Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 10:43
  • Data zakończenia: 8 grudnia 2025 11:20

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie z wymienionych działań należy do inspekcji urządzenia napędowego z elektrycznym silnikiem podczas jego pracy?

A. Zbadanie poziomu nagrzewania obudowy i łożysk
B. Sprawdzenie urządzeń ochronnych
C. Weryfikacja czystości obudowy
D. Kontrola stanu zamocowania osłony wentylatora
Sprawdzanie stopnia nagrzewania obudowy i łożysk jest kluczową czynnością w oględzinach urządzenia napędowego z silnikiem elektrycznym podczas ruchu. Nagrzewanie tych elementów może wskazywać na potencjalne problemy, takie jak niewłaściwe smarowanie, nadmierne obciążenie lub awarię komponentów. Przykładowo, jeśli łożyska są zbyt gorące, może to oznaczać, że w systemie występuje zbyt duży opór lub że smarowanie jest niewystarczające, co może prowadzić do ich zatarcia. Zgodnie z normami branżowymi, regularne monitorowanie temperatury łożysk i obudowy jest zalecane w celu wykrywania usterek zanim dojdzie do poważniejszej awarii. Użytkownicy powinni korzystać z odpowiednich narzędzi, takich jak kamery termograficzne lub czujniki temperatury, aby dokładnie ocenić stan urządzenia. Wykrycie podwyższonej temperatury może skłonić do przeprowadzenia dalszych analiz i działań prewencyjnych, co jest zgodne z podejściem proaktywnym w zarządzaniu utrzymaniem ruchu.

Pytanie 2

Który z poniższych sposobów łączenia uzwojeń transformatora zapewnia jednoczesne zasilanie wszystkich faz?

A. Układ trójkąt-gwiazda
B. Układ szeregowy
C. Układ gwiazda-trójkąt
D. Układ równoległy
Układ trójkąt-gwiazda, choć podobny do układu gwiazda-trójkąt, działa na odwrót – uzwojenie pierwotne jest połączone w trójkąt, a wtórne w gwiazdę. Taki układ nie jest typowo stosowany do jednoczesnego zasilania wszystkich faz, ponieważ ma inne zastosowania, takie jak redukcja prądu rozruchowego w silnikach trójfazowych. Układ równoległy odnosi się do połączenia równoległego, które nie jest stosowane w przypadku uzwojeń transformatorów trójfazowych. Transformator działa na zasadzie indukcji elektromagnetycznej, a nie przepływu prądu jak w połączeniu równoległym, co czyni tę koncepcję nieodpowiednią. Układ szeregowy odnosi się do połączenia szeregowego, które również nie jest stosowane w transformatorach trójfazowych do zasilania wszystkich faz jednocześnie. W szeregowych połączeniach uzwojeń, napięcie się sumuje, co jest przydatne w innych kontekstach, ale nie w przypadku zasilania trójfazowego. Typowym błędem jest myślenie, że wszystkie te układy mogą być stosowane zamiennie w transformatorach, co nie jest prawdą. Każdy z nich ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez zrozumienia ich funkcji oraz wpływu na działanie całego systemu zasilającego.

Pytanie 3

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. umieszczeniu elementów aktywnych poza zasięgiem ręki
B. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
C. zastosowaniu osłon chroniących przed zamierzonym dotykiem
D. wprowadzeniu barier chroniących przed przypadkowym kontaktem
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar rezystancji uzwojeń stojana
B. Weryfikacja stanu ochrony przeciwporażeniowej
C. Pomiar napięcia zasilającego
D. Przeprowadzenie próbnego rozruchu urządzenia
Analizując pozostałe czynności, które zostały wymienione, można zauważyć, że zarówno pomiar rezystancji uzwojeń stojana, jak i sprawdzenie stanu ochrony przeciwporażeniowej są niezwykle istotnymi elementami w kontekście diagnostyki silników elektrycznych. Pomiar rezystancji uzwojeń dostarcza informacji o stanie izolacji oraz zużyciu uzwojeń, co jest kluczowe dla przewidywania żywotności silnika. Na przykład, niska rezystancja może sugerować uszkodzenie izolacji, co prowadzi do ryzyka zwarcia. Kolejnym ważnym aspektem jest ochrona przeciwporażeniowa, która ma na celu zapewnienie bezpieczeństwa operatorów. Sprawdzenie stanu ochrony jest wymagane przez normy, takie jak IEC 60204-1, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego w maszynach. Rozruch próbny to ostatni krok w procesie, który pozwala na testowanie silnika w rzeczywistych warunkach operacyjnych, co pozwala zidentyfikować ewentualne problemy w jego działaniu. Ignorowanie tych czynności może prowadzić do poważnych konsekwencji, w tym awarii silnika oraz zagrożeń dla bezpieczeństwa pracy. Dlatego kluczowe jest zrozumienie, że każda z wymienionych czynności ma swoje miejsce i znaczenie w kontekście eksploatacji silnika elektrycznego.

Pytanie 6

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. YAKY 4×10
B. AFL 6 120
C. AsXS 4×70
D. AAFLwsXSn 50
Wybór przewodu YAKY 4×10 jako odpowiedniego do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z linią napowietrzną 230/400 V jest właściwy z kilku powodów. Przewód YAKY to przewód aluminiowy, który charakteryzuje się wysoką odpornością na czynniki zewnętrzne oraz niską wagą, co ułatwia jego montaż. Zastosowanie przewodu 4×10 oznacza, że ma on cztery żyły, z czego trzy są fazowe, a jedna to żyła neutralna, co jest standardem w instalacjach jednofazowych i trójfazowych. W przypadku przyłącza ziemnego, przewód ten powinien być również osłonięty, co zapewnia bezpieczeństwo użytkowania. YAKY 4×10 spełnia normy PN-EN 60502-1, co czyni go odpowiednim wyborem z punktu widzenia przepisów i dobrych praktyk. Przykładem zastosowania YAKY 4×10 jest przyłącze do domów jednorodzinnych, gdzie przewód ten może być układany w ziemi, zapewniając odpowiednią odporność na uszkodzenia i długowieczność. Warto również zauważyć, że ze względu na stosunkowo niską wartość oporu przewodzenia, przewód ten pozwala na efektywne przesyłanie energii elektrycznej przy minimalnych stratach.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. zasilania ich z gniazd z ochronnym bolcem uziemiającym
B. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
C. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
D. wcześniejszego zweryfikowania efektywności ochrony w instalacji
Zasilanie urządzeń elektrycznych klasy 0 z gniazd wyposażonych w ochronny bolec uziemiający jest podejściem błędnym, ponieważ sama obecność bolca nie zapewnia ochrony przed porażeniem, gdyż urządzenia te nie posiadają żadnej formy ochrony izolacyjnej. Klasa 0 oznacza, że urządzenie nie ma dodatkowej izolacji ani zabezpieczeń, co czyni je narażonym na porażenie elektryczne w przypadku uszkodzenia. Zastosowanie nadzoru technicznego ze strony dostawcy energii elektrycznej również nie gwarantuje bezpieczeństwa, ponieważ jest to odpowiedzialność użytkownika, aby zapewnić odpowiednie warunki eksploatacyjne. Ponadto wcześniejsze sprawdzenie skuteczności ochrony w instalacji nie ma zastosowania, jeśli urządzenia nie są zaprojektowane z myślą o ochronie przed porażeniem. Stosunek do wymagań zawartych w polskich normach budowlanych oraz wytycznych dotyczących użytkowania urządzeń elektrycznych jest kluczowy - błędne założenia mogą prowadzić do poważnych wypadków. Dlatego istotne jest, aby przed użyciem urządzeń klasy 0, bardzo dokładnie ocenić ich stan oraz warunki użytkowania, a nie polegać na nieadekwatnych metodach ochrony.

Pytanie 9

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Wzrost wartości napięcia z sieci zasilającej.
B. Zwiększenie częstotliwości napięcia zasilającego.
C. Przerwa w przewodzie ochronnym w sieci zasilającej.
D. Brak jednej z faz zasilania.
Przerwa w jednej z faz zasilania jest jedną z najczęstszych przyczyn problemów z trójfazowymi silnikami klatkowym. Taki silnik jest zaprojektowany do pracy na trzech fazach, a ich zrównoważone napięcie jest kluczowe dla prawidłowego działania. W przypadku przerwy w jednej z faz, silnik zaczyna pracować w trybie niepełnym, co prowadzi do utraty momentu obrotowego oraz zwiększenia obciążenia na pozostałych fazach. Przykładowo, podczas pracy silnika w trybie niepełnym, jego obroty mogą znacznie spaść, a hałas wzrosnąć z powodu wibracji i nadmiernych prądów w pozostałych fazach. W praktyce, jeśli operator zauważy takie objawy, powinien natychmiast wyłączyć silnik i sprawdzić połączenia zasilające oraz zabezpieczenia, zgodnie z zasadami bezpieczeństwa i dobrymi praktykami eksploatacyjnymi. Warto także przeprowadzić analizy obwodów zasilających, aby zidentyfikować ewentualne uszkodzenia. Takie działania są zgodne z normami IEC 60034 dotyczącymi maszyn elektrycznych oraz z procedurami bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jaką czynność konserwacyjną silnika prądu stałego można zrealizować podczas jego inspekcji w trakcie działania?

A. Wymiana uszkodzonego amperomierza w obwodzie zasilającym
B. Weryfikacja stanu osłon elementów wirujących
C. Czyszczenie komutatora
D. Weryfikacja stanu szczotkotrzymaczy
Sprawdzanie osłon części wirujących w silnikach prądu stałego to naprawdę istotna kwestia, jeśli mówimy o ich konserwacji. Te osłony są jak tarcza – chronią nas przed przypadkowymi kontaktem z ruchomymi elementami i pomagają w ochronie silnika przed różnymi zanieczyszczeniami. Regularne przeglądy tych osłon mogą pomóc zauważyć usterki, takie jak pęknięcia czy luzy, które mogą doprowadzić do poważniejszych problemów. Na przykład, w przemyśle, gdzie silniki muszą być niezawodne, kontrola stanu tych osłon to podstawa. Podobno według norm ISO 13857, bezpieczeństwo to kluczowa sprawa, więc chronienie się przed urazami od ruchomych części maszyn to nie tylko dobry pomysł, ale wręcz obowiązek. Sprawdzanie stanu osłon to jedna z tych rzeczy, które powinniśmy robić podczas przeglądów technicznych, bo wczesne wykrycie jakichś problemów to skuteczny sposób na uniknięcie kłopotów w przyszłości.

Pytanie 12

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 2,2 ∙ In
B. 1,4 ∙ In
C. 1,1 ∙ In
D. 0,8 ∙ In
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. B20
B. C10
C. C16
D. B16
Wybór innego wyłącznika, takiego jak B20, C10 czy C16, może wynikać z niewłaściwego zrozumienia zasad działania wyłączników automatycznych i ich zastosowania w kontekście ochrony przeciwporażeniowej. Wyłącznik B20, z prądem znamionowym 20 A, ma zbyt wysoką wartość dla zdefiniowanej impedancji pętli zwarcia 2,5 Ω, co może prowadzić do zbyt długiego czasu zadziałania przy wystąpieniu zwarcia. To zwiększa ryzyko porażenia ludzi, co jest niezgodne z zaleceniami normy PN-EN 60947-2, która określa wymagania dotyczące zabezpieczeń w instalacjach elektrycznych. Wybór C10 oraz C16, które są wyłącznikami typu C, również może być mylący, ponieważ są one przeznaczone głównie do obwodów z wysokimi prądami rozruchowymi, takimi jak silniki, a nie do typowych instalacji oświetleniowych czy gniazdowych. W związku z tym, wyłączniki te mogą zadziałać z opóźnieniem, co jest nieakceptowalne w kontekście ochrony przed porażeniem prądem. W praktyce, dobór odpowiednich wyłączników do instalacji elektrycznych powinien być oparty na analizie impedancji pętli zwarcia oraz wymagań dotyczących czasów zadziałania, aby zapewnić właściwe bezpieczeństwo.

Pytanie 18

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Dostawca energii elektrycznej
B. Właściciel lub zarządca nieruchomości
C. Użytkownicy mieszkań
D. Organ inspekcji technicznej
Właściciel lub zarządca budynku jest odpowiedzialny za sporządzenie planów okresowych kontroli i napraw instalacji elektrycznej, co wynika z przepisów prawa budowlanego oraz standardów dotyczących zarządzania budynkami. Właściciel budynku ma obowiązek zapewnienia bezpieczeństwa instalacji elektrycznej, co obejmuje regularne przeglądy, które mogą wykryć potencjalne zagrożenia, takie jak przestarzałe komponenty, uszkodzenia mechaniczne czy nieprawidłowe połączenia. W praktyce, właściciele i zarządcy często korzystają z usług wyspecjalizowanych firm zajmujących się audytem i konserwacją instalacji elektrycznych. Dobre praktyki branżowe wskazują, że takie kontrole powinny być przeprowadzane co najmniej raz w roku, a szczególnie w przypadku starszych budynków, gdzie ryzyko awarii jest wyższe. Dodatkowo, zgodnie z normą PN-IEC 60364-6, regularne inspekcje są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz minimalizacji ryzyka pożarowego. Właściciele powinni również prowadzić dokumentację tych przeglądów, co jest istotne nie tylko dla utrzymania standardów, ale także w kontekście ewentualnych roszczeń ubezpieczeniowych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się dwukrotnie
B. Zmniejszy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się czterokrotnie
Odpowiedź "Zwiększy się dwukrotnie" jest prawidłowa, ponieważ jest zgodna z prawem Ohma oraz zasadami dotyczącymi oporu elektrycznego w elementach grzewczych. Gdy długość spiralę grzejną skracamy o połowę, to zmniejszamy jej opór o połowę, ponieważ opór elektryczny przewodnika jest proporcjonalny do jego długości. Przy zachowaniu stałego napięcia zasilania, zgodnie z prawem Ohma (I = U/R), prąd przepływający przez grzejnik wzrośnie, gdyż opór maleje. W rezultacie moc wydzielająca się w postaci ciepła w grzałce elektrycznej, która jest opisana wzorem P = U * I, wzrośnie. Podstawiając wyrażenia do wzoru, otrzymujemy, że moc wzrasta dwukrotnie przy zmniejszonym oporze. W praktyce, jest to istotne przy projektowaniu urządzeń grzewczych, gdzie zmiana długości elementów grzewczych może wpływać na ich efektywność. Dobrą praktyką jest przeprowadzanie obliczeń związanych z oporem i mocą, aby zapobiec przegrzaniu lub uszkodzeniu grzałek w systemach grzewczych.

Pytanie 22

Wirnik silnika pracującego w układzie pokazanym na schemacie po załączeniu napięcia zasilającego nie obraca się, a z sieci pobierany jest prąd stanowiący kilka procent prądu znamionowego silnika. Przyczyną zaistniałej sytuacji może być

Ilustracja do pytania
A. przerwa w rezystorze Rb
B. zwarcie w rezystorze Rr
C. przerwa w uzwojeniu twornika.
D. zwarcie w uzwojeniu komutacyjnym.
Przerwa w uzwojeniu twornika jest jedną z najczęstszych przyczyn, dla których wirnik silnika nie może się obracać, a pobór prądu jest znacznie obniżony. W systemach silników elektrycznych, takich jak silniki prądu stałego, uzwojenie twornika odgrywa kluczową rolę w generowaniu pola magnetycznego, które inicjuje ruch wirnika. Gdy uzwojenie jest uszkodzone, prąd nie przepływa, co prowadzi do obniżonego poboru energii, co w tym przypadku wynosi kilka procent prądu znamionowego. W praktyce, aby rozwiązać ten problem, należy wykonać dokładną diagnostykę silnika, sprawdzając zarówno wizualnie, jak i za pomocą pomiarów elektrycznych stan uzwojenia. Standardy branżowe, takie jak IEC 60034 dotyczące maszyn elektrycznych, zalecają regularne kontrole i testy, aby zapewnić niezawodność i wydajność silników, co może zapobiec takim awariom. Ponadto, postępując zgodnie z dobrymi praktykami, warto zainwestować w sprzęt do diagnostyki, który pozwoli na wczesne wykrycie uszkodzeń uzwojeń.

Pytanie 23

Dla urządzenia zasilanego z instalacji elektrycznej trójfazowej o napięciu 400 V, maksymalna moc pobierana wynosi 10 kW. Jaką minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego należy wybrać, zakładając, że odbiorniki mają charakterystyki rezystancyjne i pomijając selektywność zabezpieczeń?

A. 20 A
B. 10 A
C. 16 A
D. 25 A
Wybór złej wartości prądu znamionowego to dość powszechny problem. Często wynika to z braku zrozumienia podstawowych zasad obliczeń związanych z mocą w instalacjach trójfazowych. Odpowiedzi typu 10 A albo 20 A są niepoprawne, bo nie uwzględniają tego, jak wygląda rzeczywisty pobór mocy i jak to się łączy z mocą, napięciem i prądem. W przypadku 10 kW, prąd powinien być przynajmniej 14,43 A. Wybierając zabezpieczenie 10 A, narażasz instalację na naprawdę spore ryzyko przeciążenia. Z kolei wybór 20 A nie jest najlepszy, bo musi chronić przed nadmiarem prądu, ale nie być zbyt wysoki, żeby nie uszkodzić instalacji. Musisz pamiętać, że przy doborze zabezpieczeń warto kierować się mocą, normami i standardami, które mówią, jak to powinno wyglądać. Pomijanie tych zasad prowadzi do ryzykownych sytuacji z instalacjami elektrycznymi.

Pytanie 24

Która z poniższych przyczyn powoduje, że przekaźnik Buchholza działa na wyłączenie transformatora?

A. Brak uziemienia punktu neutralnego
B. Brak w uzwojeniu pierwotnym
C. Zwarcie między uzwojeniem pierwotnym a wtórnym
D. Niesymetryczne obciążenie transformatora
Przerwa w uziemieniu punktu neutralnego, niesymetryczne obciążenie transformatora oraz przerwa w uzwojeniu pierwotnym to problemy, które mogą wpływać na funkcjonowanie transformatora, ale nie są bezpośrednimi przyczynami, które aktywują przekaźnik Buchholza. Przerwa w uziemieniu punktu neutralnego może prowadzić do przyrostu napięcia w systemie, co może stwarzać ryzyko dla sprzętu, jednak nie powoduje to od razu zwarcia, które jest kluczowe dla działania przekaźnika. Niesymetryczne obciążenie może prowadzić do przegrzewania się uzwojeń, a w dłuższej perspektywie do ich uszkodzenia, ale również nie jest to sytuacja, która bezpośrednio aktywuje przekaźnik Buchholza. Przerwa w uzwojeniu pierwotnym z kolei, chociaż może powodować zakłócenia w pracy transformatora, nie prowadzi do gwałtownych zmian przepływu oleju, co jest kluczowe dla reakcji przekaźnika. Istotnym błędem myślowym jest pomylenie symptomów uszkodzeń transformatora z jego przyczynami. Dobrą praktyką jest regularne monitorowanie parametrów pracy transformatora oraz wdrażanie systemów zabezpieczeń, takich jak przekaźnik Buchholza, które są projektowane do reakcji na konkretne i krytyczne warunki, a nie na ogólne problemy. Zrozumienie, jakie konkretne sytuacje powodują działanie zabezpieczeń, jest kluczowe w skutecznej diagnostyce i konserwacji urządzeń elektroenergetycznych.

Pytanie 25

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
B. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
C. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
Zrozumienie procedur bezpieczeństwa przed pracami przy instalacjach elektrycznych jest kluczowe dla uniknięcia niebezpieczeństw. W sytuacji, gdy najpierw potwierdzamy brak napięcia lub uziemiamy instalację przed zabezpieczeniem jej przed powtórnym załączeniem, narażamy się na poważne ryzyko. Potwierdzenie braku napięcia jest ważnym krokiem, ale jego wcześniejsze wykonanie bez odpowiednich zabezpieczeń może prowadzić do sytuacji, w której instalacja zostanie przypadkowo załączona podczas wykonywania prac. Z tego powodu, nie jest wystarczające jedynie potwierdzenie braku napięcia, ponieważ w tym momencie pracujący elektryk może być narażony na kontakt z energią elektryczną. Uziemienie systemu elektrycznego przed zabezpieczeniem przed załączeniem również nie jest właściwą praktyką; uziemienie powinno być ostatnim krokiem, aby zapewnić, że wszelkie ewentualne pozostałe ładunki są odprowadzone, ale nie przed podjęciem odpowiednich środków ostrożności. Kluczowe jest, aby zawsze najpierw zastosować blokady, które fizycznie uniemożliwiają włączenie zasilania, a następnie upewnić się o braku napięcia, co pozwala na bezpieczne przeprowadzenie dalszych działań. Tego rodzaju zaniedbanie w przestrzeganiu kolejności działań może prowadzić do tragicznych wypadków oraz poważnych konsekwencji zdrowotnych dla osób wykonujących prace w instalacjach elektrycznych.

Pytanie 26

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 10 kΩ
B. 50 kΩ
C. 25 kΩ
D. 75 kΩ
Wybór wartości rezystancji mniejszej niż 50 kΩ, jak 25 kΩ, 75 kΩ czy 10 kΩ, wynika z niewłaściwego rozumienia zasad ochrony przeciwporażeniowej. Rezystancja na poziomie 25 kΩ jest zdecydowanie zbyt niska dla urządzeń o napięciu 400 V, co może prowadzić do nieakceptowalnego ryzyka porażenia prądem. Niższe wartości oznaczają, że w przypadku awarii izolacji, prąd może przepływać do ziemi, co stwarza poważne zagrożenie dla operatorów. Z kolei wartość 75 kΩ, choć może wydawać się bezpieczna, jest niewystarczająca w kontekście niektórych norm, które jednoznacznie wskazują na 50 kΩ jako minimalny wymagany standard dla izolacji. W przypadku 10 kΩ, jest to wręcz niebezpieczne, ponieważ taka rezystancja zwiększa ryzyko przepływu prądu przez ciało człowieka w sytuacjach awaryjnych. Wartości rezystancji muszą być zgodne z zaleceniami norm, aby zapewnić odpowiednią ochronę przed niebezpieczeństwem elektrycznym. Pamiętajmy, że ochrona przeciwporażeniowa to nie tylko odpowiednie urządzenia, ale również zapewnienie właściwych warunków instalacyjnych i regularne kontrole ich stanu. Niewłaściwe podejście do tego zagadnienia może prowadzić do krytycznych sytuacji w miejscach pracy.

Pytanie 27

Jakiego składnika nie może zawierać przewód zasilający rozdzielnię główną w pomieszczeniu przemysłowym, które jest niebezpieczne pod kątem pożarowym?

A. Pancerza stalowego
B. Powłoki polietylenowej
C. Zewnętrznego oplotu włóknistego
D. Żył aluminiowych
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem dla kabel zasilający rozdzielnicę główną w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod względem pożarowym. Takie pomieszczenia wymagają zastosowania materiałów, które są odporne na działanie wysokich temperatur oraz ognioodporne. Oplot włóknisty, choć może być stosowany w mniej ryzykownych warunkach, nie spełnia wymagań dotyczących odporności na ogień. W praktyce oznacza to, że w przypadku pożaru, oplot włóknisty mógłby się szybko zapalić i przyczynić się do rozprzestrzenienia ognia. Aby zapewnić bezpieczeństwo, kabel w pomieszczeniach niebezpiecznych powinien być wykonany z materiałów, które są zgodne z normami, takimi jak PN-EN 60529 czy PN-EN 60332, które definiują wymagania dotyczące ochrony przed ogniem i wysoką temperaturą. Przykładem odpowiedniego rozwiązania są kable zasilające z pancerzem stalowym, które nie tylko chronią przed uszkodzeniami mechanicznymi, ale również mają właściwości ognioodporne, co czyni je idealnym wyborem dla rozdzielnic w krytycznych środowiskach przemysłowych.

Pytanie 28

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. Około 830 Ω
B. 4 000 Ω
C. Około 1660 Ω
D. 2 000 Ω
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 29

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 1 A
B. 4 A
C. 3 A
D. 2 A
Wybór niewłaściwego zakresu pomiarowego amperomierza może wynikać z kilku błędnych założeń. Przede wszystkim, niektóre odpowiedzi mogą sugerować, że natężenie prądu będzie znacznie niższe niż w rzeczywistości, co jest wynikiem nieprawidłowego zrozumienia wzorów związanych z mocą oraz współczynnikiem mocy. Na przykład, wybierając zakres 1 A lub 2 A, można zakładać, że wyniki pomiarów będą dostateczne, jednak w praktyce taki amperomierz mógłby ulec uszkodzeniu w przypadku przekroczenia jego maksymalnych wartości. Należy też pamiętać, że obliczana moc bierna, związana z parametrem cosα, wpływa na całkowity prąd pobierany przez silnik. Przy obliczeniu prądu, istotne jest uwzględnienie rzeczywistej mocy czynnej oraz sprawności silnika, co może prowadzić do błędnych wniosków, jeśli te wartości nie zostaną prawidłowo zaimplementowane w obliczeniach. W każdym przypadku przed dokonaniem wyboru sprzętu pomiarowego, warto zapoznać się z wytycznymi dotyczącymi doboru przyrządów, które zalecają wybór urządzeń z odpowiednim marginesem bezpieczeństwa. Aby uzyskać pełen obraz sytuacji, warto również zwrócić uwagę na rzeczywiste warunki pracy silnika oraz charakterystykę obciążenia, które mogą dodatkowo wpływać na wartość prądu. Dobre praktyki wymagają, aby przy doborze amperomierza brać pod uwagę rzeczywiste zastosowanie oraz możliwe zmiany w obciążeniu, co w przypadku silników elektrycznych bywa dość istotne.

Pytanie 30

Przed dokonaniem pomiarów rezystancji izolacji w elektrycznej instalacji oświetleniowej należy odciąć zasilanie, zdemontować ochronniki przeciwprzepięciowe oraz

A. zamknąć łączniki instalacyjne i wykręcić źródła światła
B. otworzyć łączniki instalacyjne i wkręcić źródła światła
C. zamknąć łączniki instalacyjne i wkręcić źródła światła
D. otworzyć łączniki instalacyjne i wykręcić źródła światła
Zamknięcie łączników instalacyjnych oraz wykręcenie źródeł światła przed przeprowadzeniem pomiarów rezystancji izolacji jest kluczowym krokiem mającym na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W przypadku otwartych łączników, istnieje ryzyko, że zwarcie może wystąpić, co może prowadzić do uszkodzeń urządzeń pomiarowych oraz stwarzać niebezpieczeństwo dla osoby wykonującej pomiar. Wykręcenie źródeł światła pozwala na minimalizację ryzyka wprowadzenia dodatkowych elementów do obwodu, które mogłyby zakłócić pomiar. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364, zaleca się, aby przed przeprowadzeniem jakichkolwiek pomiarów elektrycznych najpierw odłączyć zasilanie oraz przygotować instalację w sposób gwarantujący bezpieczeństwo. Przykładowo, w przypadku instalacji oświetleniowej, wykręcenie źródeł światła nie tylko redukuje ryzyko, ale również umożliwia dokładniejsze pomiary rezystancji izolacji, co jest kluczowe dla oceny stanu technicznego instalacji i jej zgodności z obowiązującymi przepisami.

Pytanie 31

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
B. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
C. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
D. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
Wybór niewłaściwej kolejności działań w trakcie lokalizacji uszkodzenia silnika jednofazowego z kondensatorem rozruchowym może prowadzić do poważnych konsekwencji, zarówno w zakresie bezpieczeństwa, jak i efektywności naprawy. Rozpoczynanie odkręcania pokrywy tabliczki zaciskowej bez wcześniejszego odłączenia napięcia zasilania jest rażącym naruszeniem zasad bezpieczeństwa. Taki błąd może narazić technika na porażenie prądem, nawet jeśli nie zamierza on pracować na aktywnych elementach, ze względu na potencjalny ładunek zgromadzony w kondensatorze. Z tego powodu, procedura powinna zawsze zaczynać się od odłączenia zasilania, co jest standardem w branży. Kolejnym błędem jest rozładowanie kondensatora przed dostępem do niego, co również stwarza zagrożenie, jeżeli nie jest zachowana odpowiednia kolejność działań. Oględziny powinny być przeprowadzane dopiero po zapewnieniu bezpieczeństwa, co wymaga zachowania odpowiednich norm i wskazówek producenta. Przykładowo, w wielu przypadkach standardy branżowe zalecają stosowanie osobnych narzędzi do odłączania napięcia oraz do rozładowywania kondensatorów, aby uniknąć wypadków. Niezastosowanie się do tych zasad może prowadzić do niepełnej diagnostyki uszkodzenia, a w konsekwencji do niewłaściwych napraw, co zwiększa ryzyko dalszych awarii oraz generuje niepotrzebne koszty.

Pytanie 32

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 9
B. 35
C. 12
D. 50
Odpowiedź 9 jest właściwa, ponieważ zgodnie z dokumentacją techniczno-ruchową, wirnik szlifierki oznaczony jest właśnie tym numerem. Znajomość oznaczeń w dokumentacji jest kluczowa dla efektywnego przeprowadzania konserwacji oraz napraw urządzeń. Na przykład, w przypadku wymiany uszkodzonego wirnika, technik powinien korzystać z dokumentacji, aby zidentyfikować odpowiednią część zamienną. Oznaczenia w dokumentacji są często zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie dokumentacji w zarządzaniu jakością. Używanie właściwych numerów oznaczeń pozwala na przyspieszenie procesu naprawy i minimalizację przestojów w pracy. Również, dla techników i inżynierów, umiejętność szybkiego lokalizowania i identyfikowania części przy pomocy oznaczeń jest niezbędna w codziennej pracy, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Wybierz odpowiedni wyłącznik nadprądowy do ochrony przed przeciążeniem w obwodzie jednofazowym o napięciu znamionowym 230 V, z którego jednocześnie będą zasilane grzejnik oporowy o mocy nominalnej 2 kW oraz chłodziarka o mocy nominalnej 560 W i współczynniku mocy cos ? = 0,7?

A. C10
B. C20
C. B16
D. B10
Wybranie wyłącznika nadprądowego B16 jest prawidłowe, ponieważ zapewnia on odpowiednią ochronę dla obwodu jednofazowego o napięciu znamionowym 230 V, w którym zasilane są grzejnik oporowy o mocy 2 kW oraz chłodziarka o mocy 560 W. Łączna moc obciążenia wynosi 2 kW + 0,56 kW = 2,56 kW. Aby obliczyć prąd, możemy skorzystać z wzoru I = P / U, gdzie P to moc, a U to napięcie. Prąd obliczamy: I = 2560 W / 230 V = 11,13 A. Wobec powyższego, wyłącznik B16, który ma nominalny prąd 16 A, jest odpowiedni, ponieważ pozostawia wystarczający margines na przypadkowe przeciążenia. Zastosowanie wyłącznika z wyższym prądem, jak C20, może prowadzić do braku ochrony przed przeciążeniem, co z kolei naraża instalację na uszkodzenia. W praktyce, wyłącznik B16 jest standardowo stosowany w obwodach z urządzeniami o podobnych parametrach, co potwierdzają normy PN-EN 60898, które precyzują zasady doboru zabezpieczeń. Zastosowanie wyłącznika o zbyt wysokim prądzie znamionowym mogłoby prowadzić do uszkodzeń urządzeń zasilanych w wyniku braku odpowiedniej ochrony w przypadku zwarcia lub przeciążenia.

Pytanie 35

Jakie styczniki z podanych kategorii należy zainstalować przy modernizacji szafy sterowniczej, która zasila maszyny napędzane silnikami indukcyjnymi klatkowym?

A. DC-2
B. AC-3
C. AC-1
D. DC-4
Styczniki klasy AC-3 są odpowiednie do pracy z silnikami indukcyjnymi klatkowym, ponieważ są zaprojektowane do częstości załączania i rozłączania tych urządzeń. Klasa AC-3 pozwala na obsługę prądu rozruchowego silnika, który w momencie uruchomienia może być od 5 do 7 razy wyższy od nominalnego prądu roboczego. Styczniki te zapewniają również odpowiednie zabezpieczenie przed przeciążeniem oraz zwarciami, co jest niezwykle istotne w kontekście bezpieczeństwa i niezawodności pracy maszyn. W praktyce, w modernizowanych szafach sterowniczych stosuje się styczniki AC-3 do wyłączania i włączania silników, co pozwala na efektywne zarządzanie ich pracą oraz minimalizację ryzyka uszkodzeń. Dobrą praktyką jest również stosowanie dodatkowych zabezpieczeń, takich jak termiczne i elektromagnetyczne, które można zintegrować z systemem sterowania, aby zwiększyć poziom ochrony urządzeń. Zgodność ze standardami IEC 60947-4-1 potwierdza, że styczniki AC-3 są odpowiednie do aplikacji związanych z silnikami indukcyjnymi.

Pytanie 36

Który z wymienionych materiałów eksploatacyjnych nie jest konieczny do wykorzystania przy przezwajaniu trójfazowego silnika indukcyjnego o mocy 7,5 kW?

A. Izolacja żłobkowa
B. Drut nawojowy
C. Lakier izolacyjny
D. Łożysko igiełkowe
Łożysko igiełkowe nie jest materiałem, który musi być wykorzystany podczas przezwajania trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego funkcja dotyczy głównie mechaniki silnika, a nie jego uzwojeń. Proces przezwajania koncentruje się na wymianie drutu nawojowego, lakieru izolacyjnego oraz izolacji żłobkowej, które mają kluczowe znaczenie dla funkcjonowania i wydajności silnika. Drut nawojowy jest niezbędny do odtworzenia uzwojeń silnika, a jego parametry, takie jak przekrój i materiał, muszą być dobierane zgodnie z wymaganiami mocy i napięcia. Lakier izolacyjny pełni istotną rolę w ochronie uzwojeń przed wilgocią i uszkodzeniami mechanicznymi, natomiast izolacja żłobkowa jest niezbędna do zapewnienia odpowiedniej separacji między uzwojeniami a rdzeniem silnika, co zapobiega zwarciom. Właściwe dobieranie tych materiałów zgodnie z normami, jak IEC 60034, zapewnia długotrwałe i efektywne działanie silnika.

Pytanie 37

Jak wpłynie na wartość mocy generowanej przez elektryczny grzejnik, jeśli długość jego spirali grzejnej zostanie skrócona o 50%, a napięcie zasilające pozostanie niezmienne?

A. Zmniejszy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zwiększy się dwukrotnie
D. Zmniejszy się czterokrotnie
Gdy skracasz długość spirali grzejnej w grzejniku elektrycznym o połowę, to ma to spory wpływ na opór elektryczny. Zgodnie z prawem Ohma, im krótszy przewodnik, tym jego opór jest mniejszy. Więc jak długość spirali zmniejszamy, mamy też mniejszy opór, co automatycznie zwiększa naszą moc. Wzór na moc grzejnika to P = U²/R, więc jak R spada o połowę, to P rośnie dwa razy, zakładając, że napięcie U zostaje takie samo. Na przykład, jeśli miałeś grzejnik na 1000 W, to po skróceniu spirali do 2000 W to już nie taka niespodzianka. Tego typu zmiany są istotne, bo prowadzą do lepszej efektywności energetycznej i lepszego używania nowoczesnych materiałów w grzejnikach. Takie rozwiązania pozwalają na szybsze nagrzewanie pomieszczeń, co jest mega praktyczne w codziennym użytkowaniu.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.