Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 listopada 2025 20:29
  • Data zakończenia: 13 listopada 2025 20:52

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. skutecznych
B. krokowych
C. dotykowych
D. rażeniowych
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 2

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Niepalność
B. Zwiększenie wytrzymałości mechanicznej
C. Odporność na olej
D. Odporność na ciepło
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 3

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na załączonym wyłączniku
B. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
C. Naciskając przycisk TEST na wyłączonym wyłączniku
D. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 4

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. B25
B. C20
C. C16
D. D10
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 5

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru zabezpieczeń i urządzeń
B. doboru oraz oznaczenia przewodów
C. układu tablic informacyjnych i ostrzegawczych
D. wartości natężenia oświetlenia w miejscach pracy
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 6

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Nożem monterskim
B. Wkrętakiem
C. Kluczem płaskim
D. Neonowym wskaźnikiem napięcia
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 7

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
D. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
Wskazanie, że instalacja elektryczna nie musi być poddawana konserwacji w sytuacjach, gdy stwierdzone zostało uszkodzenie instalacji, jest błędne. W rzeczywistości, jakiekolwiek uszkodzenie instalacji elektrycznej, takie jak przetarte kable czy luźne połączenia, powinno niezwłocznie skutkować podjęciem działań naprawczych. Ignorowanie takich uszkodzeń może prowadzić do poważnych zagrożeń, w tym ryzyka pożaru czy porażenia prądem. Podobnie, jeśli eksploatacja instalacji stwarza zagrożenie dla bezpieczeństwa obsługi lub otoczenia, konieczne jest przeprowadzenie niezwłocznych działań konserwacyjnych lub naprawczych. W przypadku, gdy stan techniczny instalacji jest zły lub wartości parametrów odbiegają od tych określonych w dokumentacji, również powinno się przeprowadzić niezbędne kontrole i naprawy. Ignorowanie tych stanów prowadzi nie tylko do obniżenia efektywności działania instalacji, ale również naraża osoby korzystające z tych instalacji na potencjalne niebezpieczeństwo. Kluczowe jest, aby pamiętać o regularnych przeglądach i konserwacji instalacji, zgodnych z normami branżowymi, co przyczyni się do zwiększenia bezpieczeństwa i długowieczności systemów elektrycznych.

Pytanie 8

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 4 mm2
B. 10 mm2
C. 2,5 mm2
D. 1,5 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 9

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DYc 750
B. DY 700
C. DY 100
D. DYc 150
Odpowiedzi oznaczone jako DYc 150, DY 700 oraz DY 100 nie są odpowiednimi wyborami do warunków opisanych w pytaniu. Przewody DYc 150, mimo że są elastyczne, nie są przystosowane do pracy w wysokich temperaturach, ponieważ ich maksymalna temperatura pracy jest znacznie poniżej 100°C. Wybranie ich do instalacji w takim środowisku może prowadzić do ich uszkodzeń, co wiąże się z ryzykiem awarii elektrycznej. Odpowiedź DY 700 oznacza przewody, które nie są przystosowane do wysokotemperaturowych warunków, co czyni je nieskutecznymi w zastosowaniach, w których temperatura otoczenia przekracza 70°C. Przewody te mają ograniczenia w zakresie wytrzymałości na ciepło, co może skutkować ich degradacją w dłuższej perspektywie. Ostatnia z proponowanych odpowiedzi, DY 100, również nie jest odpowiednia, ponieważ przewody te są zaprojektowane do niskotemperaturowych aplikacji i nie spełniają wymagań dla instalacji w pomieszczeniach o temperaturze 100°C. Wybór niewłaściwych przewodów może prowadzić do poważnych konsekwencji, w tym zwiększonego ryzyka pożaru oraz przerw w zasilaniu. Właściwym podejściem jest zawsze dobór materiałów, które są zgodne z wymogami projektowymi i normami branżowymi, co zapewnia bezpieczeństwo i niezawodność systemu elektrycznego.

Pytanie 10

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Przerwa w uzwojeniu fazy W
B. Przerwa w uzwojeniu fazy V
C. Zwarcie międzyzwojowe w fazie V
D. Zwarcie międzyzwojowe w fazie W
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 11

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Świecznikowy
B. Krzyżowy
C. Dwubiegunowy
D. Schodowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 12

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza i amperomierza
B. woltomierza i amperomierza
C. omomierza oraz woltomierza
D. watomierza oraz woltomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 13

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (90 ÷ 100) %
B. (40 ÷ 60) %
C. (60 ÷ 90) %
D. (0 ÷ 10) %
Odpowiedzi takie jak (90 ÷ 100) %, (40 ÷ 60) % oraz (60 ÷ 90) % nie uwzględniają specyfiki opraw oświetleniowych V klasy. Wrażenie, że znacząca część strumienia świetlnego może być skierowana w dół, jest mylne i wynika z niepełnego zrozumienia zasad projektowania oświetlenia. Oprawy te są konstruowane z zamiarem ograniczenia emisji światła w kierunku podłogi, co jest kluczowe dla efektywności energetycznej oraz komfortu użytkowników. Odpowiedzi te sugerują, że oprawy V klasy działają podobnie jak tradycyjne oprawy oświetleniowe, co jest nieprawidłowe. W praktyce, odpowiednie wykorzystanie tych opraw polega na kierowaniu strumienia świetlnego głównie w górę, co sprzyja stworzeniu efektów iluminacyjnych oraz estetycznych, a nie oświetleniu przestrzeni roboczej. Pojęcia te mogą również wprowadzać w błąd, jeśli chodzi o zastosowanie oświetlenia w różnych kontekstach, na przykład w architekturze czy oświetleniu ulicznym, gdzie inne klasy opraw mogą być stosowane dla zapewnienia odpowiedniego poziomu jasności. Kluczowym błędem myślowym jest założenie, że większa ilość światła skierowanego w dół jest zawsze korzystna, co nie zawsze jest zgodne z zasadami efektywności oświetleniowej i ergonomii.

Pytanie 14

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (5÷10) · In
B. (2÷3) · In
C. (5÷10) · In
D. (3÷5) · In
Zakres zadziałania wyzwalaczy elektromagnetycznych samoczynnych wyłączników instalacyjnych nadprądowych typu C jest kluczowym elementem ich funkcjonowania, a błędne odpowiedzi często wynikają z niepełnego zrozumienia ich charakterystyki. Odpowiedzi sugerujące zakres (3÷5) · In i (2÷3) · In są niepoprawne, ponieważ odnoszą się do wyzwalaczy typu B, które działają w niższych krotnościach prądu znamionowego. Wyłączniki typu B są przeznaczone do obwodów, w których obciążenia nie generują dużych prądów rozruchowych, co czyni je odpowiednimi dla instalacji oświetleniowych oraz gniazd zasilających. Również odpowiedź (5÷10) · In nie jest dwukrotnie podana przez przypadek - popełniono tu błąd w prezentacji opcji, co może wprowadzać w błąd. Ważne jest, aby przy wyborze odpowiednich wyłączników nadprądowych kierować się ich charakterystyką zgodną z normami, co wpływa na bezpieczeństwo i niezawodność instalacji. Typowe błędy obejmują mylenie charakterystyki wyzwalaczy B i C, co może prowadzić do niewłaściwego doboru zabezpieczeń w obwodach, narażając instalację na nadmierne ryzyko uszkodzeń. Zrozumienie różnic między tymi typami wyzwalaczy jest kluczowe dla zapewnienia ochrony przed zwarciami oraz nadmiernym przeciążeniem, co ma bezpośrednie przełożenie na bezpieczeństwo użytkowników oraz trwałość instalacji elektrycznej.

Pytanie 15

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. analogowy omomierz
B. amperomierz oraz woltomierz
C. watomierz oraz amperomierz
D. cyfrowy watomierz
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 16

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Dwa klawisze i cztery niezależne zaciski
B. Dwa klawisze i trzy niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Jeden klawisz i trzy niezależne zaciski
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 17

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Podkładką sprężystą
B. Podkładką dystansową
C. Tuleją kołnierzową
D. Tuleją redukcyjną
Podkładka sprężysta jest kluczowym elementem w procesie zabezpieczania nakrętek przed odkręceniem, ponieważ jej konstrukcja została zaprojektowana w celu generowania siły, która przeciwdziała luzom mechanicznym. W praktyce, podkładki te wykorzystują swoją elastyczność, aby wypełnić mikrouszkodzenia na powierzchniach stykowych oraz dostarczyć dodatkowy opór przeciwko luźnieniu się połączenia w wyniku drgań, uderzeń czy zmian temperatury. Przykłady zastosowania obejmują szeroki zakres branż, od motoryzacji po budownictwo, gdzie mechanizmy narażone są na dynamiczne obciążenia. Zgodnie z normami ISO 7089 i ISO 7090, stosowanie podkładek sprężystych jest zalecane w połączeniach wymagających dużej niezawodności i trwałości, co czyni je istotnym elementem w projektowaniu konstrukcji. Dodatkowo, ich dostępność w różnych materiałach (np. stal nierdzewna, mosiądz) pozwala na dopasowanie do specyficznych warunków pracy, co zwiększa efektywność zabezpieczeń.

Pytanie 18

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. urządzenia różnicowoprądowe ochronne
B. umiejscowienie poza zasięgiem dłoni
C. separację elektryczną
D. ogrodzenia oraz obudowy
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 19

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt duże wzbudzenie silnika
B. Zbyt duży nacisk szczotek na komutator
C. Zbyt małe wzbudzenie silnika
D. Zbyt mała powierzchnia styku szczotek z komutatorem
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.

Pytanie 20

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik krokowy
B. Silnik liniowy
C. Silnik synchroniczny trójfazowy
D. Silnik indukcyjny jednofazowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 21

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YDY 5x1,5 mm2
B. YDY 5x2,5 mm2
C. YADY 5x4 mm2
D. YADY 5x6 mm2
Wybór przewodów jak YADY 5x6 mm2, YDY 5x1,5 mm2 czy YADY 5x4 mm2 nie jest najlepszym pomysłem dla B20. Przewód YADY 5x6 mm2, choć ma dużą średnicę, jest za gruby na to zabezpieczenie, co prowadzi do nieefektywnego użycia materiałów i wyższych kosztów. YDY 5x1,5 mm2, z obciążalnością tylko 16A, to niewystarczająco, co zwiększa ryzyko przeciążenia i uszkodzeń. A YADY 5x4 mm2, nawet jeśli ma podobną obciążalność, to może nie dać wystarczającego marginesu bezpieczeństwa, zwłaszcza przy większym obciążeniu. Często ludzie popełniają błąd, nie myśląc o realnych obciążeniach, które przewody będą musiały wytrzymać, albo nie znają wymogów i norm. Z mojego doświadczenia, każda instalacja powinna być dostosowana do konkretnych warunków, nie tylko obciążeń, ale i innych czynników jak temperatura czy ułożenie. Wdrażanie norm, takich jak PN-IEC 60364, jest mega istotne, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 22

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Silnik będzie zasilany prądem w przeciwnym kierunku
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 23

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. B.
B. D.
C. A.
D. C.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 24

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. rezystancji izolacji.
B. impedancji pętli zwarcia.
C. rezystancji uziemienia.
D. ciągłości przewodów.
Prawidłowa odpowiedź to rezystancja uziemienia, co zostało wskazane przez ustawienie przełącznika na pozycję "RE". Pomiar rezystancji uziemienia jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Uziemienie chroni użytkowników przed skutkami przepięć oraz zapewnia stabilność układu elektrycznego. W praktyce, pomiar rezystancji uziemienia pozwala na ocenę skuteczności systemu uziemiającego, co jest szczególnie istotne w obiektach przemysłowych, gdzie bezpieczeństwo jest kluczowe. Niskie wartości rezystancji uziemienia, zalecane w normach takich jak PN-IEC 60364-5-54, powinny wynosić poniżej 10 ohmów. Regularne pomiary są niezbędne do weryfikacji, czy system uziemiający spełnia te normy, a ich stosowanie w praktyce zapobiega zagrożeniom związanym z przepięciami i może ochronić przed pożarami czy porażeniem prądem.

Pytanie 25

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. GU10
B. G9
C. E27
D. MR11
Wybierając inne odpowiedzi, można wpaść w pułapki związane z trzonkami żarówek. Na przykład, GU10 to dość inna sprawa – to do oświetlenia punktowego i ma dwa piny. Myślenie, że wszystkie nowoczesne źródła są podobne, to pułapka, bo różnice w mocowaniach są ważne. MR11, który jest mniejszy od MR16, też ma swoją budowę i nie pasuje do E27. A z G9 bywa podobnie – ludzie myślą, że małe źródła światła są lepsze, a tak naprawdę E27 często oferuje większą wydajność. Ignorując różnice w konstrukcji trzonków, można trafić na kłopoty z dopasowaniem, a czasem trzeba dokupić coś dodatkowego. Dlatego warto znać standardy i specyfikacje, żeby dobrze dobrać żarówki i osprzęt, co się przekłada na oszczędność energii i komfort użytkowania.

Pytanie 26

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. OMYp 3×1,5 mm2
B. YDYt 3×1,5 mm2
C. YDY 3×1,5 mm2
D. LGu 3×1,5 mm2
YDYt 3×1,5 mm2, YDY 3×1,5 mm2 oraz LGu 3×1,5 mm2 to inne typy przewodów, które mają różne zastosowania, lecz nie są odpowiednie do zasilania jednofazowego odbiornika ruchomego. Przewód YDYt, będący wersją przewodu YDY z dodatkowym ekranem, przeznaczony jest głównie do instalacji stałych i nie jest przystosowany do dużych ruchów oraz narażeń mechanicznych. Stosowanie go w aplikacjach ruchomych może prowadzić do uszkodzeń mechanicznych, co z czasem może skutkować awarią lub zagrożeniem bezpieczeństwa. Podobnie, przewód YDY, mimo że jest powszechnie używany w instalacjach elektrycznych, nie zapewnia elastyczności wymaganej w przypadku przewodów zasilających mobilne urządzenia. Z kolei przewód LGu, który jest przeznaczony do instalacji wewnętrznych oraz jako przewód sygnałowy, nie spełnia standardów dotyczących zasilania urządzeń, które są narażone na ruch i zmienne warunki pracy. Użycie tych typów przewodów w aplikacjach, które wymagają mobilności, może prowadzić do ich uszkodzenia, a w konsekwencji do problemów z bezpieczeństwem i niezawodnością zasilania. Wybór niewłaściwego typu przewodu w obszarze zasilania ruchomych odbiorników elektrycznych jest typowym błędem, który wynika z braku zrozumienia różnic pomiędzy przewodami przeznaczonymi do instalacji stałych i mobilnych.

Pytanie 27

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Żarowe.
B. Wyładowcze wysokoprężne.
C. Wyładowcze niskoprężne.
D. Półprzewodnikowe.
Wybór źródła światła wyładowczego niskoprężnego, żarowego lub wyładowczego wysokoprężnego jest błędny z kilku powodów. Źródła wyładowcze niskoprężne, takie jak lampy fluorescencyjne, wymagają odpowiednich warunków ciśnienia, aby generować światło, co jest zupełnie inne niż zasada działania źródeł półprzewodnikowych. Te lampy są również mniej efektywne energetycznie, a ich żywotność jest znacznie krótsza w porównaniu do źródeł LED. Źródła żarowe działają na zasadzie podgrzewania włókna, co prowadzi do znaczących strat energii w postaci ciepła, a ich niska efektywność sprawia, że są mniej preferowane w nowoczesnych zastosowaniach. Wyładowcze wysokoprężne lampy, chociaż bardziej efektywne niż ich niskoprężne odpowiedniki, mają ograniczone zastosowanie w porównaniu do technologii LED, a ich konstrukcja oraz waga mogą być problematyczne w wielu aplikacjach. Często błędne założenia wynikają z nieznajomości różnic technicznych między tymi klasami źródeł światła oraz ich zastosowaniami w praktyce. Współczesne normy dotyczące oświetlenia, takie jak EN 12464-1, zwracają uwagę na znaczenie efektywności energetycznej oraz jakości światła, co wyklucza tradycyjne technologie na rzecz bardziej innowacyjnych rozwiązań, jak diody LED.

Pytanie 28

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 10 mA
B. 30 mA
C. 300 mA
D. 100 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 29

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Przesunięcie miejsc montażu opraw oświetleniowych
B. Instalacja nowych punktów świetlnych
C. Wymiana uszkodzonych gniazd wtyczkowych
D. Zamiana zużytych urządzeń na nowe
Zmiana miejsc zamontowania opraw oświetleniowych, montaż nowych wypustów oświetleniowych oraz wymiana odbiorników energii elektrycznej na nowe to czynności, które nie należą do prac konserwacyjnych, lecz do prac instalacyjnych i modernizacyjnych. Prace konserwacyjne koncentrują się na utrzymaniu istniejącej instalacji w dobrym stanie, co obejmuje m.in. naprawy, wymianę uszkodzonych elementów czy przeglądy techniczne. Zmiana lokalizacji opraw oświetleniowych czy montaż nowych wypustów wiąże się z modyfikacją struktury instalacji, co wymaga zupełnie innego podejścia i często jest związane z koniecznością uzyskania odpowiednich zezwoleń oraz wykonania projektu technicznego. Podobnie, wymiana odbiorników energii elektrycznej na nowe wiąże się z ich odpowiednim doborem oraz z zapewnieniem, że instalacja elektryczna jest przystosowana do nowych wymagań. Często mylnie przyjmuje się, że każda czynność związana z elektrycznością należy do prac konserwacyjnych, jednakże zgodnie z najlepszymi praktykami branżowymi należy dbać o wyraźne rozgraniczenie tych dwóch rodzajów aktywności, aby zapewnić bezpieczeństwo oraz prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 30

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
B. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
D. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
Wprowadzenie przewodu YDYt 3×2,5 zamiast ADYt 3×2,5 wiąże się z koniecznością zrozumienia różnic w ich konstrukcji i zastosowaniu. Przewody ADYt, będące przewodami aluminiowymi, mają ograniczone właściwości mechaniczne i elektryczne w porównaniu do ich miedziowych odpowiedników. Zmniejszenie wartości prądu dopuszczalnego długotrwale, jak sugerują niektóre odpowiedzi, jest wynikiem mylnego pojmowania właściwości materiałów. Przewody YDYt, wykonane z miedzi, mają znacznie lepsze przewodnictwo elektryczne, co oznacza, że mogą przewodzić większe prądy bez ryzyka przegrzania. Wartości rezystancji izolacji są także kluczowe przy ocenie jakości przewodu; błędne założenie, że wymiana na przewód YDYt zmniejsza tę rezystancję, jest niezgodne z rzeczywistością. Wyższa rezystancja izolacji w przewodach YDYt przyczynia się do ich większej niezawodności i odporności na czynniki atmosferyczne. Ponadto, w praktyce stosowanie przewodów miedziowych w miejscach o dużym obciążeniu prądowym jest normą, a ich zastosowanie w instalacjach elektrycznych zgodnych z normami IEC oraz PN zwiększa bezpieczeństwo i efektywność energetyczną. Zatem, przy wyborze przewodów elektrycznych, kluczowe jest zrozumienie ich specyfikacji oraz warunków, w jakich będą eksploatowane, aby uniknąć nieporozumień związanych z ich parametrami.

Pytanie 31

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 450/750 V
B. 300/500 V
C. 300/300 V
D. 600/1000 V
Wybór napięcia znamionowego izolacji przewodów w instalacjach trójfazowych jest kluczowym aspektem zapewniającym bezpieczeństwo i niezawodność systemu. Przewody o napięciach 300/500 V oraz 300/300 V są niewystarczające dla instalacji 230/400 V, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia izolacji, zwarcia, a nawet pożary. Napięcie 300/500 V jest stosowane w mniej wymagających instalacjach, gdzie nie występują znaczące różnice potencjałów ani długotrwałe obciążenia, co jest nieadekwatne w kontekście instalacji trójfazowych. Napięcie 300/300 V jest jeszcze bardziej niewłaściwe, ponieważ nie zapewnia wystarczającej ochrony w przypadku awarii, co może skutkować niebezpiecznymi sytuacjami. Przewody o napięciu 450/750 V są projektowane tak, aby wytrzymały znacznie większe obciążenia oraz stresy mechaniczne, co czyni je bardziej odpornymi na uszkodzenia i wydłuża ich żywotność. Wybór niewłaściwej wartości napięcia izolacji często wynika z niepełnego zrozumienia norm oraz wymagań dotyczących bezpieczeństwa w instalacjach elektrycznych. Projektanci i wykonawcy muszą być świadomi, że niedostosowanie przewodów do standardów może prowadzić do tragicznych w skutkach wypadków oraz poważnych strat materialnych.

Pytanie 32

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Kontrola braku zwarć międzyzwojowych
B. Weryfikacja stanu szczelin komutatora
C. Wyważenie
D. Pomiar oporu izolacji
Pomiar rezystancji izolacji jest niezbędnym działaniem w utrzymaniu maszyn elektrycznych, jednak nie należy do oględzin wirnika maszyny komutatorowej w ścisłym tego słowa znaczeniu. Izolacja wirników ma na celu zabezpieczenie przed przebiciem i zwarciami, ale nie odnosi się bezpośrednio do stanu mechanicznego wirnika. Również sprawdzenie braku zwarć międzyzwojowych jest istotne, lecz odnosi się do analizy stanu uzwojeń wirnika, a nie do oględzin wycinków komutatora. W przypadku wirników komutatorowych, zwarcia międzyzwojowe mogą przyczynić się do uszkodzeń, jednak podczas oględzin kluczowym jest skupienie się na samym komutatorze, a zwłaszcza na jego wycinkach. Wyważenie wirnika dotyczy jego dynamicznej równowagi podczas pracy, co również nie jest bezpośrednio związane z oględzinami stanu komutatora. W praktyce, nieprawidłowe podejście do oceny stanu wirnika może prowadzić do niewłaściwych wniosków i potencjalnych awarii. Właściwa interpretacja czynności związanych z konserwacją i oględzinami wirnika jest kluczowa dla jego efektywnej pracy oraz długowieczności systemu, a zaniedbania w tym zakresie mogą prowadzić do kosztownych awarii.

Pytanie 33

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. amperomierzem
B. omomierzem
C. watomierzem
D. woltomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 34

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Miedź
B. Brąz
C. Aluminium
D. Stal
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 35

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.
A. 0,74%
B. 6,10%
C. 0,07%
D. 0,62%
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 36

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 304 25-30-AC
B. P 312 B-16-30-AC
C. P 302 25-30-AC
D. P 344 C-16-30-AC
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 37

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Samozaciskową.
B. Gwintową.
C. Śrubową.
D. Skrętną.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 38

Przewód oznaczony symbolem PEN to przewód

A. ochronny
B. ochronno-neutralny
C. uziemiający
D. wyrównawczy
Symbol PEN (Protective Earth and Neutral) oznacza przewód ochronno-neutralny, który łączy w sobie funkcje przewodu neutralnego (N) oraz przewodu ochronnego (PE). Jest on stosowany w instalacjach elektrycznych, zwłaszcza w systemach TN-C, aby zapewnić zarówno przewodnictwo prądu roboczego, jak i ochronę przed porażeniem elektrycznym. W praktyce, przewód PEN odgrywa kluczową rolę w bezpieczeństwie instalacji, ponieważ umożliwia skuteczne uziemienie i jednocześnie zapewnia powrót prądu do źródła. W przypadku awarii, przewód ochronny automatycznie przejmuje funkcję przewodu neutralnego, co minimalizuje ryzyko porażenia prądem. Zgodnie z normami, takimi jak PN-IEC 60439, instalacje muszą być projektowane i wykonywane z uwzględnieniem zasady, że przewód ochronno-neutralny powinien być odpowiednio oznakowany oraz dobrze izolowany. Praktyczne zastosowanie przewodu PEN można zaobserwować w budynkach mieszkalnych, gdzie często łączy się go z systemami uziemiającymi dla zwiększenia bezpieczeństwa użytkowników.

Pytanie 39

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik priorytetowy.
B. Ogranicznik przepięć.
C. Ogranicznik mocy.
D. Wyłącznik ciśnieniowy.
Odpowiedź jest trafna! Na tym rysunku widzimy urządzenie elektryczne, które ma oznaczenia związane z mocą, takie jak Pm. Ogranicznik mocy odgrywa naprawdę ważną rolę w nowoczesnych instalacjach elektrycznych. Jego zadaniem jest pilnowanie i regulowanie, ile energii zużywamy, co pomaga uniknąć przepięć i przeciążeń. W praktyce, takie urządzenia często spotykamy w obiektach komercyjnych i przemysłowych, gdzie ryzyko przekroczenia przydzielonej mocy jest spore. Dzięki temu, osoby zarządzające instalacjami mogą lepiej kontrolować zużycie prądu, co przekłada się na niższe koszty i większe bezpieczeństwo. Co więcej, ograniczniki mocy muszą być zgodne z europejskimi normami, jak na przykład EN 61000, które mówią o jakości energii elektrycznej oraz o ochronie instalacji przed napięciami, które są za wysokie.

Pytanie 40

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TN-C
B. IT
C. TT
D. TN-S
Wybór innych układów sieciowych, takich jak IT, TN-S i TT, jest nietrafiony z kilku powodów. W układzie IT, który charakteryzuje się izolowanym systemem zasilania, nie występuje przewód PEN, ponieważ nie ma potrzeby łączenia funkcji ochronnych i neutralnych. Ten system jest często stosowany w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale, ponieważ w przypadku awarii jednego z fazowych przewodów, pozostałe mogą dalej funkcjonować bez przerwy. Układ TN-S natomiast odseparowuje przewody ochronne (PE) od przewodów neutralnych (N), co zwiększa bezpieczeństwo, ale wymaga większej liczby przewodów, co może być mniej efektywne kosztowo. Z kolei układ TT to inny system, w którym przewód ochronny jest oddzielony od systemu neutralnego, co oznacza, że w przypadku uszkodzenia nie jest możliwe skorzystanie z przewodu PEN. Takie rozwiązanie może być stosowane w sytuacjach, gdzie występują wysokie wymagania dotyczące bezpieczeństwa, ale wiąże się z większym ryzykiem porażenia elektrycznego. W praktyce, wybór odpowiedniego układu sieciowego powinien być uzależniony od specyficznych potrzeb oraz warunków, w jakich będzie funkcjonować instalacja elektryczna. Warto zatem zrozumieć różnice pomiędzy tymi układami, aby skutecznie dobierać rozwiązania odpowiednie dla konkretnego zastosowania.