkiem, a który końcem uzwojenia. Dobra praktyka jest taka, żeby zawsze najpierw „w głowie” albo na kartce narysować sobie topologię: trzy uzwojenia, ich początki i końce, a dopiero potem przekładać to na numery listwy zaciskowej. Wtedy od razu widać, że tylko układ 4-5-6 jako wspólny punkt oraz 8-10, 9-11, 7-12 jako pętlą trójkąta spełnia wymaganie: GN w gwiazdę, DN w trójkąt.

Pytanie 29

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
D. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
Wymienione zależności, które sugerują różne podejścia do instalacji elektrycznych w pomieszczeniach mieszkalnych, mogą wydawać się rozsądne, jednak w rzeczywistości opierają się na błędnych założeniach. Na przykład, zasilanie gniazd wtykowych w kuchni z osobnego obwodu jest praktyką zalecaną ze względu na konieczność obsługi urządzeń o dużym poborze mocy, takich jak kuchenki czy zmywarki. Odbiorniki dużej mocy powinny być zasilane z wydzielonych obwodów, aby zapobiec przeciążeniom i zwiększyć bezpieczeństwo użytkowania. Oddzielenie obwodów oświetleniowych od gniazd wtykowych również ma swoje uzasadnienie, ponieważ pozwala na niezależne zarządzanie oświetleniem i zasilaniem urządzeń, co w praktyce ułatwia diagnostykę i naprawy awarii. Z perspektywy normatywnej, wszystkie te podejścia są zgodne z europejskimi standardami bezpieczeństwa instalacji elektrycznych, które mają na celu minimalizację ryzyka związanego z użytkowaniem energii elektrycznej. Błędne wnioski wynikają często z niepełnego zrozumienia zasad projektowania instalacji elektrycznych i mogą prowadzić do sytuacji niebezpiecznych, takich jak przeciążenia, które w skrajnych przypadkach mogą skutkować pożarami. Dlatego tak ważne jest, aby przestrzegać sprawdzonych zasad i standardów, aby zapewnić zarówno komfort, jak i bezpieczeństwo użytkowników instalacji elektrycznych.

Pytanie 30

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są przerwane.
B. Żyły a i b są przerwane.
C. Żyły a i b są zwarte ze sobą.
D. Żyły c i a są zwarte ze sobą.
Wnioski wyciągnięte z pomiarów rezystancji są kluczowe dla właściwego diagnozowania stanu kabli. Nieprawidłowe interpretacje mogą prowadzić do fałszywych diagnoz, co z kolei może skutkować nieefektywnym użytkowaniem sprzętu lub nawet poważnymi awariami. Na przykład, uznanie, że żyły c i a są przerwane, pomija fakt, że w pierwszej serii pomiarów rezystancja była niska, co wskazuje na ich sprawność. Takie wnioski mogą wynikać z niepełnego zrozumienia zasad działania rezystancji i wpływu zwarcia na pomiary. Z kolei założenie, że żyły a i b są przerwane, jest również błędne, ponieważ ich rezystancja w drugiej serii była zbliżona do wartości ze pierwszej serii, co sugeruje ich zwarte połączenie. Dlatego kluczowe jest, aby technicy byli świadomi różnicy między pomiarami w trybie zwarcia i rozłączenia oraz umieli prawidłowo interpretować otrzymane wyniki. Używanie standardowych procedur pomiarowych, takich jak te określone w normach branżowych, może znacznie zwiększyć dokładność diagnoz. Należy unikać pułapek, w które wpadali technicy, którzy, zamiast analizować dane w kontekście całości, skupili się jedynie na fragmentarycznych wynikach, co prowadzi do błędnych konkluzji.

Pytanie 31

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. watomierzem
B. amperomierzem
C. omomierzem
D. woltomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 32

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. IT
B. TN-C
C. TN-S
D. TT
Układ TT, w przeciwieństwie do TN-C, charakteryzuje się oddzielnym przewodem neutralnym (N) oraz przewodem ochronnym (PE), co oznacza, że nie występuje w nim przewód PEN. W tym przypadku, przewód PE jest uziemiony w punkcie rozdziału, co zwiększa bezpieczeństwo, ponieważ w przypadku zwarcia prąd ochronny może natychmiast popłynąć do ziemi. W układzie IT natomiast brak jest bezpośredniego uziemienia neutralnego, co zwiększa odporność na zwarcia, ale wymaga zastosowania bardziej skomplikowanych systemów monitorowania. Z kolei w układzie TN-S przewody N i PE są oddzielne, co również eliminuje przewód PEN i pozwala na większą elastyczność w projektowaniu instalacji. Powszechnym błędem jest mylenie tych systemów, co wynika z niepełnego zrozumienia ich struktury i zastosowania. W praktyce, znajomość różnic między tymi układami jest kluczowa dla zapewnienia właściwego poziomu bezpieczeństwa oraz efektywności energetycznej instalacji elektrycznych. Zastosowanie niewłaściwego układu może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub uszkodzenia sprzętu elektrycznego. Dlatego tak ważne jest, aby projektanci i instalatorzy elektryczni rozumieli te różnice i wybierali odpowiednie systemy w zależności od specyficznych wymagań danego środowiska.

Pytanie 33

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór innego łącznika niż łącznik schodowy prowadzi do nieporozumień związanych z jego funkcjonalnością. Na przykład łączniki krzyżowe czy pojedyncze nie mają zdolności do jednoczesnego sterowania oświetleniem z dwóch miejsc, co stanowi podstawowy wymóg w omawianej sytuacji. Typowe błędy myślowe, prowadzące do takich wyborów, często obejmują mylenie zastosowania różnych typów łączników, co może wynikać z braku zrozumienia ich funkcji. Łączniki jednobiegunowe, na przykład, są przeznaczone jedynie do sterowania oświetleniem z jednego miejsca, co w przypadku dwu- lub wielopunktowego sterowania, nie spełnia oczekiwań. Ponadto, niektóre rozwiązania mogą być uznawane za bardziej skomplikowane, przez co użytkownicy mogą wybierać nieodpowiednie komponenty, nie biorąc pod uwagę ich specyfikacji technicznych. Kluczowe jest zrozumienie, że w odpowiednich zastosowaniach konieczne jest stosowanie właściwych typów łączników, aby uniknąć problemów z instalacją i późniejszym użytkowaniem, co jest zgodne z zaleceniami branżowymi i standardami bezpieczeństwa.

Pytanie 34

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
B. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
C. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
D. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
Jak się przygotowujesz do wymiany uszkodzonego odcinka przewodu w rurach peszla, to trzeba dobrze przemyśleć, co robisz. Najpierw ważne jest, żeby odłączyć napięcie zasilania – to wiadomo, ale niektórzy zapominają o otwarciu puszek instalacyjnych. Bez tego dostanie się do przewodów to jak szukanie igły w stogu siana. Następnie, jak mówisz o wymianie rury peszla, nie można tego robić bez odkręcenia końców uszkodzonego przewodu. W praktyce najlepiej jest analizować całą instalację w puszkach, a nie grzebać tam, gdzie nie potrzeba, żeby nie komplikować sobie życia. Gdzieś mi się wydaje, że niektórzy też zapominają o ponownym sprawdzeniu działania instalacji po włączeniu napięcia, co jest naprawdę istotne, żeby mieć pewność, że wszystko działa jak powinno. Czasem zrywanie tynku bez przemyślenia to totalna strata czasu, a później uzupełnianie go bez sensu jest niepotrzebne, jeśli nie wykonasz odpowiedniego dostępu do przewodów. Dlatego lepiej działać według norm i standardów, które mówią, że wszystko trzeba robić z głową i w bezpieczny sposób.

Pytanie 35

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
B. Obniżają rezystancję obwodu twornika
C. Generują napięcie remanentu
D. Usuwają niekorzystne efekty wynikające z działania twornika
Wybór odpowiedzi dotyczącej zmniejszenia rezystancji obwodu twornika pokazuje, że temat uzwojeń pomocniczych jest chyba jeszcze nie do końca jasny. Taka rezystancja nie jest bezpośrednio związana z tymi uzwojeniami, bo ich zadanie polega głównie na likwidowaniu problematycznych zjawisk, a nie na redukcji oporu. Mówienie o rezystancji w kontekście pracy silnika może powodować mylne wrażenie, że obniżenie oporu to klucz do lepszej wydajności. Na dodatek, pojawia się też mylny pomysł, że uzwojenia pomocnicze mogą zapobiegać rozbieganiu się silnika w momencie, gdy obciążenie spada. Tak naprawdę ich rolą jest stabilizacja pracy silnika, co oznacza, że eliminują negatywne zjawiska, które mogą wystąpić przy zmiennym obciążeniu. Na koniec, odpowiedź, że uzwojenia pomocnicze wytwarzają napięcie remanentu, to też nie jest trafna informacja, bo to napięcie pochodzi z magnesów trwałych lub uzwojeń głównych, a nie pomocniczych. Ogólnie rzecz biorąc, ważne jest, żeby rozumieć te różnice, bo są kluczowe przy projektowaniu i użytkowaniu silników prądu stałego w przemyśle.

Pytanie 36

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.

Pytanie 37

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S193B10
B. S194B10
C. S193B16
D. S192B16
Wyłącznik S193B16 jest właściwym wyborem do zastąpienia bezpieczników typu gG w obwodzie zasilającym trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7 kW. Aby przeanalizować tę decyzję, należy wziąć pod uwagę kilka kluczowych aspektów. Po pierwsze, moc 7 kW przy napięciu 400 V wymaga prądu znamionowego wynoszącego około 10 A (I = P/U, czyli 7 kW / 400 V = 17,5 A). W związku z tym wyłącznik S193B16, który ma wartość 16 A, jest odpowiedni, ponieważ jego wartość znamionowa jest wyższa od obliczonego prądu, co zapewnia odpowiednią ochronę przed przeciążeniem. Po drugie, wyłączniki nadprądowe typu S193 są projektowane z myślą o zastosowaniach w instalacjach trójfazowych, co czyni je bardziej odpowiednimi niż inne opcje, które są mniej uniwersalne. W praktyce, stosując S193B16, zapewniamy nie tylko skuteczną ochronę obwodu przed przeciążeniem, ale także zgodność z normami PN-EN 60898-1, które regulują zasady stosowania takich urządzeń w instalacjach elektrycznych. W przypadku awarii, wyłącznik ten zareaguje szybko, co zwiększy bezpieczeństwo użytkowania grzejnika elektrycznego.

Pytanie 38

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Czujnika ruchu.
B. Źródła światła.
C. Automatu schodowego.
D. Aparatu zmierzchowego.
Wybór niewłaściwej odpowiedzi może wynikać z kilku nieporozumień dotyczących funkcji i parametrów technicznych urządzeń elektrycznych. Czujnik ruchu, na przykład, nie jest urządzeniem, które generuje światło, lecz detektorem obecności, który aktywuje inne źródło światła w momencie wykrycia ruchu. W przypadku aparatu zmierzchowego, jego zadaniem jest automatyczne włączanie lub wyłączanie źródła światła w zależności od natężenia oświetlenia w otoczeniu, również nie dostarcza on informacji o lumenach, mocy czy gwincie, które są typowe dla źródeł światła. Automat schodowy to urządzenie, które steruje oświetleniem na klatkach schodowych, włączając światło na krótki czas po wykryciu ruchu, jednak także nie jest to źródło światła. Zrozumienie różnicy między tymi urządzeniami a źródłami światła jest kluczowe w kontekście projektowania instalacji oświetleniowych. Użytkownicy mogą popełnić błędy, jeśli nie rozumieją, że parametry takie jak lumeny i moc są związane wyłącznie z samymi źródłami światła, a nie z urządzeniami, które je aktywują lub kontrolują. Rzetelne podejście do klasyfikacji tych urządzeń jest niezbędne dla skutecznego zarządzania energią i zapewnienia odpowiedniego poziomu oświetlenia, co jest szczególnie ważne w kontekście zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 39

Który układ połączeń watomierza jest zgodny ze schematem pomiarowym pokazanym na rysunku?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź C jest poprawna, ponieważ odzwierciedla prawidłowy układ połączeń watomierza zgodny z zasadami pomiaru mocy czynnej w obwodach jednofazowych. W tej konfiguracji cewka prądowa jest połączona szeregowo z obciążeniem, co umożliwia pomiar prądu płynącego przez obciążenie. Z kolei cewka napięciowa jest połączona równolegle z obciążeniem, co pozwala na pomiar napięcia na tym obciążeniu. Dzięki temu, watomierz może dokładnie obliczyć moc czynną, stosując wzór P=U*I*cos(φ), gdzie φ to kąt przesunięcia fazowego między prądem a napięciem. Takie połączenie jest zgodne z normami IEC 60051 oraz IEC 62053, które definiują wymagania dotyczące pomiarów mocy. W praktyce poprawnie skonfigurowany watomierz w obwodzie jednofazowym jest kluczowy do monitorowania i zarządzania zużyciem energii, co ma istotne znaczenie w kontekście efektywności energetycznej i zarządzania kosztami w przedsiębiorstwach oraz gospodarstwach domowych.

Pytanie 40

Do czego przeznaczone są szczypce przedstawione na ilustracji?

Ilustracja do pytania
A. Do formowania oczek na końcach żył jednodrutowych.
B. Do montażu zacisków zakleszczających.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
Niepoprawne odpowiedzi dotyczą różnych zastosowań szczypiec, które nie są związane z formowaniem oczek na końcach żył jednodrutowych. Zaciskanie końcówek tulejkowych na żyłach wielodrutowych wymaga zupełnie innego typu narzędzi, które są przeznaczone do pracy z końcówkami o specyficznych średnicach i kształtach, co nie ma zastosowania w przypadku żył jednodrutowych. Podobnie, montaż zacisków zakleszczających wymaga narzędzi o odmiennym profilu, które są w stanie zapewnić odpowiednią siłę i dokładność przy zakleszczaniu, co jest kluczowe dla bezpieczeństwa połączeń. Z kolei zaprasowywanie końców przewodów w połączeniach wsuwanych zazwyczaj odbywa się przy użyciu specjalistycznych narzędzi zaprasowujących, które charakteryzują się innym mechanizmem działania niż szczypce okrągłe. Dlatego też, mylenie tych narzędzi i ich funkcji może prowadzić do nieefektywności w pracy oraz potencjalnych zagrożeń związanych z niewłaściwymi połączeniami. Ważne jest, aby dobrze rozumieć różnice między tymi rodzajami narzędzi i ich zastosowaniami, aby uniknąć błędnych interpretacji i zapewnić wysoką jakość wykonania w każdej instalacji elektrycznej.