Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 4 lutego 2026 21:23
  • Data zakończenia: 4 lutego 2026 21:47

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 1 220 zł
B. 2 200 zł
C. 2 440 zł
D. 1 440 zł
Aby obliczyć całkowity koszt urządzenia elektronicznego, należy uwzględnić zarówno koszt materiałów, jak i koszt wykonania, a także podatek VAT. Koszt materiałów wynosi 1 000 zł. Koszt wykonania, który wynosi 100% ceny materiałów, również jest równy 1 000 zł. W związku z tym całkowity koszt przed naliczeniem VAT wynosi 1 000 zł (materiały) + 1 000 zł (wykonanie) = 2 000 zł. Następnie należy obliczyć podatek VAT, który wynosi 22% z kwoty 2 000 zł. Obliczenie podatku wygląda następująco: 2 000 zł * 0,22 = 440 zł. Zatem całkowity koszt urządzenia, uwzględniając podatek VAT, wynosi 2 000 zł + 440 zł = 2 440 zł. Przykładem zastosowania tej wiedzy w praktyce może być wycena projektów w branży elektroniki, gdzie znajomość kosztów i podatków jest niezbędna do efektywnego zarządzania budżetem.

Pytanie 2

Symbol graficzny którego elementu przedstawiono na rysunku?

Ilustracja do pytania
A. Tranzystora.
B. Tyrystora.
C. Transila.
D. Transoptora.
Wybór niewłaściwego elementu, takiego jak tyrystor, transoptor czy tranzystor, wskazuje na nieporozumienia dotyczące ich funkcji i zastosowań. Tyrystor, na przykład, to półprzewodnikowy element mocy, który działa jako przełącznik, ale nie jest przeznaczony do ochrony przed przepięciami. Jego główną funkcją jest kontrolowanie prądu w obwodach, co czyni go bardziej odpowiednim dla aplikacji, gdzie wymagana jest kontrola mocy, a nie ochrona przed skokami napięcia. Z kolei transoptory służą głównie do izolacji galwanicznej pomiędzy różnymi częściami układu, co nie ma związku z funkcją ochronną. Tranzystory, mimo że są wszechstronnymi elementami stosowanymi do wzmacniania sygnałów, nie mają właściwości, które byłyby przydatne w kontekście ochrony układów przed przepięciami. Często błędne odpowiedzi wynikają z mieszania pojęć związanych z różnymi typami elementów elektronicznych oraz ich funkcjami. Zrozumienie, że transile mają specyficzne zastosowanie w ochronie, a inne wymienione elementy pełnią zupełnie różne role, jest kluczowe dla właściwego projektowania układów elektronicznych i zapewnienia ich bezpieczeństwa.

Pytanie 3

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór dławiący, manometr, smarownica
B. filtr, zawór redukcyjny, manometr, smarownica
C. sprężarka, filtr, manometr, smarownica
D. sprężarka, filtr, zawór redukcyjny, manometr
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 4

Na rysunku przedstawiono przekładnię o zębach

Ilustracja do pytania
A. łukowych.
B. śrubowych.
C. daszkowych.
D. prostych.
Odpowiedź "łukowych" jest prawidłowa, ponieważ zęby łukowe charakteryzują się zakrzywionym kształtem, co zapewnia ich lepszą współpracę i przenoszenie obciążeń. Przekładnie zębate z zębami łukowymi są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających cichej i precyzyjnej pracy, takich jak w przekładniach samochodowych, gdzie redukcja hałasu i drgań jest kluczowa dla komfortu użytkowania. W porównaniu do zębów prostych, zęby łukowe oferują znacznie lepsze właściwości eksploatacyjne, w tym zwiększoną trwałość oraz mniejsze zużycie. W praktyce, takie przekładnie są stosowane w wielu mechanizmach, od maszyn przemysłowych po urządzenia codziennego użytku, spełniając normy branżowe i dobre praktyki inżynieryjne, które zalecają stosowanie zębów łukowych w sytuacjach, gdzie liczy się wydajność i niezawodność.

Pytanie 5

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Podkładki
B. Uszczelki
C. Zawleczki
D. Płytki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik tensometryczny
B. Czujnik indukcyjny
C. Czujnik magnetyczny
D. Czujnik optyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 8

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. CAD
B. CAM
C. CAE
D. SCADA
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest poprawna, ponieważ oprogramowanie to jest kluczowe dla wizualizacji i monitorowania systemów mechatronicznych w czasie rzeczywistym. SCADA umożliwia integrację różnych urządzeń i czujników, co pozwala na efektywne zbieranie danych oraz ich analizę. Dzięki graficznym interfejsom użytkownika (HMI), operatorzy mogą w prosty sposób przeglądać dane, reagować na alarmy oraz zarządzać procesami. Przykładem zastosowania SCADA może być kontrola procesów produkcyjnych w fabrykach, gdzie system zbiera informacje o stanie maszyn i automatycznie podejmuje działania w celu utrzymania wydajności produkcji. W branży przemysłowej SCADA jest standardem, który wspiera automatyzację oraz poprawia efektywność operacyjną, wpisując się w najlepsze praktyki zarządzania procesami. Dodatkowo, wiele systemów SCADA jest zgodnych z międzynarodowymi standardami, co zapewnia ich interoperacyjność i umożliwia integrację z innymi systemami zarządzania.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Wyłącznik przedstawiony na rysunku można zastosować w obwodach napięcia

Ilustracja do pytania
A. sinusoidalnego o częstotliwości 50 Hz.
B. stałego stabilizowanego.
C. sinusoidalnego wyprostowanego.
D. przemiennego o wysokiej częstotliwości.
Zrozumienie zastosowań wyłączników nadprądowych w obwodach elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji. Odpowiedzi, które sugerują zastosowanie wyłącznika w obwodach sinusoidalnych wyprostowanych, stałych stabilizowanych oraz przemiennych o wysokiej częstotliwości, opierają się na niepoprawnych założeniach dotyczących charakterystyki pracy tych urządzeń. Wyłączniki nadprądowe są specjalnie przystosowane do pracy w obwodach o napięciu sinusoidalnym, co oznacza, że nie będą one odpowiednie dla obwodów wyprostowanych, gdzie napięcie jest stałe i nie zmienia się w czasie, co prowadzi do niewłaściwego działania zabezpieczenia. Podobnie, w obwodach stałych stabilizowanych, wyłączniki nadprądowe mogą nie zadziałać w przypadku przeciążenia, ponieważ ich charakterystyka wyzwalania opiera się na zmieniających się wartościach prądu. W przypadku obwodów przemiennych o wysokiej częstotliwości, zastosowanie wyłączników nadprądowych może być problematyczne ze względu na zmiany w charakterystyce prądowej, które mogą prowadzić do fałszywych wyzwalań lub braku reakcji w sytuacji zagrożenia. Dlatego, konieczne jest, aby elektrycy i inżynierowie zrozumieli właściwości i ograniczenia wyłączników nadprądowych oraz stosowali je zgodnie z ich przeznaczeniem, aby zapewnić bezpieczeństwo wszystkich użytkowników instalacji elektrycznych.

Pytanie 11

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. przerzutników
B. filtrów komparatorowych
C. zegarów czasowych
D. rejestrów licznikowych
Przerzutniki są podstawowymi elementami w systemach automatyki, które umożliwiają przechowywanie i przetwarzanie sygnałów impulsowych na sygnały długotrwałe. Działają poprzez zmianę swojego stanu na podstawie sygnałów wejściowych, co pozwala na samopodtrzymanie stanu wyjściowego. Na przykład, w aplikacjach przemysłowych, przerzutniki D mogą być używane do włączania silników na określony czas po otrzymaniu impulsu startowego, co jest szczególnie przydatne w systemach transportowych czy w procesach produkcyjnych. W kontekście standardów branżowych, przerzutniki często występują w projektach zgodnych z normami IEC 61131-3, które definiują programowanie PLC, co zapewnia ich szeroką zastosowalność i kompatybilność. Warto również zauważyć, że przerzutniki są kluczowymi elementami w tworzeniu bardziej złożonych systemów automatyki, takich jak sekwencjonery czy sygnalizatory. Zapewniają one stabilność działania systemu oraz pozwalają na elastyczne zarządzanie procesami, co czyni je niezastąpionymi w nowoczesnej automatyce przemysłowej.

Pytanie 12

Sprężarka przepracowała w ciągu 3 miesięcy 500 godzin od początku jej zainstalowania w systemie. Na podstawie tabeli czynności konserwacyjnych wskaż rodzaj pracy konserwacyjnej, którą należy wykonać, aby utrzymać właściwą sprawność urządzenia.

Tabela czynności konserwacyjnych
Rodzaje prac konserwacyjnychHarmonogram konserwacji
Godziny pracyCo najmniej
ZWYKŁE CZYNNOŚCI KONSERWACYJNEDwa razy w miesiącu
Odprowadzenie kondensatu50Raz w tygodniu
Czyszczenie wstępnego filtra powietrza500Raz w miesiącu
Sprawdzenie poziomu leju, uzupełnienie oleju500
Czyszczenie filtra oleju500
Sprawdzenie pasa transmisyjnego1000Raz w roku
Sprawdzenie zapchania i czyszczenie chłodnicy2000Raz w roku
Wymiana filtra powietrza4000Raz w roku
Wymiana filtra oleju4000Raz w roku
Wymiana filtra na wylocie oleju4000Raz w roku
Wymiana jednokierunkowego zaworu zlewowego4000Raz w roku
A. Czyszczenie filtra oleju.
B. Sprawdzenie pasa transmisyjnego.
C. Wymiana filtra oleju.
D. Wymiana całego oleju.
Czyszczenie filtra oleju to naprawdę ważna sprawa, jeśli chodzi o konserwację sprężarek. Powinno to być robione zgodnie z tym, co mówi producent i co jest uznawane za dobry standard w branży. Jak sprężarka ma za sobą 500 godzin pracy, to czyszczenie filtra ma na celu pozbycie się zanieczyszczeń i brudu, które mogą wpłynąć na jakość oleju. Utrzymanie filtra w czystości to dobra rzecz, bo to nie tylko poprawia wydajność silnika, ale też przedłuża jego trwałość, co jest zgodne z normami jakości. Gdybyśmy tego nie robili, sprężarka mogłaby się przegrzewać, a jej efektywność mogłaby spadać. Przykładem tego może być regularne serwisowanie sprzętu w fabrykach, gdzie niezawodność sprężarek jest kluczowa dla całej produkcji.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie jest medium robocze w systemie hydraulicznym?

A. woda pod ciśnieniem
B. olej pod ciśnieniem
C. powietrze sprężone
D. energia elektryczna
Olej pod ciśnieniem jest najczęściej stosowanym medium roboczym w układach hydraulicznych ze względu na swoje doskonałe właściwości smarne oraz zdolność do przenoszenia dużych obciążeń. W układach hydraulicznych olej działa jako nośnik energii, co pozwala na efektywne przekazywanie siły i momentu obrotowego. Dzięki dużej gęstości oraz niskiej kompresyjności, olej hydrauliczny zapewnia stabilność działania systemu hydraulicznego. Przykładem zastosowania oleju pod ciśnieniem może być hydraulika w maszynach budowlanych, takich jak koparki czy ładowarki, gdzie siły generowane przez siłowniki hydrauliczne są ogromne. W branży motoryzacyjnej olej hydrauliczny jest wykorzystywany w układach wspomagania kierownicy oraz w systemach hamulcowych. Praktyki dobrej konserwacji i regularnej wymiany oleju są kluczowe, aby zapewnić długowieczność i niezawodność systemów hydraulicznych, a także aby uniknąć awarii spowodowanych zanieczyszczeniami czy degradacją oleju.

Pytanie 16

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. zaciskowego
B. powierzchniowego
C. przewlekanego
D. skręcanego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 17

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. zmniejszeniem prędkości obrotowej
B. zwiększeniem prędkości obrotowej
C. spadkiem reaktancji uzwojeń
D. wzrostem reaktancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 18

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. regulacyjne
B. rozdzielające
C. zwrotne
D. dławiące
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 19

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16
A. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
B. Otwiera i zamyka przepływ cieczy roboczej.
C. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.
D. Steruje kierunkiem przepływu cieczy.
Odpowiedź jest prawidłowa, ponieważ wskazuje na podstawową funkcję urządzenia hydraulicznego, jakim jest pompa. Tabela dostarcza kluczowych informacji, takich jak wydajność oraz zakres ciśnienia, które są charakterystyczne dla pomp hydraulicznych. Wydajność 47 dm³/min przy 1450 obr/min sugeruje, że pompa jest w stanie wytwarzać odpowiednią ilość oleju, co jest niezbędne w układach hydraulicznych do zapewnienia ich właściwego działania. Przykładem zastosowania tych pomp jest ich użycie w maszynach budowlanych, takich jak koparki czy dźwigi, gdzie potrzebne jest stałe wytwarzanie strumienia oleju do napędu siłowników hydraulicznych. Zastosowanie tego typu urządzeń podlega standardom branżowym, na przykład normom ISO, które definiują parametry wydajności i bezpieczeństwa. Ponadto, w kontekście modernizacji układów hydraulicznych, wybór odpowiednich pomp jest kluczowy dla efektywności energetycznej oraz trwałości systemów hydraulicznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 20

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, manometr
B. filtr powietrza, zawór redukcyjny z manometrem, smarownica
C. manometr, filtr powietrza, smarownica
D. smarownica, filtr powietrza, zawór redukcyjny, manometr
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 21

Wskaż gatunek stali, z której należy wykonać niepodatne na korozję żaroodporne ramię robota przemysłowego.

Ilustracja do pytania
A. 1.0037
B. 1.2311
C. 1.3343
D. 1.4541
Stal 1.4541, znana również jako stal austenityczna, nierdzewna i żaroodporna, charakteryzuje się wysoką odpornością na korozję oraz stabilnością w wysokich temperaturach. Zawiera istotne ilości chromu i niklu, co wpływa na jej strukturę i właściwości. Użycie takiej stali w konstrukcji ramion robotów przemysłowych jest zgodne z najlepszymi praktykami inżynieryjnymi, szczególnie w aplikacjach, gdzie wymagane są odporność na działanie agresywnych substancji chemicznych oraz zdolność do pracy w trudnych warunkach termicznych. Przykładowo, w branży automatyzacji przemysłowej, roboty wyposażone w elementy ze stali 1.4541 mogą być stosowane w procesach spawania, pakowania, czy transportu w warunkach wysokiej wilgotności lub wysokich temperatur. Dodatkowo, stal ta spełnia normy dotyczące materiałów do kontaktu z żywnością, co czyni ją jeszcze bardziej uniwersalnym wyborem.

Pytanie 22

Ile wynosi napięcie między przewodami L3 i N, w sieci pokazanej na rysunku, jeżeli zmierzone napięcia międzyfazowe wynoszą 400 V?

Ilustracja do pytania
A. 200 V
B. 380V
C. 230 V
D. 400 V
W przypadku odpowiedzi, które nie uwzględniają właściwego obliczenia napięcia między przewodem L3 a N, jak 380 V, 200 V oraz 400 V, można zauważyć kilka typowych błędów myślowych. Odpowiedź 380 V opiera się na błędnym założeniu, że napięcie międzyfazowe jest równoważne napięciu między przewodem fazowym a neutralnym, co jest niezgodne z rzeczywistością. W rzeczywistości stosunek napięć w sieci trójfazowej jest taki, że napięcie między przewodami fazowymi jest wyższe niż napięcie między fazą a neutralnym. Napięcie 200 V to również źle dobrana odpowiedź, gdyż jest to wartość, która nie odpowiada standardowym parametrom napięcia w sieciach elektroenergetycznych. Odpowiedź 400 V jest również błędna, ponieważ odnosi się do napięcia międzyfazowego, a nie napięcia fazowego. W sieciach elektrycznych standardowe napięcie fazowe wynosi 230 V, co jest kluczowe dla zapewnienia prawidłowego działania sprzętu elektronicznego i elektrycznego. Ważne jest, aby zrozumieć, że podstawowe zasady dotyczące obliczania napięcia w sieciach trójfazowych są oparte na geometrii wektorów, gdzie napięcia są przesunięte w fazie o 120 stopni. Ignorowanie tych zasad może prowadzić do nieprawidłowych wyników oraz potencjalnych zagrożeń związanych z bezpieczeństwem elektrycznym.

Pytanie 23

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary obrotów wirnika
B. kontroli temperatury uzwojenia
C. kontroli kierunku obrotu wirnika
D. pomiary napięcia zasilającego
Sprawdzanie, w którą stronę obraca się wirnik przed ponownym połączeniem silnika elektrycznego z maszyną, to bardzo ważny krok, żeby wszystko działało bezpiecznie i efektywnie. Kierunek obrotów ma ogromne znaczenie, bo gdyby wirnik kręcił się w złą stronę, może to prowadzić do poważnych uszkodzeń sprzętu lub nawet zablokowania wirnika. W praktyce, zanim podłączysz silnik, dobrze jest upewnić się, że wirnik obraca się w odpowiednią stronę. Na przykład w wentylatorach, pompach czy systemach transportowych, błędny kierunek mógłby spowodować, że przepływ cieczy lub powietrza byłby niewłaściwy, co może prowadzić do przeciążenia i zniszczenia urządzenia. Dlatego warto przed każdą operacją zrobić szybki przegląd, a także użyć narzędzi, jak wskaźniki kierunku obrotów, aby sprawdzić, czy wszystko działa jak należy. Taki sposób działania nie tylko zwiększa bezpieczeństwo, ale też może wydłużyć żywotność maszyn. Warto pamiętać, że zgodnie z normami bezpieczeństwa, sprawdzenie kierunku obrotów wirnika jest jednym z podstawowych kroków, które należy wykonać przed uruchomieniem maszyny.

Pytanie 24

Który symbol graficzny oznacza cewkę przekaźnika o opóźnionym załączaniu?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź B jest poprawna, ponieważ znak graficzny cewki przekaźnika o opóźnionym załączaniu jest dobrze zdefiniowany w normach dotyczących symboli elektrycznych. Oznaczenie to zawiera charakterystyczny element w postaci dwóch przekątnych linii, które znajdują się w obrębie prostokąta reprezentującego cewkę. Te linie symbolizują opóźnienie czasowe, co jest istotne w kontekście zastosowania przekaźników w systemach automatyki. Przekaźniki o opóźnionym załączaniu są wykorzystywane w wielu aplikacjach, takich jak systemy zabezpieczeń, gdzie potrzebne jest opóźnienie przed aktywacją alarmu, bądź w układach automatyki domowej, gdzie używa się ich do kontroli oświetlenia lub urządzeń. Zrozumienie tego symbolu jest kluczowe dla inżynierów i techników, którzy zajmują się projektowaniem i wdrażaniem systemów elektrycznych, ponieważ pozwala to na prawidłowe interpretowanie schematów oraz zapewnienie ich zgodności z obowiązującymi standardami, takimi jak IEC 60617, co zwiększa przejrzystość i efektywność projektowania systemów elektronicznych.

Pytanie 25

Którą czynność powinien wykonać użytkownik podczas uruchamiania komercyjnej wersji programu Proficy iFIX po ukazaniu się przedstawionego na rysunku komunikatu, aby program działał dłużej niż 2 godziny?

Ilustracja do pytania
A. Kontynuować uruchamianie programu Proficy iFIX.
B. Sprawdzić, czy została zainstalowana właściwa wersja systemu operacyjnego.
C. Zainstalować sterownik klucza sprzętowego.
D. Ponownie zainstalować program Proficy iFIX.
Zainstalowanie sterownika klucza sprzętowego jest kluczowym działaniem, które każdego użytkownika programu Proficy iFIX powinno skłonić do podjęcia działań w momencie napotkania komunikatu o braku detekcji klucza sprzętowego. Klucz sprzętowy jest fizycznym urządzeniem zabezpieczającym, które umożliwia legalne użytkowanie oprogramowania. Bez jego obecności program automatycznie ogranicza swoje działanie do 2 godzin. Dlatego zainstalowanie odpowiedniego sterownika jest niezbędne do zapewnienia ciągłości pracy. W praktyce, użytkownicy powinni upewnić się, że klucz jest prawidłowo podłączony do portu USB oraz że zainstalowano właściwe sterowniki, które mogą być dostępne na stronie producenta oprogramowania. Zgodnie z najlepszymi praktykami w zakresie zarządzania oprogramowaniem, regularne aktualizacje oprogramowania oraz jego komponentów, takich jak sterowniki, powinny być standardową procedurą. Dzięki temu użytkownik ma pewność, że korzysta z najnowszych funkcji i zabezpieczeń, co jest kluczowe w kontekście pracy z systemami automatyki przemysłowej.

Pytanie 26

Którego klucza należy użyć do zamocowania przedmiotu w uchwycie tokarki?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Klucz imbusowy, oznaczony literą B, jest kluczowym narzędziem w procesie mocowania przedmiotów w uchwytach tokarskich. Jego unikalny kształt sześciokątny pozwala na efektywne wkręcanie i odkręcanie śrub z gniazdem sześciokątnym, co jest powszechnie stosowane w obrabiarkach. Użycie klucza imbusowego zapewnia pewne i stabilne mocowanie, co jest kluczowe w precyzyjnej obróbce materiałów. W praktyce, klucz imbusowy pozwala na łatwe dostosowanie siły dokręcania, co jest ważne w celu uniknięcia uszkodzeń zarówno śruby, jak i elementu mocowanego. W przemyśle metalowym oraz w warsztatach rzemieślniczych klucze imbusowe są niezbędne, ponieważ wiele maszyn i narzędzi korzysta z takich rozwiązań. Zastosowanie klucza imbusowego zgodnie z najlepszymi praktykami zwiększa bezpieczeństwo pracy i precyzję wykonywanych operacji, co wpływa na jakość końcowego produktu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką wartość rezystancji powinien mieć rezystor Rl ograniczający prąd diody w obwodzie, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 120,0 kΩ
B. 12,0 kΩ
C. 1 200,0 kΩ
D. 1,2 kΩ
Odpowiedź 1,2 kΩ jest prawidłowa, ponieważ rezystor Rl jest odpowiedzialny za ograniczenie prądu do wartości 0,01 A, co jest kluczowe dla prawidłowego działania diody. Przykładowo, w przypadku diod LED, ich maksymalne natężenie prądu powinno być ściśle kontrolowane, aby uniknąć ich uszkodzenia. W obwodach elektronicznych stosujemy prawo Ohma, które definiuje związek między napięciem (V), natężeniem prądu (I) i rezystancją (R). Wzór V = I * R pozwala obliczyć, że przy napięciu zasilania wynoszącym 12 V, odpowiedni rezystor Rl o wartości 1,2 kΩ jest w stanie ograniczyć prąd do żądanej wartości. Zastosowanie odpowiedniego rezystora jest zgodne z najlepszymi praktykami w projektowaniu obwodów elektronicznych, gdzie precyzyjne ograniczenie prądu jest kluczowe dla niezawodności i trwałości komponentów. Dodatkowo, warto znać metody obliczania rezystancji w obwodach szeregowych i równoległych, co może być przydatne w bardziej złożonych projektach.

Pytanie 30

Za pomocą których elementów układu elektropneumatycznego, którego schemat przedstawiono na rysunku, należy regulować prędkość wysuwania tłoczysk siłowników 1A1 i 2A1?

Ilustracja do pytania
A. 1V1 i 2V1
B. 1V1 i 2V2
C. 1V2 i 2V1
D. 1V2 i 2V2
Odpowiedź 1V2 i 2V2 jest w porządku, bo te zawory mają mega ważną rolę w tym, jak szybko wysuwają się tłoczyska siłowników 1A1 i 2A1. Zawory V2 właśnie do tego są zrobione – żeby kontrolować przepływ medium roboczego, co robi różnicę w prędkości działania siłowników. W praktyce, dobrze jest mieć możliwość regulacji prędkości, zwłaszcza w różnych fabrykach czy przy automatyzacji, gdzie precyzyjne ruchy są kluczowe dla wydajności i bezpieczeństwa. Jak wiadomo, w branży często korzysta się z zaworów regulujących przepływ, co pomaga w lepszym działaniu maszyn. A jak często musimy zmieniać prędkość, to używanie zaworów V2 jest naprawdę dobrym pomysłem, bo pozwala szybko dostosować się do różnych warunków produkcji.

Pytanie 31

W celu zamontowania sterownika PLC na szynie DIN, należy użyć

A. łap
B. zatrzasków
C. śrub
D. nitów
Zatrzaski stosowane do montażu sterowników PLC na szynach DIN są popularnym wyborem ze względu na ich prostotę, szybkość montażu oraz bezpieczeństwo. Zatrzaski pozwalają na łatwe i szybkie mocowanie urządzenia bez potrzeby używania narzędzi, co jest szczególnie przydatne w przypadku instalacji w trudnodostępnych miejscach. W praktyce oznacza to, że technik może w krótkim czasie zamontować lub zdemontować urządzenie, co znacznie przyspiesza proces konserwacji i ewentualnej wymiany komponentów. Dodatkowo, zatrzaski zapewniają stabilne mocowanie, które zabezpiecza sterownik przed przypadkowym wypięciem się z szyny, co mogłoby prowadzić do przerw w pracy systemu. Stosowanie zatrzasków przestrzega również normy dotyczące instalacji urządzeń elektrycznych, które zalecają użycie rozwiązań umożliwiających łatwy dostęp do urządzeń bez ryzyka ich uszkodzenia. Warto również zwrócić uwagę, że w przypadku większych instalacji, łatwość montażu i demontażu staje się kluczowym czynnikiem wpływającym na efektywność pracy zespołów zajmujących się utrzymaniem ruchu.

Pytanie 32

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Zwiększyć opór w obwodzie wzbudzenia
B. Zmienić sposób podłączenia w obwodzie wzbudzenia
C. Podłączyć prądnicę na krótko do pracy silnikowej
D. Odwrócić kierunek prędkości obrotowej na przeciwny
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. czujnik termiczny
B. termoelement
C. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
D. termostat
Regulator temperatury z wyświetlaczem cyfrowym to urządzenie, które monituruje i kontroluje temperaturę, ale nie mierzy jej bezpośrednio. Głównie utrzymuje zadaną temperaturę, kontrolując inne urządzenia, jak grzałki czy wentylatory. Temperatura zazwyczaj pochodzi z czujników, a one same nie są do pomiaru. Termostat też jest urządzeniem sterującym, ale raczej zajmuje się kontrolowaniem ciepła niż pomiarem. Przekaźnik termiczny włącza lub wyłącza obwody elektryczne w zależności od temperatury, ale również nie mierzy temperatury. Często ludzie mylą te funkcje, co prowadzi do błędnych wniosków. W praktyce to, że te urządzenia mogą zarządzać temperaturą, nie znaczy, że potrafią ją zmierzyć. Żeby prawidłowo mierzyć temperaturę, potrzeba dedykowanych urządzeń, jak termoelementy, które są dokładne i niezawodne.

Pytanie 37

Silnik krokowy zastosowany w napędzie mechatronicznym sterowany jest za pomocą dedykowanego układu mikroprocesorowego. Która z wymienionych sekwencji komutacji spowoduje wirowanie wirnika silnika w prawo?

Ilustracja do pytania
A. (-P1)-(+P1)-(+P2)-(-P2)
B. (+P1)-(+P2)-(-P1)-(-P2)
C. (+P1)-(-P1)-(-P2)-(+P2)
D. (-P1)-(-P1)-(+P2)-(+P2)
Popatrzmy szerzej, dlaczego pozostałe sekwencje nie spowodują wirowania wirnika we właściwym kierunku. W silniku krokowym, szczególnie takim jak na rysunku, kolejność przełączania zasilania uzwojeń ma kluczowe znaczenie dla kierunku obrotu wirnika. Pojawiający się często błąd to założenie, że wystarczy dowolna zmiana stanu cewki, żeby silnik ruszył. Tymczasem tylko specyficzna logika, w której pole magnetyczne „ciągnie” wirnik wokół osi w sposób systematyczny, daje oczekiwany efekt. Przykładowo, sekwencje takie jak (-P1)-(-P1)-(+P2)-(+P2) czy (-P1)-(+P1)-(+P2)-(-P2) nie tworzą cyklicznego, przesuwającego się pola, lecz powodują losowe pobudzanie cewek, przez co wirnik może się zatrzymać lub zacząć „drgać”, zamiast obracać się w jednym kierunku. Stosowanie takich sekwencji prowadzi do nieefektywnej pracy – silnik nie wykonuje pełnych kroków, pojawiają się rezonanse, a czasem wręcz przepalenie uzwojeń przy dłuższym trzymaniu jednego stanu. Często spotykanym błędem jest mylenie logiki kolejności z logiką fazowania – nie wystarczy po prostu zmieniać polaryzacji, trzeba robić to w określonym rytmie. Gdy nie zachowasz odpowiedniej kolejności, silnik może nawet kręcić się w przeciwną stronę, co niestety jest nagminne przy pierwszych testach początkujących automatyków. Branżowe standardy (np. dokumentacje producentów silników krokowych) jasno opisują właściwe sekwencje dla danego kierunku obrotu – odstępstwa prowadzą do nieprzewidywalnych efektów. Moim zdaniem, żeby uniknąć tych błędów, najlepiej jest zawsze rozrysować sekwencje na osi czasu i przeanalizować zmianę kierunku pola magnetycznego. To bardzo pomaga w praktyce, szczególnie gdy projektuje się układy sterowania dla większych maszyn lub urządzeń precyzyjnych.

Pytanie 38

Którym z wymienionych mediów zasilany jest siłownik przedstawiony na rysunku?

Ilustracja do pytania
A. Roztworem poliglikolu.
B. Sprężonym powietrzem.
C. Energią elektryczną.
D. Olejem hydraulicznym.
Sprężone powietrze jest powszechnie stosowanym medium zasilającym siłowniki pneumatyczne. Na zdjęciu widoczny jest siłownik pneumatyczny, co można rozpoznać dzięki obecności niebieskich węży, charakterystycznych dla systemów pneumatycznych. Siłowniki te są wykorzystywane w wielu aplikacjach przemysłowych, takich jak automatyka, robotyka, czy maszyny pakujące. Ich główną zaletą jest szybkość działania oraz łatwość w regulacji siły i prędkości ruchu. Ponadto, stosowanie siłowników pneumatycznych pozwala na osiągnięcie wysokich prędkości cyklu pracy, a także na ich łatwą integrację w systemach zautomatyzowanych. W kontekście standardów, siłowniki pneumatyczne są zgodne z normami ISO, co zapewnia ich wszechstronność i niezawodność w różnych zastosowaniach. Warto również podkreślić, że wykorzystanie sprężonego powietrza jako medium zasilającego jest zgodne z zasadami ochrony środowiska, gdyż w porównaniu do innych mediów, takich jak olej hydrauliczny, sprężone powietrze nie stwarza ryzyka zanieczyszczenia.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.