Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 12:51
  • Data zakończenia: 17 grudnia 2025 13:01

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W specyfikacji technicznej planowanego remontu w obiekcie budowlanym zawarto informację, że do wszystkich prac murarskich należy wykorzystać materiał ceramiczny o korzystnych właściwościach cieplnych. Który z typów cegieł spełnia wymagania zawarte w dokumentacji?

A. Silikatowa
B. Klinkierowa
C. Kratówka
D. Szamotowa
Cegła kratówkowa jest materiałem ceramicznym, który charakteryzuje się doskonałymi właściwościami termicznymi, co czyni ją odpowiednią do robót murowych w budynkach. Jej struktura, z wieloma otworami, umożliwia lepszą izolację termiczną i akustyczną niż inne rodzaje cegieł. Dzięki temu, budynki wzniesione z użyciem cegły kratówki są bardziej energooszczędne, co jest szczególnie istotne w kontekście współczesnych standardów budowlanych, które kładą duży nacisk na efektywność energetyczną. Zastosowanie cegły kratówki pozwala także na łatwiejsze ogrzewanie pomieszczeń, co ma kluczowe znaczenie w chłodniejszych klimatach. W praktyce, cegła ta jest często wykorzystywana w budownictwie mieszkaniowym oraz użyteczności publicznej, gdzie wymagane są zarówno dobre właściwości termiczne, jak i trwałość konstrukcji. Ponadto, zgodnie z normami budowlanymi, materiały stosowane w budownictwie powinny spełniać określone wymagania dotyczące izolacyjności termicznej, co czyni cegłę kratówkową idealnym wyborem.

Pytanie 2

Proces naprawy wilgotnego tynku powinien rozpocząć się od

A. osuchania powierzchni tynku
B. zlikwidowania nalotów pleśni
C. nałożenia środka gruntującego
D. eliminacji źródła zawilgocenia
Usunięcie przyczyny zawilgocenia tynku jest kluczowym krokiem w procesie naprawy, ponieważ bez rozwiązania podstawowego problemu, wszelkie dalsze działania, takie jak osuszanie czy pokrywanie gruntami, będą jedynie tymczasowe i nieefektywne. W praktyce oznacza to, że najpierw należy zidentyfikować źródło wilgoci, co może być spowodowane różnymi czynnikami, takimi jak nieszczelne rury, niewłaściwe odprowadzanie wody, czy też uszkodzenia fundamentów. Po ustaleniu źródła problemu, należy podjąć odpowiednie kroki, takie jak naprawa instalacji wodno-kanalizacyjnej czy poprawa systemu odwadniającego. Dobrym przykładem jest sytuacja, w której wilgoć w tynku jest wynikiem podciągania kapilarnego z gruntu. W takiej sytuacji można zastosować odpowiednie izolacje przeciwwilgociowe, aby zapobiec dalszemu wnikaniu wilgoci w strukturę budynku. Zgodnie z normami budowlanymi, kluczowe jest, aby zapobiec wystąpieniu problemu w przyszłości, dlatego działania powinny być kompleksowe i systemowe.

Pytanie 3

Zgodnie z zasadami przedmiarowania robót murarskich od powierzchni ścian należy odjąć powierzchnie otworów większych od 0,5 m2. Oblicz powierzchnię ściany murowanej pokazanej na rysunku.

Ilustracja do pytania
A. 14,16 m2
B. 13,80 m2
C. 16,16 m2
D. 14,80 m2
Wybierając niepoprawną odpowiedź, można wpaść w typowe pułapki myślowe związane z obliczaniem powierzchni. Wiele osób może zignorować zasady przedmiarowania robót murarskich, skupiając się wyłącznie na całkowitej powierzchni ściany, zamiast uwzględniać otwory. Na przykład, jeśli ktoś obliczył powierzchnię ściany bez odejmowania otworów, mógłby uzyskać wartość 16,8 m2 i nie zwróciłby uwagi na fakt, że istotne jest pominięcie otworów o powierzchni większej niż 0,5 m2. Taki błąd może wynikać z braku znajomości zasad obliczeń w budownictwie, co jest kluczowe w kontekście kosztorysowania i zarządzania projektem. Ponadto, stosowanie niewłaściwych wzorów lub brak uwzględnienia wszystkich elementów konstrukcyjnych może prowadzić do dalszych nieścisłości w ostatecznych wynikach. Ważne jest, by zawsze przestrzegać ustalonych norm i standardów, aby uniknąć nieporozumień oraz błędów kosztorysowych, które mogą wpłynąć na przyszłe etapy realizacji projektu budowlanego.

Pytanie 4

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. kwasoodpornych
B. szamotowych
C. krzemionkowych
D. ciepłochronnych
Wybór odpowiedzi dotyczących zapraw szamotowych, krzemionkowych czy kwasoodpornych nie jest uzasadniony w kontekście właściwości keramzytu. Zaprawy szamotowe są stosowane głównie w budowie pieców i kominków, gdzie kluczowe są ich właściwości ogniotrwałe, co nie ma związku z lekkim kruszywem, jakim jest keramzyt. Z kolei zaprawy krzemionkowe, charakteryzujące się dużą odpornością na działanie wysokich temperatur, są dedykowane dla struktur wymagających specyficznych właściwości termicznych, co nie odpowiada funkcji izolacyjnej, jaką pełni keramzyt. Odpowiedzi wskazujące na zaprawy kwasoodporne są równie nietrafione, gdyż te materiały mają zastosowanie w warunkach, gdzie występuje kontakt z agresywnymi chemikaliami, a nie w kontekście właściwości cieplnych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują mylenie właściwości materiałów budowlanych oraz ich zastosowania w różnych kontekstach. Ważne jest zrozumienie, że wybór materiałów budowlanych powinien być oparty na ich specyficznych zastosowaniach oraz wymaganiach projektowych, co potwierdzają standardy branżowe oraz dobre praktyki inżynieryjne.

Pytanie 5

Korzystając z danych zawartych w tabeli, wskaż najmniejszą dopuszczalną grubość jednowarstwowego tynku chroniącego przed wodą, wykonanego z fabrycznie suchej zaprawy.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza
grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków
wewnętrznych z fabrycznie suchej
zaprawy
105
dla jednowarstwowych tynków
chroniących przed wodą z fabrycznie
suchej zaprawy
1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 5 mm
B. 20 mm
C. 10 mm
D. 15 mm
Wybór grubości tynku mniejszej niż 10 mm, jak w przypadku odpowiedzi 5 mm, 15 mm i 20 mm, jest niezgodny z wymaganiami technicznymi dotyczącymi ochrony przed wilgocią. Odpowiedź 5 mm jest zdecydowanie zbyt mała, aby zapewnić odpowiednie właściwości hydroizolacyjne. Tynki o takiej grubości nie będą w stanie skutecznie zapobiegać przenikaniu wody, co może prowadzić do poważnych problemów związanych z wilgocią w budynku, takich jak pleśń czy zmniejszenie wytrzymałości materiałów budowlanych. Z kolei odpowiedzi 15 mm i 20 mm, choć większe, są nadal nieodpowiednie, ponieważ przekraczają zalecaną minimalną grubość bez uzasadnionej potrzeby. W praktyce, zastosowanie tynku grubości większej niż 10 mm może prowadzić do niepotrzebnego zwiększenia kosztów materiałowych oraz do dodatkowego obciążenia struktury budynku. Dobrą praktyką jest zawsze odniesienie się do lokalnych norm budowlanych oraz wskazówek producentów materiałów budowlanych, które jasno określają minimalne wymagania dla ochrony przed wodą, co w tym przypadku jednoznacznie wskazuje na 10 mm jako wartość optymalną.

Pytanie 6

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 1092,00 zł
B. 945,00 zł
C. 546,00 zł
D. 1386,00 zł
Aby obliczyć koszt całkowity wykonania tynku maszynowego gipsowego, należy najpierw ustalić powierzchnię ściany, która ma być pokryta tynkiem. Ściana o wymiarach 7 m na 3 m ma powierzchnię wynoszącą 21 m². Ponieważ tynk ma być wykonany po obu stronach, całkowita powierzchnia do pokrycia wynosi 21 m² x 2 = 42 m². Następnie obliczamy koszty robocizny i materiałów. Koszt jednostkowy robocizny wynosi 19,00 zł/m², co daje 42 m² x 19,00 zł/m² = 798,00 zł. Koszt materiałów wynosi 7,00 zł/m², co daje 42 m² x 7,00 zł/m² = 294,00 zł. Suma kosztów robocizny i materiałów wynosi 798,00 zł + 294,00 zł = 1092,00 zł. Taki sposób obliczeń jest zgodny z standardami branżowymi, gdzie uwzględnia się zarówno koszty pracy, jak i koszty materiałów, co jest kluczowe w procesie przygotowania kosztorysu budowlanego. Praktyczne zastosowanie tej wiedzy pozwala na dokładne zaplanowanie budżetu na prace budowlane i remontowe.

Pytanie 7

Tynk klasy II to tynk

A. pospolity o powierzchni równej i gładkiej
B. doborowy o powierzchni równej i szorstkiej
C. doborowy o powierzchni równej i gładkiej
D. pospolity o powierzchni równej i szorstkiej
Odpowiedzi wskazujące na tynki doborowe o powierzchni gładkiej nie są właściwe, ponieważ tynki tej kategorii są zdefiniowane przez swoje cechy mechaniczne i estetyczne, które różnią się od tynków pospolitych. Tynki doborowe zazwyczaj charakteryzują się wyższą jakością oraz określonymi właściwościami, które nie są typowe dla tynków pospolitych. Odpowiedzi sugerujące gładką powierzchnię nie uwzględniają, że tynki doborowe są projektowane głównie do zastosowań wewnętrznych oraz wymagają precyzyjnego wykonania, co sprawia, że nie są one odpowiednie w kontekście tynków kategorii II. Ponadto tynki pospolite, ze względu na swoje cechy, są bardziej uniwersalne i mogą być stosowane w różnych warunkach. Wybór tynku o powierzchni gładkiej w kontekście tynku kategorii II jest błędny, ponieważ to prowadzi do mylnych wniosków na temat jego zastosowania oraz właściwości. Tynki o powierzchni gładkiej mają swoje miejsce w budownictwie, ale są często klasyfikowane inaczej, co może prowadzić do dezorientacji wśród osób pracujących w branży budowlanej. Dlatego tak istotne jest zrozumienie różnic pomiędzy poszczególnymi rodzajami tynków oraz ich zastosowania w praktyce.

Pytanie 8

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 5 pojemników wapna i 2,5 pojemnika cementu.
B. 5 pojemników cementu i 2,5 pojemnika wapna.
C. 4 pojemniki cementu i 2 pojemniki wapna.
D. 4 pojemniki wapna i 2 pojemniki cementu.
Kiedy analizujemy inne dostępne odpowiedzi, możemy zauważyć, że opierają się one na błędnych założeniach dotyczących proporcji składników zaprawy. Niepoprawne odpowiedzi sugerują nieadekwatne ilości wapna lub cementu w stosunku do piasku, co jest kluczowe dla uzyskania pożądanych właściwości zaprawy. Na przykład, jedna z niepoprawnych odpowiedzi może sugerować użycie 4 pojemników cementu i 2 pojemników wapna. Takie proporcje prowadzą do niewłaściwego stosunku składników, co może skutkować zaprawą o obniżonej wytrzymałości. Praktycznie, zbyt mała ilość cementu w mieszance może prowadzić do problemów z wiązaniem, co skutkuje wkrótce po wykonaniu prac budowlanych pęknięciami lub osuwaniem się materiału. Istotne jest, aby rozumieć, że nie tylko ilość materiałów jest ważna, ale także ich odpowiednie proporcje, które determinują jakość końcowego produktu. Ponadto, niewłaściwe zrozumienie proporcji może wynikać z ogólnego braku uwagi na specyfikacje techniczne, co jest częstym błędem wśród osób bez odpowiedniego doświadczenia w budownictwie. Kluczową lekcją, jaką można wyciągnąć z analizy tych błędnych odpowiedzi, jest konieczność dokładnego zapoznania się z dokumentacją techniczną i przestrzegania wskazanych proporcji, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 9

Na rysunku przedstawiono elementy stropu

Ilustracja do pytania
A. Fert.
B. Ceram.
C. Teriva.
D. Kleina.
Odpowiedź "Teriva" jest prawidłowa, ponieważ przedstawiony na zdjęciu element stropowy jest charakterystyczny dla systemu stropowego o nazwie Teriva. Teriva to system gęstożebrowy, który składa się z belek stropowych oraz pustaków o specjalnej konstrukcji, które wspólnie tworzą efektywną i stabilną konstrukcję stropu. Elementy tego systemu są zaprojektowane w taki sposób, aby zapewnić wysoką nośność oraz optymalne rozkładanie obciążeń. W praktyce, stropy Teriva są często wykorzystywane w budownictwie mieszkalnym oraz komercyjnym, a ich zastosowanie przyczynia się do skrócenia czasu budowy dzięki prefabrykacji. Standardy budowlane, takie jak Eurokod 2, wskazują na konieczność odpowiedniego projektowania i wymiarowania stropów, co sprawia, że wybór systemu Teriva jest zgodny z nowoczesnymi praktykami inżynieryjnymi. Ponadto, użycie tego systemu może prowadzić do lepszej efektywności energetycznej budynków ze względu na mniejsze zużycie materiałów i lepszą izolacyjność.

Pytanie 10

Cena jednego 25-kilogramowego worka suchej zaprawy tynkarskiej wynosi 9 zł. Jaka będzie suma wydatków na zaprawę potrzebną do otynkowania 52 m2ściany, jeśli jeden worek wystarcza na wykonanie tynku na powierzchni 1,3 m2ściany?

A. 468 zł
B. 225 zł
C. 360 zł
D. 625 zł
Koszt zaprawy tynkarskiej obliczamy na podstawie powierzchni ściany, którą chcemy otynkować, oraz wydajności jednego worka. W tym przypadku mamy 52 m² do otynkowania, a jeden worek wystarcza na 1,3 m². Aby obliczyć liczbę worków potrzebnych do pokrycia całej powierzchni, dzielimy 52 m² przez 1,3 m²: 52 / 1,3 ≈ 40 worków. Koszt jednego worka wynosi 9 zł, więc całkowity koszt uzyskujemy mnożąc liczbę worków przez cenę jednego worka: 40 * 9 zł = 360 zł. W praktyce, przy zakupach materiałów budowlanych, zazwyczaj warto uwzględnić dodatkową ilość materiału na ewentualne straty, co również potwierdza, że dobrze jest mieć zapas. Warto także zwrócić uwagę na to, że ceny materiałów budowlanych mogą się różnić w zależności od dostawcy i lokalizacji, dlatego zawsze warto porównać oferty przed zakupem. Standardy budowlane wskazują na konieczność przemyślanej kalkulacji kosztów, co jest kluczowym elementem zarządzania projektem budowlanym.

Pytanie 11

Wykończenie powierzchni tynku zwykłego klasy IVf polega na

A. dociśnięciu świeżej zaprawy za pomocą packi.
B. przeszlifowaniu stwardniałej zaprawy osełką.
C. przetarciu stwardniałej zaprawy ząbkowaną cykliną.
D. zatarciu świeżej zaprawy packą obłożoną filcem.
Zatarcie świeżej zaprawy packą obłożoną filcem jest prawidłowym procesem wykończenia tynku zwykłego kategorii IVf. Ta technika ma na celu uzyskanie gładkiej, estetycznej powierzchni, która będzie dobrze współpracować z późniejszymi warstwami wykończeniowymi, takimi jak farby czy tynki dekoracyjne. Packa obłożona filcem pozwala na równomierne rozprowadzenie zaprawy, a także wygładzenie jej powierzchni, co jest kluczowe dla uzyskania właściwej przyczepności i trwałości. Użycie filcu zmniejsza ryzyko powstawania rys i innych uszkodzeń, co przekłada się na lepszy efekt końcowy. Dobrą praktyką jest wykonanie zatarcia po około 24 godzinach od nałożenia zaprawy, kiedy materiał jest jeszcze wystarczająco wilgotny, ale już na tyle stwardniały, by można było z nim pracować. Standardy budowlane wskazują, że odpowiednie wykończenie tynku ma kluczowe znaczenie dla jego funkcji ochronnych i estetycznych, dlatego warto stosować sprawdzone metody i materiały.

Pytanie 12

Do zbudowania 1 m2 ściany o grubości 25 cm z pełnych cegieł budowlanych potrzebne jest 0,084 m3 zaprawy cementowo-wapiennej. Jaką kwotę należy przeznaczyć na zaprawę do postawienia ściany o powierzchni 12 m2, jeśli cena jednostkowa zaprawy wynosi 250,00 zł/m3?

A. 242,00 zł
B. 252,00 zł
C. 2 420,00 zł
D. 2 520,00 zł
Obliczenia dotyczące kosztów zaprawy cementowo-wapiennej wymagają precyzyjnego podejścia do analizy parametrów i ich zastosowania w praktyce budowlanej. Niepoprawne odpowiedzi często wynikają z niedostatecznego zrozumienia zależności pomiędzy powierzchnią ściany a ilością zaprawy potrzebnej do jej wymurowania. Wiele osób mylnie zakłada, że koszt zaprawy można obliczyć na podstawie samej ceny jednostkowej bez uwzględnienia wymaganej objętości. W rzeczywistości, kluczowym krokiem w obliczeniach jest ustalenie, ile zaprawy potrzeba na konkretną powierzchnię. Na przykład, jeśli ktoś pomija krok mnożenia powierzchni przez zapotrzebowanie na m<sup>3</sup> zaprawy na 1 m<sup>2</sup>, może dojść do błędnych wniosków, co może prowadzić do znacznych różnic w kosztorysie. Zarządzanie kosztami materiałów budowlanych jest nie tylko kwestią ekonomiczną, ale także jakościową. Odpowiednie planowanie i dokładne obliczenia mogą zapobiec konieczności zamawiania dodatkowych materiałów w trakcie budowy, co często wiąże się z opóźnieniami i dodatkowymi kosztami. Często też, w odpowiedziach błędnych, pojawiają się mylne obliczenia, które nie uwzględniają całkowitych wymagań dotyczących objętości, co wskazuje na brak znajomości podstawowych zasad obliczeń budowlanych. Kluczowe jest, aby każdy, kto zajmuje się budownictwem, miał świadomość tych zależności i potrafił je zastosować w praktyce.

Pytanie 13

Na którym rysunku przedstawiono prawidłowy kształt rysy o głębokości poniżej 0,5 cm, występującej na tynku wewnętrznym, przygotowanej do uzupełnienia zaprawą?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Rysunek A pokazuje, jak powinna wyglądać rysa do naprawy. Ta głębokość poniżej 0,5 cm jest wręcz idealna do uzupełnienia zaprawą. Kształt trapezu, który tu zastosowano, naprawdę sprzyja dobremu trzymaniu się zaprawy, co jest mega ważne, żeby naprawa była skuteczna. Kiedy rysa ma szerszy dół i węższy górę, jak w tym przypadku, zmniejsza się ryzyko odpryskiwania zaprawy. To też trochę zmniejsza szansę na nowe pęknięcia, co jest super ważne, zwłaszcza w budowlance. W sumie, to co opisałeś, pasuje do najlepszych praktyk w naprawie tynków. Również, jak dobrze przygotujesz rysę–czyli oczyścisz ją z luźnych fragmentów i nałożysz grunt–to połączenie zaprawy z podłożem będzie znacznie lepsze i bardziej trwałe, więc warto o tym pamiętać.

Pytanie 14

Na rysunku podano wysokość ściany

Ilustracja do pytania
A. osłonowej.
B. działowej.
C. kolankowej.
D. instalacyjnej.
Wybór odpowiedzi dotyczących ścian działowych, osłonowych lub instalacyjnych świadczy o niepełnym zrozumieniu terminologii związanej z konstrukcją budowlanych. Ściana działowa to element, który dzieli przestrzeń wewnętrzną budynku, ale nie ma bezpośredniego związku z nachyleniem dachu czy wysokością poddasza. Z kolei ściana osłonowa ma na celu ochronę przed warunkami atmosferycznymi, ale nie jest tożsame z wysokością kolankową, która odnosi się do miejsca styku ściany i dachu. Odpowiedź dotycząca ściany instalacyjnej również jest błędna, gdyż ta służy głównie do prowadzenia instalacji elektrycznych i wodno-kanalizacyjnych, a nie ma wpływu na wysokość w kontekście dachu. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji poszczególnych typów ścian oraz ich zastosowania w kontekście projektu budowlanego. Warto zaznaczyć, że zrozumienie różnic między tymi elementami konstrukcyjnymi jest kluczowe dla prawidłowego zarządzania przestrzenią oraz wypełnienia wymagań norm budowlanych, co w efekcie prowadzi do bardziej funkcjonalnych i estetycznych rozwiązań w architekturze.

Pytanie 15

Jaką ilość mieszanki betonowej wykorzystano do stworzenia 3 stóp fundamentowych o rozmiarach 1,4 x 1,4 m i wysokości 0,5 m, jeśli norma zużycia mieszanki betonowej do uzyskania 1 m3 betonu wynosi 1,015 m3?

A. 2,984 m3
B. 2,940 m3
C. 5,880 m3
D. 0,995 m3
Aby obliczyć ilość mieszanki betonowej potrzebnej do wykonania 3 stóp fundamentowych o wymiarach 1,4 x 1,4 m i wysokości 0,5 m, należy najpierw obliczyć objętość jednego stopy fundamentowej. Obliczenie objętości polega na pomnożeniu długości, szerokości i wysokości: 1,4 m * 1,4 m * 0,5 m = 0,98 m3 dla jednej stopy. Następnie, mnożymy tę wartość przez 3, aby uzyskać łączną objętość wszystkich trzech stóp: 0,98 m3 * 3 = 2,94 m3. Jednakże norma zużycia mieszanki betonowej do wykonania 1 m3 betonu wynosi 1,015 m3, co oznacza, że na każdy 1 m3 betonu potrzebujemy 1,015 m3 mieszanki. Aby znaleźć całkowitą ilość mieszanki, należy pomnożyć objętość betonu przez normę: 2,94 m3 * 1,015 m3 = 2,984 m3. To pokazuje, jak ważne jest uwzględnienie norm zużycia w obliczeniach budowlanych, co jest praktyką powszechnie stosowaną w branży budowlanej, aby uniknąć niedoborów materiałów oraz zapewnić odpowiednią jakość wykonania. Takie podejście jest zgodne z najlepszymi praktykami w zakresie planowania i oszacowania materiałów budowlanych.

Pytanie 16

Podczas budowy ściany o wysokości do 2,5 m konieczne jest użycie rusztowania

A. wiszącego
B. ramowego
C. na kozłach
D. na wysuwnicach
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowania tego typu są najczęściej stosowane przy murowaniu ścian o wysokości do 2,5 m. Kozły zapewniają stabilność i umożliwiają swobodne poruszanie się pracowników podczas prac budowlanych. W przypadku murowania, gdzie precyzja i kontrola są kluczowe, kozły umożliwiają łatwe dostosowanie wysokości oraz zapewniają wystarczającą powierzchnię roboczą na materiał. Dobrze zbudowane kozły powinny posiadać odpowiednie certyfikaty zgodności z normami bezpieczeństwa, takimi jak PN-EN 12811, co gwarantuje ich wytrzymałość i bezpieczeństwo użytkowania. Przykładem zastosowania może być budowa domu jednorodzinnego, gdzie robotnicy mogą łatwo ustawiać kozły w różnych miejscach, co przyspiesza i ułatwia proces murowania. Dodatkowo, korzystając z kozłów, można efektywnie wykorzystać przestrzeń roboczą, co jest niezwykle istotne na małych placach budowy.

Pytanie 17

Na rysunku przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. polskim.
B. wozówkowym.
C. krzyżykowym.
D. główkowym,
Na tym rysunku widać lico muru w wiązaniu wozówkowym. To jeden z najczęściej stosowanych sposobów układania cegieł w budownictwie, co nie jest bez powodu. Cegły w takim wiązaniu układa się naprzemiennie, więc co druga cegła jest dłuższa, a reszta jest krótsza. Dzięki temu mamy solidniejszy mur, mniejsze ryzyko pęknięć i większą nośność całej konstrukcji. Wozówkowe wiązanie stosuje się zarówno w domach, jak i w różnych budynkach użyteczności publicznej. W praktyce, pomaga to rozkładać obciążenia na większą powierzchnię, a to jest zgodne z normami budowlanymi, jak Eurokod 6, który mówi o projektowaniu murów z cegły. Ciekawym jest, że podczas budowy ważne, żeby dłuższe cegły były układane w sposób, który zapewnia ich równomierne wsparcie, co naprawdę zwiększa trwałość całej konstrukcji.

Pytanie 18

Jakie jest spoiwo w zaprawach mineralnych?

A. cement
B. akryl
C. silikon
D. żywica
Cement jest podstawowym spoiwem zapraw mineralnych, które jest powszechnie stosowane w budownictwie. Jest to materiał wiążący, który po zmieszaniu z wodą i kruszywem tworzy masę, która twardnieje w czasie. W praktyce, zaprawy mineralne, takie jak zaprawy murarskie czy tynkarskie, wykorzystują cement jako kluczowy składnik, ponieważ zapewnia on doskonałą wytrzymałość oraz trwałość konstrukcji. Przykładowo, cement portlandzki, najczęściej stosowany w budownictwie, jest niezbędny do produkcji betonu, który znajduje zastosowanie w fundamentach, stropach oraz innych elementach budowlanych. Zgodnie z normami PN-EN 197-1, cement klasowy CEM I jest najczęściej używany w budownictwie, co potwierdza jego wysoką jakość i funkcjonalność. Dobre praktyki w zakresie stosowania zapraw mineralnych z cementem obejmują odpowiednie przygotowanie podłoża, właściwe proporcje składników oraz zapewnienie odpowiednich warunków do wiązania i twardnienia masy, co ma decydujący wpływ na trwałość i bezpieczeństwo konstrukcji.

Pytanie 19

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. na kozłach
B. stojakowe
C. wiszące
D. ramowe
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowanie na kozłach zapewnia stabilną i bezpieczną platformę roboczą, co jest kluczowe podczas rozbiórki ścianek działowych. Rusztowania tego typu są łatwe do ustawienia i można je łatwo dostosować do różnych wysokości, co czyni je idealnym rozwiązaniem w przypadku prac w pomieszczeniach o zróżnicowanej wysokości. Wysokość rusztowania może być regulowana, co daje możliwość pracy na różnych poziomach bez konieczności przestawiania całej konstrukcji. Przykładem zastosowania rusztowania na kozłach może być praca w biurze, gdzie konieczne jest usunięcie przestarzałych ścianek działowych w celu otwarcia przestrzeni. Dodatkowo, rusztowania na kozłach są zgodne z normą PN-EN 12811, która określa wymagania dotyczące bezpieczeństwa konstrukcji rusztowań. W praktyce, ich użycie minimalizuje ryzyko wypadków związanych z upadkiem podczas pracy na wysokości, co jest kluczowe w branży budowlanej. Użycie takiego rusztowania sprzyja efektywności pracy oraz zwiększa komfort osób pracujących w trudnych warunkach budowlanych.

Pytanie 20

Na podstawie fragmentu instrukcji producenta oblicz, ile palet bloczków gazobetonowych o wymiarach
24×24×59 cm potrzeba do wymurowania dwóch ścian wysokości 2,75 m, długości 6 m i grubości 24 cm każda.

Informacje producenta bloczków betonu komórkowego
Wymiary bloczka
[cm]
Zużycie
[szt./m²]
Masa
[kg]
Liczba na palecie
[szt.]
24×24×59722,448
12×24×59712,296
8×24×5979,2144
A. 5 palet.
B. 58 palet.
C. 116 palet.
D. 3 palety.
Wybierając inną odpowiedź niż 5 palet, można napotkać na kilka typowych błędów obliczeniowych. Na przykład, wybierając 3 palety, można zakładać, że wystarczająca ilość bloczków zmieści się w tej liczbie, co jest mylne. Obliczenia wskazują, że potrzeba znacznie więcej bloczków, ponieważ 3 palety zapewniłyby jedynie 144 bloczki, co jest niewystarczające dla zapotrzebowania. Z kolei wybór 58 lub 116 palet wskazuje na dramatyczne przeszacowanie ilości potrzebnych materiałów. Obydwie te odpowiedzi mogą wynikać z błędów w założeniach dotyczących objętości lub niewłaściwego zrozumienia liczby bloczków na paletę. Brak dokładnego obliczenia objętości ścian oraz objętości bloczków może prowadzić do takich nieporozumień. Zrozumienie objętości to kluczowy element w budownictwie, ponieważ wpływa na planowanie, zarządzanie budżetem oraz harmonogramem. Właściwe zrozumienie procesu obliczeń materiałowych oraz znajomość standardów dotyczących wielkości paczek materiałów budowlanych są kluczowe w codziennej pracy inżynierów i projektantów. Ignorując te zasady, można znacząco opóźnić projekt oraz zwiększyć koszty, co jest sprzeczne z najlepszymi praktykami branżowymi.

Pytanie 21

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100
A. ok. 1920 kg
B. ok. 400 kg
C. ok. 4800 kg
D. ok. 1200 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 22

Warstwę termoizolacyjną ściany, której fragment przekroju pionowego przedstawiono na rysunku, oznaczono cyfrą

Ilustracja do pytania
A. 2
B. 1
C. 4
D. 3
Wybór odpowiedzi nr 3 jest strzałem w dziesiątkę! Ta warstwa rzeczywiście działa jako termoizolacja w ścianie, co jest bardzo ważne. Ma sporą grubość i zwartą strukturę, a to kluczowe, gdy mówimy o utrzymywaniu ciepła. W budownictwie stosuje się materiały, które mają niską przewodność cieplną, jak styropian czy wełna mineralna, bo one naprawdę pomagają w zatrzymywaniu ciepła w środku. Wiesz, budynki muszą spełniać określone normy, żeby były energooszczędne, a odpowiednie warstwy izolacyjne pomagają w tym nie tylko przez zmniejszenie kosztów ogrzewania, ale i podnoszą komfort życia mieszkańców. Na przykład w domach jednorodzinnych, kiedy ściany mają dobrą izolację, to faktycznie poprawia to bilans energetyczny budynku, a także sprawia, że jest bardziej odporny na różne warunki pogodowe.

Pytanie 23

Jaką ilość zaprawy należy nabyć do zbudowania ścian o grubości ½ cegły oraz powierzchni 28 m2, przy założeniu, że zużycie wskazane przez producenta wynosi 35 kg zaprawy na 1 m2 ściany tej grubości?

A. 980 m2
B. 490 kg
C. 490 m2
D. 980 kg
Aby obliczyć, ile zaprawy potrzebujemy do wymurowania ścian o powierzchni 28 m² i grubości ½ cegły, musimy pomnożyć zużycie zaprawy przez powierzchnię. Producent podaje, że na 1 m² ściany o tej grubości potrzebne jest 35 kg zaprawy. Zatem, dla 28 m² obliczenia będą wyglądać następująco: 28 m² * 35 kg/m² = 980 kg. To oznacza, że do wykonania tego zadania musimy zakupić 980 kg zaprawy. W praktyce, znajomość zużycia materiałów budowlanych na jednostkę powierzchni jest kluczowa dla prawidłowego planowania budowy. Umożliwia to nie tylko skuteczne zarządzanie kosztami, ale także minimalizowanie odpadów materiałowych. Dobrą praktyką jest zawsze uwzględnienie dodatkowego zapasu zaprawy, aby pokryć ewentualne straty podczas transportu oraz nieprzewidziane okoliczności na budowie, takie jak błędy w obliczeniach lub zmiany w planie budowy.

Pytanie 24

Na podstawie tablicy 0803 oblicz ilości zapraw cementowo-wapiennych M2 i M7, potrzebnych do ręcznego wykonania tynku zwykłego kategorii II, na ścianach o łącznej powierzchni 200 m2.

Ilustracja do pytania
A. M2 - 2,06 m3 i M7 - 0,21 m3
B. M2 - 4,12 m3 i M7 - 0,42 m3
C. M2 - 3,72 m3 i M7 - 0,40 m3
D. M2 - 1,86 m3 i M7 - 0,20 m3
Analizując pozostałe odpowiedzi, można zauważyć, że dochodzi w nich do błędów w procesie obliczania ilości zapraw niezbędnych do wykonania tynku. Warto zwrócić uwagę na to, że każda z pozostałych odpowiedzi opiera się na niewłaściwej interpretacji danych z tabeli 0803. Na przykład, w odpowiedzi M2 - 2,06 m3 i M7 - 0,21 m3, ilość zaprawy M2 jest zaniżona o ponad 1 m3, co może wynikać z błędnego przyjęcia podstawy obliczeń. Podobnie, odpowiedzi z wartościami 1,86 m3 zaprawy M2 i 0,20 m3 zaprawy M7 są oparte na danych dla 100 m2, ale nie uwzględniają, że przy powiększonej powierzchni do 200 m2 musimy zastosować odpowiednią skalę. Kolejny typowy błąd polega na nieuwzględnieniu, że podwajając powierzchnię, musimy także podwoić ilości zaprawy. W rezultacie, nieprzestrzeganie tej zasady prowadzi do niedoszacowania potrzebnych materiałów, co może skutkować przestojami w pracy oraz dodatkowymi kosztami. W branży budowlanej istotne jest, aby dobrze zrozumieć zasady obliczeń i ich praktyczne zastosowanie, aby uniknąć takich problemów i realizować projekty zgodnie z harmonogramem i budżetem.

Pytanie 25

Na rysunku przedstawiono ścianę

Ilustracja do pytania
A. piwniczną wykonaną na ławie żelbetowej.
B. fundamentową wykonaną na ławie żelbetowej.
C. piwniczną wykonaną na ławie betonowej.
D. fundamentową wykonaną na ławie betonowej.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji rodzajów ścian fundamentowych oraz zastosowanych materiałów. Odpowiedzi wskazujące na ścianę piwniczną są błędne, ponieważ ściana przedstawiona na rysunku nie pełni funkcji ściany piwnicznej, która zazwyczaj jest projektowana z uwzględnieniem dodatkowych obciążeń, takich jak ciśnienie wody gruntowej. Ponadto, odpowiedzi związane z ławą betonową zamiast żelbetowej, pomijają kluczowy aspekt wytrzymałości. Ławy betonowe, które nie zawierają zbrojenia, są bardziej podatne na pęknięcia i nie wytrzymują dużych obciążeń, co czyni je mniej odpowiednimi do tworzenia fundamentów budynków. Normy budowlane, takie jak PN-EN 1992, wskazują na konieczność stosowania żelbetu w miejscach, gdzie występują duże siły działające na fundamenty. Zrozumienie tych koncepcji jest kluczowe dla poprawnej analizy i wyboru odpowiednich rozwiązań konstrukcyjnych, a pominięcie ich może prowadzić do poważnych błędów projektowych oraz zagrożeń dla stabilności budynku.

Pytanie 26

Izolacje przeciwwilgociowe lekki typ dla ściany piwnicy powinny być wykonane

A. z pojedynczej warstwy folii PVC
B. z folii kubełkowej
C. z papy asfaltowej
D. z dwóch warstw lepiku asfaltowego
Izolacje przeciwwilgociowe w piwnicach to ważny temat, bo przecież wilgoć potrafi naprawdę zaszkodzić budynkom. Lepik asfaltowy jest naprawdę dobrym wyborem, bo tworzy mocną barierę przed wodą. Jak się zastosuje dwie warstwy tego lepiku, to nawet jak jedna się uszkodzi, to druga wciąż działa. Dzięki temu cała izolacja jest dużo trwalsza. Lepik jest dość łatwy w aplikacji, więc nie dziwi mnie, że jest popularny w budownictwie. Normy budowlane, jak PN-EN 13967, podkreślają, że dobrze dobrane materiały do izolacji są kluczowe dla trwałości konstrukcji. Przy aplikacji lepiku ważne jest też, żeby przygotować podłoże i zabezpieczyć je przed uszkodzeniami mechanicznymi, bo to wpływa na jakość wykonania całej izolacji.

Pytanie 27

Sprzętu przedstawionego na rysunku używa się do transportu

Ilustracja do pytania
A. mieszanki betonowej.
B. suchych mieszanek zapraw tynkarskich.
C. cementu luzem.
D. drogowych mas bitumicznych.
Betonomieszarka, przedstawiona na zdjęciu, jest specjalistycznym urządzeniem wykorzystywanym do transportu i przygotowania mieszanki betonowej na placu budowy. Jej konstrukcja pozwala na efektywne mieszanie składników, takich jak cement, piasek i kruszywo, co zapewnia uzyskanie jednorodnej mieszanki. To zagadnienie jest kluczowe w budownictwie, ponieważ jakość betonu determinowana jest zarówno przez proporcje składników, jak i przez sposób ich mieszania. Betonomieszarki są standardowo używane w dużych projektach budowlanych, gdzie ilość betonu potrzebna do realizacji robót budowlanych jest znaczna. Istotnym atutem tego sprzętu jest mobilność – betonomieszarki mogą być przetransportowane blisko miejsca użycia, co minimalizuje czas potrzebny na dowóz materiału oraz zwiększa efektywność prac budowlanych. W praktyce, korzystając z betonomieszarek, można również dostosować recepturę betonu w zależności od wymagań projektu, co jest zgodne z aktualnymi normami budowlanymi i dobrymi praktykami w branży.

Pytanie 28

Perlit to lżejsze kruszywo stosowane w budownictwie do wytwarzania zapraw

A. szamotowych
B. ciepłochronnych
C. kwasoodpornych
D. krzemionkowych
Perlit to naprawdę świetny materiał, jeśli chodzi o izolację. Dzięki swojej porowatej strukturze świetnie trzyma powietrze, co znacząco poprawia izolację termiczną zapraw. Z tego co widziałem, często stosuje się go w mieszankach tynkarskich i zaprawach, żeby zmniejszyć straty ciepła w budynkach. To jest ważne, zwłaszcza teraz, kiedy wszyscy myślimy o zrównoważonym budownictwie i efektywności energetycznej. Poza tym, perlit jest lekki, co znacznie ułatwia transport i użycie. Dzięki temu nasze konstrukcje są mniej obciążone. Warto pamiętać, że świetnie sprawdza się w systemach ociepleń, co naprawdę przekłada się na długowieczność i efektywność energetyczną budynków.

Pytanie 29

Aby przygotować zaprawę cementowo-wapienną, użyto 50 kg wapna. Jaką ilość cementu trzeba zastosować do tej zaprawy, jeśli proporcja objętościowa składników wynosi 1:2:4?

A. 150 kg
B. 25 kg
C. 50 kg
D. 100 kg
Aby obliczyć ilość cementu potrzebną do wykonania zaprawy cementowo-wapiennej, należy najpierw zrozumieć stosunek objętościowy składników, który wynosi 1:2:4. Oznacza to, że na każdą część cementu przypadają dwie części wapna i cztery części piasku. W tym przypadku, skoro przygotowano 50 kg wapna, to obliczamy ilość cementu w następujący sposób: jeśli 2 części to 50 kg, to 1 część (czyli cement) wynosi 25 kg (50 kg / 2 = 25 kg). Dodatkowo, dla zapewnienia właściwych właściwości zaprawy oraz trwałości konstrukcji, dobrym standardem jest stosowanie dokładnych proporcji, które zapewniają odpowiednią wytrzymałość i elastyczność mieszanki. Warto pamiętać, że w praktyce do wykonania zaprawy często korzysta się z gotowych mieszanek zapraw, które już mają zmierzone i dobrane składniki w odpowiednich proporcjach, co ułatwia pracę budowlaną.

Pytanie 30

Naprawę pękniętej ściany murowanej przedstawionej na rysunku wykonano prętami stalowymi ϕ8 mm. Które stwierdzenie jest nieprawdziwe?

Ilustracja do pytania
A. Rozstaw między prętami w pionie wynosi 50 cm.
B. Do naprawy pęknięcia wykorzystano 4 pręty o długości 150 cm każdy.
C. Pręty sięgają 50 cm poza zewnętrzne pęknięcie ściany.
D. Do naprawy pęknięcia wykorzystano 4 pręty o średnicy 8 mm.
Wybór odpowiedzi, która sugeruje, że do naprawy pęknięcia wykorzystano 4 pręty o długości 150 cm, jest błędny i ilustruje powszechne nieporozumienia związane z interpretacją wymiarów w kontekście technicznym. Po pierwsze, długość prętów została podana bez uwzględnienia całkowitych wymiarów naprawianego pęknięcia. Pęknięcie, które ma około 100 cm długości, wymaga prętów, które w sposób efektywny je obejmą oraz wzmocnią. W przypadku użycia prętów o długości 150 cm, 50 cm pozostaje poza zasięgiem pęknięcia, co może prowadzić do nieprawidłowego rozkładu obciążeń. Niedopasowanie długości prętów do wymiarów pęknięcia jest częstym błędem, który może w przyszłości prowadzić do nieskutecznych napraw oraz dalszych uszkodzeń struktury. Ponadto, stwierdzenie to nie uwzględnia również kluczowego aspektu, jakim jest rozstawienie prętów w pionie, które wynosi 50 cm. Takie rozmieszczenie jest istotne dla równomiernego rozkładu sił w strukturze, a niepoprawne zrozumienie tego zagadnienia może prowadzić do osłabienia całej konstrukcji. Konieczność precyzyjnego planowania i obliczeń w zakresie długości oraz rozmieszczenia prętów stalowych jest fundamentem dobrych praktyk budowlanych, które powinny być zawsze brane pod uwagę podczas napraw i wzmocnień.

Pytanie 31

W hurtowni "Bud-kom" sprzedaż bloczków z betonu komórkowego odbywa się wyłącznie w pełnych paletach. Zgodnie z potrzebami do budowy ścian budynku wymagane jest 375 sztuk bloczków o wymiarach 480×199×599 mm. Na jednej palecie mieści się 24 bloczki o tych rozmiarach. Cena tych bloczków wynosi 631,00 zł za paletę. Jakie będą całkowite koszty zakupu bloczków w tej hurtowni zgodnie z wymaganiami?

A. 10 096,00 zł
B. 9 750,00 zł
C. 10 125,00 zł
D. 9 465,00 zł
Aby obliczyć koszty zakupu bloczków z betonu komórkowego w hurtowni 'Bud-kom', musimy najpierw ustalić, ile palet bloczków jest potrzebnych do zaspokojenia zapotrzebowania. Potrzebujemy 375 bloczków, a na jednej palecie mieszczą się 24 bloczki. Dlatego liczba potrzebnych palet wynosi: 375 podzielić przez 24, co daje 15,625. Ponieważ sprzedaż w hurtowni jest realizowana wyłącznie w pełnych paletach, zaokrąglamy tę liczbę w górę do 16 palet. Koszt jednej palety wynosi 631,00 zł, więc całkowity koszt zakupu będzie wynosił 16 palet pomnożone przez 631,00 zł, co daje 10 096,00 zł. Dzięki tej metodzie można szybko ocenić koszty materiałów budowlanych, co jest kluczowe dla harmonogramu i budżetu projektu budowlanego. W praktyce wiedza ta jest niezbędna do planowania zakupów i zarządzania finansami projektu budowlanego, a także do wspierania negocjacji z dostawcami, co może pozwolić na uzyskanie korzystniejszych warunków handlowych.

Pytanie 32

Tynk należący do kategorii IV jest tynkiem

A. 3-warstwowym
B. 4-warstwowym
C. 1-warstwowym
D. 2-warstwowym
Wybór tynku jako 4-warstwowego, 2-warstwowego czy 1-warstwowego to czasem nieporozumienie, bo można nie wiedzieć, jak to wszystko działa. Tynki 1-warstwowe są prostą wersją, ale często nie są wystarczająco mocne, szczególnie w trudnych warunkach. Zwykle używa się ich tam, gdzie nie ma dużych wymagań co do estetyki i techniki, co może prowadzić do szybkiego uszkodzenia. Tynk 2-warstwowy także nie spełnia standardów tynków kategorii IV, bo nie ma tych trzech kluczowych warstw, które są potrzebne, żeby tynk był naprawdę trwały. Z kolei tynki 4-warstwowe to rzadkość i wynikają z mylenia cech tynków z ich warstwowością. Tynk trójwarstwowy łączy technologie i materiały zgodne z aktualnymi standardami budowlanymi, przez co jest najlepszym wyborem dla większości nowoczesnych projektów. Zrozumienie różnic między typami tynków to klucz do sukcesu w każdym projekcie, a przestrzeganie norm jest niezbędne, żeby nie mieć problemów z trwałością i wyglądem.

Pytanie 33

Przy ręcznym sporządzaniu zaprawy cementowo-wapiennej z wykorzystaniem wapna hydratyzowanego, należy łączyć poszczególne składniki w następującym porządku:

A. wapno + woda + piasek + cement
B. piasek + cement + woda + wapno
C. woda + cement + wapno + piasek
D. piasek + cement + wapno + woda
Odpowiedź 'woda + cement + wapno + piasek' jest poprawna, ponieważ kolejność dodawania składników ma kluczowe znaczenie dla uzyskania optymalnych właściwości zaprawy cementowo-wapiennej. Rozpoczynając od wody, zapewniamy odpowiednią konsystencję mieszanki, co umożliwia lepsze połączenie z cementem. Następnie dodanie cementu powoduje, że woda zaczyna aktywować proces hydratacji, co prowadzi do uzyskania wytrzymałości materiału. Wapno hydratyzowane, które jest dodawane przed piaskiem, pełni rolę poprawiającą plastyczność oraz elastyczność zaprawy, co jest szczególnie istotne w przypadku aplikacji na większe powierzchnie. Ostatnim składnikiem jest piasek, który działa jako wypełniacz, zwiększając objętość mieszanki oraz poprawiając jej właściwości mechaniczne. Praktyczne zastosowanie tej kolejności można zauważyć w budownictwie, gdzie zaprawy cementowo-wapienne są powszechnie używane do murowania i tynkowania, a ich odpowiednie przygotowanie znacząco wpływa na trwałość oraz estetykę konstrukcji. Według norm PN-EN 998, właściwie przygotowane zaprawy powinny spełniać określone wymagania dotyczące wytrzymałości i przyczepności, co podkreśla wagę poprawnego procesu ich tworzenia.

Pytanie 34

Jeśli wydano 1 000 zł na materiały, a wydatki na robociznę stanowią 80 % kosztów materiałów, to całkowite koszty robocizny i materiałów wynoszą

A. 1 020 zł
B. 1 200 zł
C. 1 800 zł
D. 1 080 zł
Aby obliczyć łączne koszty robocizny i materiałów, należy najpierw określić wysokość kosztów robocizny, które wynoszą 80% od wartości zakupionych materiałów. Koszty materiałów wynoszą 1 000 zł, więc 80% z tej kwoty obliczamy jako 0,8 * 1 000 zł, co daje 800 zł. Następnie dodajemy te koszty do kosztów materiałów, co daje 1 000 zł + 800 zł = 1 800 zł. Takie podejście jest zgodne z dobrymi praktykami w zakresie zarządzania kosztami, które zalecają dokładne wyliczanie wszystkich wydatków związanych z projektem. W kontekście budżetowania, istotne jest uwzględnianie nie tylko bezpośrednich kosztów materiałów, ale także kosztów robocizny, co pozwala na uzyskanie pełnego obrazu finansowego projektu. Przykładem zastosowania tego typu obliczeń jest planowanie budowy, gdzie można oszacować całkowite wydatki przed rozpoczęciem prac, co wpływa na lepsze zarządzanie budżetem.

Pytanie 35

Który z elementów budynku przedstawiono na rysunku?

Ilustracja do pytania
A. Gzyms.
B. Attykę.
C. Cokół.
D. Ryzalit.
Wybór innych elementów budynku, takich jak gzyms, attyka, czy ryzalit, oparty jest na pewnych uproszczeniach i nieporozumieniach dotyczących ich funkcji i lokalizacji. Gzyms, będący wystającą częścią nad oknami lub drzwiami, pełni rolę ochronną, jednak usytuowany jest na górnej części budynku, a nie na jego dolnej części, gdzie znajduje się cokół. Attyka to natomiast konstrukcja znajdująca się na dachu, która ma na celu zamykanie elewacji oraz często pełni funkcję dekoracyjną. Jej umiejscowienie oraz funkcja są zupełnie inne niż cokół. Ryzalit to wybrzuszenie w elewacji budynku, które wystaje w stosunku do reszty ściany, tworząc efekt przestrzenny; jednak także nie jest elementem dolnym budynku. Wybierając te odpowiedzi, można wpaść w pułapkę koncentrowania się na ornamentyce i formach architektonicznych, zamiast zrozumieć podstawowe zasady budowy i rozmieszczenia elementów, co prowadzi do zniekształcenia rzeczywistej funkcji cokołu jako elementu podstawowego. Zrozumienie roli cokołu w budownictwie jest kluczowe, ponieważ każdy błąd w jego konstrukcji może prowadzić do poważnych konsekwencji, takich jak wilgoć w ścianach budynku czy uszkodzenia jego fundamentów, co w efekcie może wymagać kosztownych napraw lub renowacji.

Pytanie 36

Na którym rysunku przedstawiono rusztowanie kozłowe regulowane?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybierając inny rysunek niż ten z rusztowaniem kozłowym regulowanym, może być tak, że nie zrozumiałeś jego kluczowych cech. Wiele osób myli rusztowania stałe z regulowanymi, co prowadzi do błędów w wyborze. Na przykład, jeśli ktoś stawia na rysunek A, może uważać, że to rusztowanie, które można dopasować do różnych wysokości. Ale w rzeczywistości, rusztowania stałe – te z rysunków A lub D – nie mają opcji regulacji, co ogranicza ich użyteczność w zmiennych warunkach. Często zdarza się też, że ludzie oceniają rusztowania po wyglądzie, a nie po ich funkcjonalności. Jeśli nie zwracasz uwagi na mechanizmy regulacyjne, możesz łatwo pomylić rysunki, które wyglądają jak rusztowania koszowe, mimo że w rzeczywistości nie mają tej regulacji. Zrozumienie różnic pomiędzy rodzajami rusztowań i ich zastosowaniami jest naprawdę ważne dla bezpieczeństwa i efektywności w pracy. Pamiętaj, normy, takie jak EN 12810 czy EN 12811, są tu, by upewnić się, że wybrane rusztowanie spełnia wymagane standardy bezpieczeństwa i jakości. Dlatego każdy powinien wiedzieć, jakie cechy ma mieć rusztowanie, które planuje użyć.

Pytanie 37

Które zprzedstawionych na rysunku narzędzi należy zastosować do skuwania starego tynku?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Narządzie przedstawione na rysunku C, czyli młot wyburzeniowy, jest idealnym wyborem do skuwania starego tynku. Jego konstrukcja i mechanizm działania umożliwiają efektywne usuwanie tynków, które są z reguły mocno przytwierdzone do ścian. Młot wyburzeniowy generuje dużą siłę uderzenia, co sprawia, że radzi sobie z trudnymi materiałami budowlanymi. W praktyce, podczas skuwania tynku, należy kierować młot pod odpowiednim kątem, aby zminimalizować ryzyko uszkodzenia podłoża, na przykład betonu. Dobrą praktyką jest również noszenie odpowiednich środków ochrony osobistej, takich jak gogle i rękawice, aby uniknąć urazów. Tego typu narzędzie jest często wykorzystywane w pracach remontowych i budowlanych, a jego zastosowanie pozwala na szybkie i skuteczne przygotowanie powierzchni do dalszych prac, co jest zgodne z obowiązującymi standardami w branży budowlanej.

Pytanie 38

Przedstawiony na rysunku przyrząd murarski jest

Ilustracja do pytania
A. poziomnicą.
B. wężem wodnym.
C. linią ważną.
D. warstwomierzem.
Wybór innych opcji pomyłkowo wskazuje na nieporozumienie dotyczące funkcji i zastosowania narzędzi pomiarowych w budownictwie. Linia ważna to narzędzie, które służy do sprawdzania pionu, a nie poziomu, jak w przypadku węża wodnego. Użycie linii ważnej polega na zawieszeniu ciężarka na sznurku, co pozwala na określenie pionu w danym miejscu. Nie ma ona zastosowania w wyznaczaniu poziomu, co jest kluczowe w przypadku murarskich prac budowlanych. Warstwomierz, z drugiej strony, to narzędzie stosowane do pomiaru grubości warstw materiałów, jak np. w przypadku nakładania tynków lub farb, a nie do określania poziomu. Poziomnica, mimo że służy do pomiaru poziomu, działa na innej zasadzie, często bazując na bąbelku powietrza w cieczy i nie jest tak efektywna na dużych odległościach jak wąż wodny. Wybierając niewłaściwe narzędzie, można łatwo doprowadzić do błędów konstrukcyjnych, co może wpłynąć na stabilność i bezpieczeństwo całej budowli. Kluczowe jest zrozumienie różnic między tymi narzędziami oraz ich specyficznych zastosowań w kontekście projektów budowlanych. Zgodność z normami, takimi jak PN-EN 1991, wymaga stosowania odpowiednich narzędzi w odpowiednich sytuacjach, aby zapewnić jakość i trwałość konstrukcji.

Pytanie 39

W przypadku strzępiów zazębionych należy zostawić pustkę o głębokości w co drugiej warstwie muru:

A. 2 cegieł
B. 1/2 cegły
C. 1 cegły
D. 1/4 cegły
Wykorzystanie pustek w murze jest kluczowym zagadnieniem w budownictwie, jednak odpowiedzi sugerujące głębokości 1/2 cegły, 1 cegłę oraz 2 cegły są błędne. W przypadku głębokości 1/2 cegły, można napotkać problemy związane z nadmiernym osłabieniem struktury muru, co prowadzi do zwiększonego ryzyka pęknięć i zniekształceń. Tego rodzaju pustki mogą powodować nierównomierne osiadanie budynku, a także wpływać negatywnie na jego trwałość. Głębsze pustki, takie jak 1 cegła czy 2 cegły, w ogóle nie spełniają zamierzonej funkcji, gdyż eliminują zasadniczą korzyść, jaką jest kontrolowanie ruchów konstrukcji. Zbyt duże pustki mogą wprowadzać do muru nadmierne luki, które osłabiają spójność materiałów budowlanych i prowadzą do problemów z izolacją termiczną oraz akustyczną. Ponadto, błędne przekonanie o tym, że większe pustki mogą zwiększać wentylację muru, jest mylne, gdyż może to prowadzić do niekontrolowanego przepływu powietrza i w konsekwencji do zawilgocenia. Znajomość właściwych standardów i praktyk budowlanych, w tym zasad dotyczących głębokości pustek, jest kluczowa dla osiągnięcia stabilności i trwałości obiektów budowlanych.

Pytanie 40

Bloczek z betonu komórkowego został przedstawiony na rysunku

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybierając odpowiedzi inne niż A, można napotkać poważne nieporozumienia związane z identyfikacją materiałów budowlanych. Bloczek z betonu komórkowego ma specyficzną strukturę z pustkami, co jest istotnym elementem jego charakterystyki. Wiele osób może błędnie rozpoznać inne materiały, takie jak bloczki z betonu zwykłego lub silikatowego, które mają zupełnie inną budowę. Bloki betonowe posiadają gęstą, jednolitą strukturę, która nie zawiera pustek, co sprawia, że są znacznie cięższe i mają inne zastosowanie w budownictwie. Z kolei silikaty charakteryzują się wyższą wytrzymałością, ale nie oferują tak dobrych właściwości izolacyjnych jak beton komórkowy. Błędy w identyfikacji mogą pochodzić z braku wiedzy na temat procesów produkcyjnych i właściwości materiałów budowlanych. Na przykład, niewłaściwa analiza wizualna prowadzi do wniosku, że materiały o podobnych kolorach lub fakturach mogą być tymi samymi produktami, co jest mylne. Warto pamiętać, że dobór odpowiednich materiałów budowlanych powinien opierać się na ich parametrach technicznych oraz zastosowaniach zgodnych z obowiązującymi normami, takimi jak PN-EN 771-4. Dlatego istotne jest zrozumienie różnic między tymi materiałami oraz ich zastosowania w praktyce budowlanej.