Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 2 lutego 2026 16:49
  • Data zakończenia: 2 lutego 2026 17:03

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas montażu suchych tulei cylindrowych w korpusie silnika powinno się

A. ostrożnie wbijać tuleję gumowym młotkiem
B. umieścić uszczelki pomiędzy dolną częścią tulei a korpusem
C. nasmarować olejem miejsca styku tulei z korpusem
D. wciskać tuleję przy użyciu prasy lub specjalnego narzędzia
Wkładanie suchych tulei cylindrowych w kadłub silnika to proces wymagający precyzji i zastosowania odpowiednich narzędzi. Użycie prasy lub specjalnego przyrządu do wciskania tulei zapewnia równomierne i kontrolowane umiejscowienie tulei w kadłubie. Tego typu narzędzia pozwalają uniknąć deformacji lub uszkodzeń tulei, które mogą wystąpić przy użyciu młotka, zwłaszcza jeśli siła uderzenia nie jest równomierna. W praktyce, prawidłowe umiejscowienie tulei jest kluczowe dla osiągnięcia odpowiednich parametrów pracy silnika, takich jak ciśnienie i szczelność cylindrów. Dodatkowo, takie podejście minimalizuje ryzyko powstania pęknięć materiału oraz poprawia wydajność i trwałość silnika. W branży motoryzacyjnej oraz przemysłowej obowiązują standardy jakości, które zalecają stosowanie profesjonalnych narzędzi w procesach montażowych, co czyni tę metodę najlepszym wyborem.

Pytanie 2

Hałas, który występuje wyłącznie podczas zmiany biegów w skrzyni biegów manualnej, jest wynikiem uszkodzenia

A. łożysk kół jezdnych
B. przegubów
C. satelitów
D. synchronizatorów
Synchronizatory w manualnych skrzyniach biegów są mega ważne, bo pomagają w płynnej zmianie biegów. Dzięki nim prędkość obrotowa wałka napędowego dostosowuje się do prędkości trybu, na który chcemy przełączyć. Jak synchronizatory są uszkodzone, to może być głośno podczas zmiany biegów, bo zęby biegów nie zazębiają się tak jak trzeba. Na przykład, może być tak, że próbujesz wrzucić drugi bieg, a tu nagle słyszysz hałas - to może być znak, że synchronizator ma problem. Dlatego warto regularnie sprawdzać stan tych elementów, bo to dobra praktyka w utrzymaniu skrzyni biegów. Dbanie o nie nie tylko zmniejsza ryzyko uszkodzeń, ale też sprawia, że jazda jest przyjemniejsza i układ napędowy dłużej posłuży. Z mojego doświadczenia, synchronizatory mogą się zużyć, szczególnie gdy auto jest intensywnie użytkowane albo biegami zmienia się w niewłaściwy sposób.

Pytanie 3

Podczas naprawy silnika mechanik zauważył biały dym wydobywający się z rury wydechowej. Co może być tego przyczyną?

A. Przegrzanie tarcz hamulcowych
B. Uszkodzenie uszczelki pod głowicą
C. Niedrożność układu paliwowego
D. Zużycie bieżnika opon
Biały dym wydobywający się z rury wydechowej samochodu jest często symptomem uszkodzenia uszczelki pod głowicą. Uszczelka ta znajduje się między blokiem silnika a głowicą cylindrów i pełni kluczową rolę w zapewnieniu szczelności komory spalania. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynu chłodzącego do komory spalania. Spalanie płynu chłodzącego w cylindrach prowadzi do powstawania białego dymu, który jest widoczny na zewnątrz przez rurę wydechową. Taka sytuacja jest nie tylko oznaką problemu, ale może prowadzić do poważniejszych uszkodzeń silnika, jeśli nie zostanie szybko naprawiona. Dobrą praktyką jest regularne sprawdzanie stanu uszczelki pod głowicą, szczególnie przy objawach takich jak biały dym lub nadmierne zużycie płynu chłodzącego. Wymiana uszczelki jest skomplikowanym zadaniem, które wymaga precyzji i odpowiednich narzędzi, dlatego zazwyczaj powinno być zlecone doświadczonemu mechanikowi. Warto także pamiętać o przestrzeganiu zaleceń producenta dotyczących momentów dokręcania śrub głowicy, co może zapobiec przyszłym problemom.

Pytanie 4

Jaką metodą wykonuje się wały korbowe stosowane w silnikach spalinowych samochodów sportowych?

A. kucia
B. odlewu
C. łączenia
D. obróbki skrawaniem
Wały korbowe w silnikach spalinowych samochodów sportowych są najczęściej wytwarzane metodą kucia ze względu na wysokie wymagania dotyczące wytrzymałości oraz odporności na zmęczenie materiału. Proces kucia pozwala uzyskać jednorodną strukturę materiału, co znacząco zwiększa jego właściwości mechaniczne. Kucie na gorąco, stosowane w produkcji wałów korbowych, umożliwia formowanie skomplikowanych kształtów, które są konieczne do prawidłowego działania silnika. Ponadto, dzięki kuciu, możliwe jest osiągnięcie wysokiej precyzji wymiarowej, co jest kluczowe w zastosowaniach wyścigowych, gdzie nawet najmniejsza różnica w tolerancjach może wpłynąć na osiągi pojazdu. W praktyce, producenci stosują materiały stalowe o dużej wytrzymałości, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, zapewniając jednocześnie długą żywotność i niezawodność komponentów. Dodatkowo, kute wały korbowe są często poddawane obróbce cieplnej w celu dalszej poprawy ich właściwości mechanicznych, co jest standardem w produkcji elementów silników wyczynowych.

Pytanie 5

Oblicz pojemność skokową silnika trzycylindrowego, mając na uwadze, że pojemność skokowa jednego cylindra wynosi 173,4 cm3?

A. 346,8 cm3
B. 173,4 cm3
C. 520,2 cm3
D. 693,6 cm3
Pojemność skokowa silnika to całkowita objętość, jaką zajmują wszystkie cylindry podczas jednego cyklu pracy. Dla trzycylindrowego silnika, gdzie pojemność jednego cylindra wynosi 173,4 cm3, objętość skokowa oblicza się, mnożąc tę wartość przez liczbę cylindrów. Wzór na obliczenie pojemności skokowej silnika to: V = V_cylindrów * n, gdzie V_cylindrów to pojemność jednego cylindra, a n to liczba cylindrów. W tym przypadku mamy: V = 173,4 cm3 * 3 = 520,2 cm3. Zrozumienie pojemności skokowej jest kluczowe w projektowaniu silników, ponieważ wpływa na moc, moment obrotowy oraz efektywność paliwową. Wyższa pojemność skokowa zazwyczaj oznacza większą moc, ale również może wpłynąć na zużycie paliwa. Projektanci silników często dążą do optymalizacji pojemności skokowej w celu osiągnięcia najlepszej równowagi między wydajnością a emisjami. Przykładowo, w silnikach sportowych często stosuje się cylindry o większej pojemności, aby zwiększyć moc przy zachowaniu odpowiednich standardów emisji spalin.

Pytanie 6

Jakim narzędziem dokonuje się pomiaru zużycia otworu tulei cylindrowej?

A. szczelinomierzem
B. liniałem krawędziowym
C. suwmiarką
D. średnicówką mikrometryczną
Średnicówka mikrometryczna jest narzędziem pomiarowym o wysokiej precyzji, które służy do pomiaru średnic otworów, tulei cylindrowych oraz innych elementów mechanicznych. Jej konstrukcja pozwala na dokonanie pomiarów z dokładnością do setnych lub nawet tysięcznych części milimetra. W przypadku tulei cylindrowej, gdzie precyzyjne dopasowanie elementów jest kluczowe dla prawidłowego funkcjonowania maszyny, zastosowanie średnicówki mikrometrycznej jest najlepszym wyborem. Przykładowo, w produkcji silników samochodowych, gdzie tuleje cylindrowe muszą spełniać rygorystyczne normy, pomiar przy użyciu średnicówki mikrometrycznej zapewnia odpowiednią jakość i trwałość podzespołów. Dodatkowo, zgodnie z normami ISO, precyzyjne pomiary i sprawdzanie tolerancji wymiarowych są integralną częścią procesu kontrolnego w inżynierii mechanicznej, co podkreśla znaczenie stosowania odpowiednich narzędzi do pomiaru.

Pytanie 7

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
B. wzmocnienie struktury cylindra, który jest chłodzony cieczą
C. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
D. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
Użebrowanie cylindra w silniku chłodzonym powietrzem ma kluczowe znaczenie dla efektywnego odprowadzania ciepła generowanego podczas pracy silnika. W silnikach chłodzonych powietrzem, gdzie nie ma systemu chłodzenia cieczą, cykl odprowadzania ciepła musi opierać się głównie na konwekcji i przewodnictwie cieplnym. Żebra zwiększają powierzchnię kontaktu między cylindrem a otaczającym powietrzem, co pozwala na szybsze i skuteczniejsze rozpraszanie ciepła. Przykładem zastosowania użebrowania cylindra są silniki w motocyklach oraz niektórych modelach silników lotniczych, gdzie efektywne chłodzenie jest kluczowe dla osiągów i niezawodności. W branży motoryzacyjnej i lotniczej, stosowanie użebrowania jest zgodne z najlepszymi praktykami inżynieryjnymi, co zapewnia nie tylko wydajność, ale także dłuższą żywotność komponentów silnika. Warto również zauważyć, że odpowiednie projektowanie użebrowania ma istotny wpływ na aerodynamikę silnika, co w rezultacie może poprawić ogólną efektywność energetyczną pojazdu.

Pytanie 8

Czas wymiany uszczelki podgłowicowej w silniku wynosi 2,3 rbg, a całkowity koszt części zamiennych to 339,00 zł netto. Jaki jest całkowity koszt brutto naprawy (VAT 23%), przy założeniu, że cena za 1 rbg to 70,00 zł netto?

A. 500,00 zł
B. 615,00 zł
C. 600,00 zł
D. 595,00 zł
Aby obliczyć całkowity koszt naprawy, należy uwzględnić zarówno koszt pracy, jak i koszt części zamiennych. Czas wymiany uszczelki podgłowicowej wynosi 2,3 roboczogodziny (rbg), co przy stawce 70,00 zł netto za rbg daje 161,00 zł (2,3 rbg * 70,00 zł/rbg). Następnie dodajemy do tego koszt części zamiennych, który wynosi 339,00 zł netto. Łączny koszt netto naprawy wynosi więc 500,00 zł (161,00 zł + 339,00 zł). Aby uzyskać koszt brutto, musimy doliczyć VAT w wysokości 23%. Obliczamy VAT: 500,00 zł * 0,23 = 115,00 zł. Zatem całkowity koszt brutto wynosi 615,00 zł (500,00 zł + 115,00 zł). Tym samym, poprawna odpowiedź to 615,00 zł, co jest zgodne z praktykami w branży, gdzie zawsze należy uwzględniać VAT w kalkulacjach kosztów naprawy oraz usług. Zrozumienie tego procesu jest kluczowe dla zarządzania finansami w warsztatach samochodowych oraz dla przejrzystości w kosztorysowaniu usług.

Pytanie 9

Podczas zakupu panewek łożysk głównych wału korbowego warto zwrócić uwagę na

A. instalację tylko nowych panewek
B. właściwe osadzenie panewek względem otworów olejowych
C. zastosowanie odpowiedniego luzu montażowego umożliwiającego obrót panewek w korpusie
D. sekwencję montowanych korbowodów
Odpowiednie osadzenie panewek w stosunku do otworów olejowych jest kluczowe dla prawidłowego funkcjonowania łożysk głównych wału korbowego. Paneweczki, jako elementy współpracujące z wałem korbowym, muszą być właściwie ustawione, aby zapewnić odpowiedni przepływ oleju smarującego, co jest niezbędne dla zmniejszenia tarcia i zapobiegania zużyciu. W przypadku niewłaściwego osadzenia, możliwe są zastoje oleju, co prowadzi do przegrzewania się komponentów oraz ich przedwczesnego uszkodzenia. Praktyczne zastosowanie tej zasady obejmuje dokładne wyrównanie panewek z otworami olejowymi podczas montażu, co można osiągnąć poprzez użycie specjalnych narzędzi pomiarowych, takich jak suwmiarki czy mikrometry, które pozwalają na precyzyjne dopasowanie. Zgodnie z wytycznymi producentów silników, ważne jest również, aby przed montażem sprawdzić czystość powierzchni oraz stan panewek, co przyczynia się do ich długotrwałej eksploatacji i efektywności działania silnika.

Pytanie 10

Jakie substancje wykorzystuje się do konserwacji przegubów krzyżakowych?

A. smaru stałego
B. oleju silnikowego
C. oleju przekładniowego
D. silikonu
Smar stały jest najczęściej stosowanym środkiem do konserwacji przegubów krzyżakowych ze względu na jego zdolność do długotrwałego smarowania oraz skutecznej ochrony przed zużyciem i korozją. Przeguby krzyżakowe, które są kluczowymi elementami układów napędowych w pojazdach i maszynach, wymagają regularnego smarowania, aby zapewnić ich prawidłowe funkcjonowanie i wydajność. Smary stałe, zwłaszcza te o wysokiej lepkości i odporności na wysokie temperatury, doskonale sprawdzają się w trudnych warunkach pracy, redukując tarcie i minimalizując ryzyko uszkodzenia. W praktyce użycie smaru stałego w przegubach krzyżakowych polega na jego aplikacji w sposób zapewniający równomierne pokrycie oraz dotarcie do wszystkich ruchomych części. Zgodnie z normami branżowymi, takimi jak ISO 6743, ważne jest, aby dobierać smar odpowiedni do specyfikacji producenta, co wpływa na żywotność i efektywność pracy przegubów.

Pytanie 11

Na rysunku przedstawiony jest fragment przekładni głównej

Ilustracja do pytania
A. planetarnej.
B. walcowej.
C. ślimakowej.
D. hipoidalnej.
Wybory walcowej, ślimakowej oraz planetarnej są niepoprawne, ponieważ każda z tych konstrukcji ma różne cechy charakterystyczne, które nie odpowiadają przedstawionemu rysunkowi. Przekładnia walcowa charakteryzuje się równoległym ustawieniem osi kół zębatych, co nie jest zgodne z układem na rysunku. W przypadku przekładni ślimakowej, zęby są ułożone wzdłuż spirali, a ich działanie opiera się na połączeniu ruchu obrotowego ślimaka z kołem zębatym, co również nie znajduje odzwierciedlenia w przedstawionym fragmencie. Natomiast przekładnia planetarna, która składa się z centralnego koła zębatego, planetarnych kół zębatych oraz pierścienia, działa w zupełnie inny sposób, zapewniając różne przełożenia i momenty obrotowe, co również nie pasuje do obrazu z rysunku. Wybierając niewłaściwe odpowiedzi, można popaść w pułapkę myślenia o przekładniach tylko w kontekście ich najpopularniejszych zastosowań, zamiast zwrócić uwagę na ich specyfikę i różnice. Zrozumienie podstawowych funkcji i konstrukcji przekładni jest kluczowe dla efektywnego wyboru odpowiedniego systemu w inżynierii mechanicznej, a pomylenie typów przekładni może prowadzić do poważnych błędów w projektowaniu i eksploatacji maszyn.

Pytanie 12

Zgodnie z klasyfikacją SAE (Society of Automotive Engineers) olej 10W to olej

A. zimowy
B. wielosezonowy
C. letni
D. specjalny
Wybór odpowiedzi niewłaściwej, takiej jak 'specjalny', 'wielosezonowy' lub 'letni', wskazuje na błędne zrozumienie klasyfikacji olejów silnikowych według SAE oraz ich właściwości. Olej oznaczony jako 'specjalny' nie ma formalnej klasyfikacji w ramach standardów SAE, co może prowadzić do nieprecyzyjnych wniosków na temat jego zastosowania. Oleje wielosezonowe, choć rzeczywiście posiadają oznaczenia z literą 'W', różnią się od olejów zimowych, ponieważ są zaprojektowane do pracy w szerokim zakresie temperatur, co nie odnosi się bezpośrednio do oleju 10W, który jest ściśle klasyfikowany jako olej zimowy. Z kolei olej 'letni' dotyczy wyłącznie oznaczeń, które nie zawierają litery 'W'; są one przeznaczone do użytkowania w wyższych temperaturach i nie są odpowiednie do pracy w mroźnych warunkach. Zrozumienie znaczenia oznaczeń lepkości i ich wpływu na wydajność silnika jest kluczowe, aby uniknąć nieodpowiednich wyborów, które mogą prowadzić do uszkodzeń silnika. Błędy w interpretacji mogą wynikać z braku wiedzy na temat wpływu temperatury na właściwości smarne oleju, co z kolei może wpłynąć na osiągi i żywotność jednostki napędowej. Właściwy dobór oleju to kluczowy element zapewnienia efektywności energetycznej i długowieczności silnika.

Pytanie 13

W przypadku zwichnięcia kończyny dolnej, jaką należy podjąć pierwszą pomoc przedlekarską?

A. ustawieniu kończyny.
B. sprawdzeniu tętna oraz oddechu.
C. nałożeniu jałowego opatrunku.
D. aplikacji zimnego okładu.
W przypadku zwichnięcia kończyny dolnej, pierwszą pomocą przedlekarską jest wykonanie chłodnego okładu. To podejście ma na celu zmniejszenie obrzęku oraz łagodzenie bólu poprzez działanie przeciwzapalne i znieczulające. Chłodzenie miejscowe powinno być stosowane w sposób ostrożny, aby uniknąć odmrożeń. Należy używać worków z lodem lub chłodnych kompresów, które są owinięte w materiał, aby nie miały bezpośredniego kontaktu ze skórą. Zastosowanie chłodnego okładu powinno trwać około 15-20 minut, a następnie można powtórzyć co 1-2 godziny w ciągu pierwszych 48 godzin po urazie. W sytuacjach, gdy podejrzewamy zwichnięcie, kluczowe jest unikanie ruchów w stawie oraz niepróbowanie nastawiania kończyny, co może prowadzić do dalszych uszkodzeń. Warto również pamiętać o tym, że po zastosowaniu okładu, pacjent powinien być niezwłocznie przewieziony do placówki medycznej w celu dalszej diagnostyki i leczenia. Stosowanie chłodzenia jest zgodne z ogólnymi zasadami pierwszej pomocy, które kładą nacisk na minimalizowanie szkód oraz podejmowanie działań uspokajających pacjenta.

Pytanie 14

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze od następnego wymiaru naprawczego, należy ją poddać regeneracji poprzez

A. nawęglanie
B. roztaczanie
C. azotowanie
D. hartowanie
Roztaczanie jest procesem mechanicznym, który polega na usuwaniu materiału z gładzi tulei cylindrowej w celu przywrócenia jej wymiarów roboczych. W przypadku gdy zużycie gładzi nie przekracza kolejnego wymiaru naprawczego, roztaczanie staje się idealnym rozwiązaniem, ponieważ pozwala na uzyskanie precyzyjnego wymiaru i poprawę jakości powierzchni. Proces ten jest szeroko stosowany w przemyśle motoryzacyjnym oraz maszynowym, gdzie konieczne jest zachowanie wysokich tolerancji wymiarowych i jakości powierzchni. Dzięki roztaczaniu można wydłużyć żywotność tulei cylindrowej, minimalizując konieczność jej całkowitej wymiany. W praktyce często stosuje się narzędzia skrawające, które są dostosowane do konkretnego materiału tulei, co zapewnia efektywność procesu oraz redukcję odpadów. Standardy branżowe, takie jak ISO 2768, wskazują na wymagania dotyczące tolerancji wymiarowych, co dodatkowo podkreśla znaczenie precyzyjnych metod naprawy, jaką jest roztaczanie. Cały proces powinien być przeprowadzany przez wykwalifikowanych specjalistów przy użyciu odpowiednich technologii, co gwarantuje bezpieczeństwo i niezawodność elementów po regeneracji.

Pytanie 15

Przedstawiony na zdjęciu przyrząd służy do

Ilustracja do pytania
A. demontażu termostatu.
B. regulacji wolnych obrotów.
C. regulacji luzów zaworowych.
D. ustawiania zapłonu.
Przedstawiony na zdjęciu przyrząd to klucz do regulacji luzów zaworowych, kluczowe narzędzie w mechanice samochodowej. Umożliwia on precyzyjne dostosowanie odstępów między elementami mechanicznymi w układzie zaworowym silnika. Właściwe ustawienie luzu zaworowego ma kluczowe znaczenie dla poprawnej pracy silnika, ponieważ niewłaściwe regulacje mogą prowadzić do zwiększonego zużycia paliwa, obniżonej mocy silnika oraz uszkodzenia zaworów. W praktyce, podczas serwisowania silników, mechanicy często korzystają z tego narzędzia, aby upewnić się, że zawory działają w optymalnych warunkach. Zgodnie z najlepszymi praktykami, regulacja luzów zaworowych powinna być dokonywana zgodnie z zaleceniami producenta, co zapewnia długowieczność silnika oraz jego efektywność. Ponadto, korzystanie z odpowiednich narzędzi pozwala na ograniczenie ryzyka błędów, które mogą powstać w wyniku manualnych regulacji bez użycia specjalistycznych przyrządów.

Pytanie 16

Jaką nazwą oznaczoną symbolem określa się technologię wykorzystywaną w produkcji opon, która umożliwia jazdę po utracie ciśnienia?

A. PAX
B. ICC
C. PDC
D. AFS
Wybór innych symboli, takich jak PDC, AFS czy ICC, nazywa się powszechnie myleniem technologii i ich zastosowań w kontekście opon samochodowych. System PDC, na przykład, nie odnosi się do technologii opon, lecz może być używany w zupełnie innych kontekstach, takich jak zarządzanie danymi. AFS, z kolei, jest często związany z systemami zapewniającymi adaptacyjne oświetlenie w pojazdach, co również nie ma bezpośredniego związku z technologią opon. Z kolei ICC może odnosić się do różnych systemów komunikacji w pojazdach, ale nie jest związany z oponami zdolnymi do jazdy po utracie ciśnienia. Te nieporozumienia mogą wynikać z braku znajomości terminologii oraz funkcji stosowanych w nowoczesnych pojazdach. Kluczowym elementem skutecznej nauki o technologiach w motoryzacji jest zrozumienie, że różne akronimy i symbole odnoszą się do specyficznych zastosowań, które nie zawsze są ze sobą powiązane. Dlatego ważne jest, aby dogłębnie zapoznać się z każdą technologią i jej faktycznym zastosowaniem, co pomoże uniknąć błędnych wniosków i poprawi ogólną wiedzę na temat innowacji w branży motoryzacyjnej.

Pytanie 17

Działanie stetoskopu opiera się na zjawisku

A. elektrycznym
B. hydraulicznych
C. grawitacyjnym
D. akustycznym
Działanie stetoskopu opiera się na zjawisku akustycznym, które jest kluczowe dla analizy dźwięków wydobywających się z ciała pacjenta. Stetoskop, poprzez swoje membrany i rurki, jest w stanie wykrywać i wzmacniać dźwięki, takie jak tonacja serca czy szmery oddechowe. Zjawisko akustyczne oznacza, że dźwięki są falami, które rozprzestrzeniają się w medium – w tym przypadku w powietrzu. Dzięki zastosowaniu stetoskopu lekarze mogą dokładnie osłuchiwać pacjentów, co jest nieodłącznym elementem diagnostyki medycznej. Przykładowo, osłuchiwanie bicia serca pozwala na wykrycie arytmii czy szmerów, które mogą wskazywać na problemy z zastawkami serca. Warto zaznaczyć, że w praktyce medycznej stosuje się różne typy stetoskopów, w tym elektroniczne, które jeszcze bardziej zwiększają czułość i jakość słyszalnych dźwięków. Stetoskop jest zatem nie tylko narzędziem, ale i nieocenionym wsparciem w diagnozowaniu i monitorowaniu stanu zdrowia pacjentów, zgodnym z najlepszymi praktykami w medycynie.

Pytanie 18

Funkcja amortyzatora w systemie zawieszenia

A. może pełnić rolę sprężyny w układzie zawieszenia
B. zapobiega odrywaniu kół od powierzchni
C. zalicza się do kategorii elementów sprężystych zawieszenia
D. wydłuża czas oscylacji sprężyny
Amortyzator w układzie zawieszenia odgrywa kluczową rolę w zapewnieniu stabilności pojazdu oraz komfortu jazdy. Jego głównym zadaniem jest kontrolowanie ruchów sprężyny, co ma na celu zapobieganie odrywaniu się kół od nawierzchni. W praktyce oznacza to, że amortyzator tłumi drgania, które pojawiają się w wyniku nierówności drogi, co z kolei pozwala na zachowanie kontaktu kół z nawierzchnią. Przykładem zastosowania amortyzatorów są pojazdy terenowe, w których odpowiednia kontrola drgań jest niezbędna do utrzymania stabilności w trudnym terenie. Warto również wspomnieć, że nowoczesne amortyzatory, takie jak amortyzatory gazowe lub aktywne, są projektowane zgodnie z najnowszymi standardami branżowymi, co pozwala na jeszcze lepsze dostosowanie do warunków drogowych i zwiększa bezpieczeństwo jazdy. Dobre praktyki w konstrukcji zawieszeń obejmują regularne sprawdzanie stanu amortyzatorów, ponieważ ich zużycie może negatywnie wpływać na osiągi pojazdu oraz komfort podróży."

Pytanie 19

W trakcie wymiany wtryskiwaczy konieczne jest również zastąpienie

A. spinek zabezpieczających przewody powrotne
B. przewodów paliwowych powrotnych
C. przewodów paliwowych wysokiego ciśnienia
D. pierścieni uszczelniających wtryskiwacze
Wymiana pierścieni uszczelniających wtryskiwaczy jest kluczowym elementem podczas serwisowania układu wtryskowego. Te niewielkie komponenty mają za zadanie zapewnienie szczelności połączenia pomiędzy wtryskiwaczem a głowicą cylindrów, co jest niezwykle istotne dla prawidłowego funkcjonowania silnika. Uszkodzone lub zużyte pierścienie mogą prowadzić do wycieków paliwa, co w efekcie może powodować nieefektywne spalanie, zwiększenie emisji spalin, a także uszkodzenia silnika. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie i wymianę tych uszczelek podczas serwisowania wtryskiwaczy, aby zapewnić ich prawidłowe działanie oraz długowieczność całego układu. Ważne jest również, aby używać wysokiej jakości zamienników, które odpowiadają specyfikacjom producenta, co zminimalizuje ryzyko awarii i zapewni optymalne parametry pracy silnika. Przykładowo, podczas wymiany wtryskiwaczy w silniku Diesla, nieprzestrzeganie zaleceń dotyczących wymiany pierścieni uszczelniających może prowadzić do kosztownych napraw związanych z uszkodzeniem pompy wtryskowej lub systemu wtryskowego.

Pytanie 20

Na rysunku przedstawiono pomiar bicia

Ilustracja do pytania
A. promieniowego tarczy hamulcowej.
B. promieniowego piasty koła.
C. osiowego tarczy hamulcowej.
D. osiowego piasty koła.
Niepoprawne odpowiedzi mogą wynikać z błędnego zrozumienia zasad pomiarów mechanicznych oraz koncepcji bicia. Odpowiedzi sugerujące pomiar osiowego tarczy hamulcowej, promieniowego tarczy hamulcowej czy osiowego piasty koła nie uwzględniają specyfiki pomiaru, który w tym przypadku koncentruje się na odchyleniach promieniowych piasty koła. Pomiar bicia osiowego dotyczy odchylenia wzdłuż osi obrotu, co oznacza, że wszelkie zmiany lub nierówności w tym obszarze mogą prowadzić do zupełnie innych problemów, takich jak niestabilność podczas hamowania. Natomiast pomiar promieniowy tarczy hamulcowej nie jest właściwy, ponieważ tarcza nie jest miejscem, gdzie dokonuje się pomiaru bicia piasty, co może skutkować mylnym wnioskiem o stanie całego układu. Często, myląc te pojęcia, można dojść do fałszywego wniosku o konieczności wymiany elementów, które są w rzeczywistości sprawne. W kontekście praktycznym, zrozumienie różnicy między tymi pomiarami jest istotne dla prawidłowej diagnostyki i konserwacji pojazdów, co w konsekwencji wpływa na bezpieczeństwo użytkowników dróg. Właściwe zrozumienie tych różnic jest kluczowe dla techników samochodowych, którzy powinni być dobrze zaznajomieni z zasadami działania układów jezdnych oraz technikami pomiarowymi, aby unikać kosztownych błędów w diagnozie.

Pytanie 21

Każdą element chromowany i niklowany w pojeździe, który został poddany konserwacji przed długoterminowym magazynowaniem, należy zabezpieczyć

A. wazeliną techniczną
B. smarem miedziowym
C. preparatem silikonowym
D. smarem litowym
Z wyborem odpowiednich preparatów do konserwacji chromowanych i niklowanych części pojazdu jest trochę tak, że trzeba znać ich właściwości i to, co mogą zrobić z metalem. Smar miedziowy, mimo że sporo ludzi go stosuje jako antykorozyjny, nie jest najlepszym pomysłem na delikatne chromowane powłoki. Może przez reakcje chemiczne doprowadzić do ich matowienia. Z kolei smar litowy, który świetnie znosi wysokie temperatury, może być zbyt lepki. Kiedy nałożysz go na chromowane części, potem ciężko się pozbyć nadmiaru, co tylko przyciąga brud. Preparaty silikonowe też nie dają takiej ochrony na metalowych powierzchniach – nie tworzą takiej bariery jak wazelina. Często ludzie mylą różne właściwości tych preparatów i przez to źle konserwują, co jeszcze bardziej przyspiesza korozję. Żeby skutecznie chronić chrom, najlepiej używać dedykowanych do tego środków, a wazelina techniczna to standard, którego warto się trzymać.

Pytanie 22

Odczuwane wibracje podczas startu pojazdu mogą świadczyć o

A. deformacji tarczy hamulcowej
B. niewyważeniu kół
C. uszkodzeniu tarczy sprzęgłowej
D. zablokowaniu systemu chłodzenia
Kiedy tarcza sprzęgłowa jest uszkodzona, możesz odczuwać nieprzyjemne drgania, jak ruszasz pojazdem. To ta część, która łączy silnik z skrzynią biegów, więc jest dość ważna. Jak tarcza się zużyje albo przegrzeje, to moc jest przenoszona nierównomiernie i to właśnie te drgania możesz odczuwać w kabinie. Przykłady? Kiedy wciśniesz pedał sprzęgła i czujesz stuk lub wibracje, to może znaczy, że czas na wymianę tarczy. W motoryzacji dobrze jest regularnie sprawdzać sprzęgło, szczególnie w autach, które jeżdżą sporo albo mają duży przebieg. Wymiana uszkodzonej tarczy jest mega istotna, żeby jazda była bezpieczna i komfortowa, a cały układ dobrze działał.

Pytanie 23

Skrót DOHC w specyfikacji technicznej silnika oznacza, że jest to silnik

A. z systemem rozrządu suwakowego
B. z systemem rozrządu górnozaworowego
C. z dwoma wałkami rozrządu umieszczonymi w głowicy
D. z wałkiem rozrządu znajdującym się w głowicy
Skrót DOHC oznacza 'Dual Overhead Camshaft', co w tłumaczeniu na język polski oznacza 'dwoma wałkami rozrządu w głowicy'. Tego rodzaju konstrukcja silnika jest powszechnie stosowana w nowoczesnych pojazdach. Zastosowanie dwóch wałków rozrządu pozwala na precyzyjne sterowanie zaworami dolotowymi i wylotowymi, co przekłada się na lepszą wydajność silnika oraz wyższe osiągi. Silniki DOHC są często bardziej efektywne pod względem zużycia paliwa oraz generują więcej mocy, szczególnie w wyższych zakresach obrotów. Dodatkowo, ta konstrukcja umożliwia zastosowanie nowoczesnych technologii, takich jak zmienne fazy rozrządu, które dodatkowo poprawiają charakterystyki silnika. Przykładem zastosowania silnika DOHC może być wiele modeli sportowych i wyścigowych, w których kluczowe są parametry dynamiczne oraz efektywność. Dzięki skomplikowanej budowie silniki te są również często bardziej responsywne na wciśnięcie pedału gazu, co ma znaczenie w motoryzacji wyczynowej.

Pytanie 24

Tempomat to system, który pozwala na utrzymanie stałej prędkości pojazdu. Który element pełni rolę jego części roboczej?

A. Nastawnik przepustnicy
B. Siłownik sprzęgła
C. Pompa hamulcowa
D. Modulator hydrauliczny
Pompa hamulcowa nie jest częścią tempomatu. Jej zadanie to generowanie ciśnienia w układzie hamulcowym, co w ogóle nie pomaga w utrzymaniu stałej prędkości. Siłownik sprzęgła też nie ma tu nic do rzeczy, bo on rozłącza napęd przy zmianie biegów, a nie działa w kontekście tempomatu. Modulator hydrauliczny również nie ma związku z utrzymywaniem prędkości, bo reguluje tylko ciśnienie w hydraulice, najczęściej w systemach ABS. Ważne jest, żeby zrozumieć, że tempomat działa na zasadzie automatycznej regulacji przepustnicy, a inne systemy nie mają znaczenia. Wiele osób myli te elementy, co może prowadzić do nieporozumień. Tempomat wymaga współpracy z silnikiem i układem napędowym, więc pozostałe komponenty są w tym przypadku nieprzydatne.

Pytanie 25

Jeśli wymiar czopów głównych wału korbowego przekracza ostatni wymiar naprawczy, jakie działania należy podjąć w stosunku do tych czopów?

A. regeneracji poprzez chromowanie elektrolityczne
B. regeneracji poprzez metalizację natryskową
C. regeneracji poprzez napawanie wibrostykowe
D. szlifowaniu na wymiar naprawczy
Odpowiedzi dotyczące regeneracji czopów głównych poprzez napawanie wibrostykowe, metalizację natryskową oraz chromowanie elektrolityczne nie są adekwatne w kontekście tego pytania. Napawanie wibrostykowe to technika, która polega na nanoszeniu materiału w postaci stopu na powierzchnię uszkodzonego elementu. Choć może być skuteczna w niektórych zastosowaniach, nie jest standardowo stosowana do czopów głównych wału korbowego, ponieważ może prowadzić do lokalnych deformacji i niejednorodności struktury materiału. Metalizacja natryskowa również nie jest optymalna w tym przypadku, ponieważ stosuje się ją w sytuacjach, gdy wymagana jest ochrona przed korozją lub poprawa właściwości tribologicznych, a nie do przywracania wymiarów. Chromowanie elektrolityczne, chociaż skuteczne w poprawie odporności na zużycie powierzchni, nie rozwiązuje problemu przerośnięcia wymiaru czopów. W każdym z tych przypadków istnieje ryzyko, że regenerowane elementy nie spełnią standardów jakości, co może prowadzić do dalszych uszkodzeń w silniku. Zastosowanie niewłaściwych metod regeneracji może także prowadzić do zwiększenia kosztów naprawy, wydłużenia czasu przestoju maszyny oraz obniżenia jej niezawodności.

Pytanie 26

Która z poniższych czynności musi być wykonana przy wymianie klocków hamulcowych?

A. Kalibracja systemu ESP
B. Ustawienie geometrii kół
C. Sprawdzenie grubości tarcz hamulcowych
D. Zmiana płynu chłodzącego
Sprawdzenie grubości tarcz hamulcowych to kluczowy krok przy wymianie klocków hamulcowych. Tarcze hamulcowe mają określoną minimalną grubość, poniżej której nie powinny być używane, ponieważ ich efektywność hamowania i zdolność do rozpraszania ciepła są znacznie ograniczone. Jeśli tarcze są zbyt cienkie, mogą się przegrzewać, co prowadzi do wydłużenia drogi hamowania i zwiększonego ryzyka awarii układu hamulcowego. Standardową praktyką jest porównanie grubości tarcz z wartościami podanymi przez producenta pojazdu. Często podczas wymiany klocków zaleca się również wymianę tarcz, zwłaszcza jeśli są one bliskie minimalnej grubości. Przy okazji warto sprawdzić powierzchnię tarcz pod kątem nierówności czy pęknięć. Takie działania są zgodne z dobrymi praktykami serwisowymi, które mają na celu zapewnienie bezpieczeństwa i długowieczności układu hamulcowego. Przy odpowiedniej grubości tarcz nowe klocki będą działać efektywnie, co przekłada się na lepsze bezpieczeństwo na drodze.

Pytanie 27

Aby przeprowadzić regulację luzu zaworowego, potrzebne jest

A. głębokościomierz
B. szczelinomierz
C. mikrometr
D. passametr
Szczelinomierz jest narzędziem pomiarowym wykorzystywanym do precyzyjnego ustalania luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na prawidłową pracę silnika, jego osiągi oraz efektywność. Użycie szczelinomierza pozwala na dokładne zmierzenie odstępu między końcem zaworu a jego gniazdem, co jest niezbędne do optymalizacji pracy silnika. Przykładowo, w silnikach z mechanicznymi zaworami, zbyt mały luz może prowadzić do przegrzewania i uszkodzenia zaworów, natomiast zbyt duży luz może powodować hałas i obniżoną efektywność spalania. Zgodnie z dobrymi praktykami branżowymi, regulację luzu zaworowego należy przeprowadzać cyklicznie, zgodnie z harmonogramem serwisowym producenta, co zapewnia długotrwałą i bezawaryjną pracę silnika. Użycie szczelinomierza jest zatem kluczowe, aby zapewnić odpowiednią precyzję i jakość wykonania tej regulacji.

Pytanie 28

Jak przeprowadza się naprawę niewielkiego uszkodzenia opony bezdętkowej?

A. przyklejając z zewnątrz gumową łatkę
B. wklejając od wewnętrznej strony gumowy grzybek uszczelniający
C. wprowadzając do nieszczelności masę uszczelniającą
D. wulkanizując z zewnątrz gumowy grzybek uszczelniający
Wklejanie gumowego grzybka uszczelniającego od wewnątrz opony bezdętkowej jest najskuteczniejszym sposobem naprawy drobnych przebić, ponieważ zapewnia trwałe uszczelnienie miejsca uszkodzenia. Grzybek uszczelniający, wykonany z elastycznego materiału, dostosowuje się do kształtu opony, co minimalizuje ryzyko powstania nieszczelności. Proces ten polega na oczyszczeniu miejsca uszkodzenia, nałożeniu kleju oraz umieszczeniu grzybka, który po związaniu z materiałem opony tworzy mocne połączenie. Taki sposób naprawy stosowany jest zgodnie z zaleceniami standardów branżowych, takich jak normy ETRTO (European Tyre and Rim Technical Organisation), które podkreślają konieczność stosowania odpowiednich technik w celu zapewnienia bezpieczeństwa i niezawodności eksploatacji opon. W praktyce, naprawa grzybkiem od wewnątrz jest często wykorzystywana w warsztatach wulkanizacyjnych, gdzie dba się o to, aby wszelkie naprawy były zgodne z najlepszymi praktykami, co przyczynia się do wydłużenia żywotności opon oraz zwiększenia bezpieczeństwa pojazdów.

Pytanie 29

Przedstawiony na rysunku element układu wtryskowego silnika to

Ilustracja do pytania
A. zawór odcinający w pompie wtryskowej.
B. pompowtryskiwacz.
C. wtryskiwacz układu bezpośredniego wtrysku paliwa.
D. wtryskiwacz piezoelektryczny.
Prawidłowa odpowiedź to pompowtryskiwacz, który jest kluczowym elementem nowoczesnych układów wtryskowych silników wysokoprężnych. Pompowtryskiwacz łączy w sobie funkcje zarówno pompy wtryskowej, jak i wtryskiwacza, co pozwala na precyzyjne dawkowanie paliwa. Dzięki jego budowie możliwe jest osiągnięcie wysokiego ciśnienia, co jest niezbędne do skutecznego wtrysku paliwa bezpośrednio do komory spalania. Zastosowanie pompowtryskiwaczy w silnikach common rail przyczynia się do zwiększenia efektywności spalania oraz ograniczenia emisji szkodliwych substancji. Warto również zaznaczyć, że pompowtryskiwacze są dostosowane do pracy w trudnych warunkach, co zapewnia ich niezawodność i długą żywotność. W kontekście standardów branżowych, pompowtryskiwacze muszą spełniać rygorystyczne normy jakości, takie jak ISO 9001, co gwarantuje ich wysoką jakość i niezawodność w eksploatacji.

Pytanie 30

Jakie będą łączne koszty części potrzebnych do wymiany szczęk hamulcowych w samochodzie osobowym z bębnowym układem hamulcowym, jeśli cena za komplet szczęk na przód wynosi 80 zł (jedna oś), a na tył 120 zł (jedna oś)?

A. 180,00 zł
B. 240,00 zł
C. 200,00 zł
D. 400,00 zł
Poprawna odpowiedź to 200,00 zł, co jest wynikiem prawidłowego obliczenia kosztów części do wymiany szczęk hamulcowych w samochodzie z bębnowym układem hamulcowym. Koszt szczęk hamulcowych na jedną oś z przodu wynosi 80 zł, natomiast na jedną oś z tyłu to 120 zł. Całkowity koszt wymiany szczęk hamulcowych można obliczyć, dodając te wartości do siebie: 80 zł (przód) + 120 zł (tył) = 200 zł. Takie kalkulacje są istotne nie tylko dla ustalenia budżetu na naprawy, ale również dla zrozumienia struktury kosztów związanych z konserwacją pojazdów. W praktyce, umiejętność dokładnego obliczania kosztów części zamiennych jest niezbędna dla mechaników i właścicieli warsztatów, co pozwala na bardziej przejrzyste zarządzanie finansami i efektywne planowanie przeglądów technicznych zgodnie z wytycznymi branżowymi.

Pytanie 31

Jakim narzędziem dokonujemy pomiaru średnicy czopa głównego wału korbowego?

A. mikrometrem
B. sprawdzianem pierścieniowym
C. średnicówką trójpunktową
D. czujnikiem zegarowym
Czujnik zegarowy, choć jest cennym narzędziem do pomiarów, nie jest odpowiedni do bezpośredniego pomiaru średnicy czopa głównego wału korbowego. Jego zastosowanie ogranicza się głównie do pomiarów różnicowych i sprawdzania odchyleń od normy na powierzchniach, co czyni go mniej precyzyjnym w kontekście pomiaru średnicy. Z kolei średnicówka trójpunktowa, mimo że jest to narzędzie precyzyjne, może nie być odpowiednia dla specyficznych kształtów czopów głównych, które mogą wprowadzać błędy pomiarowe. Co więcej, pomiar średnicy za pomocą sprawdzianu pierścieniowego, który jest narzędziem kalibracyjnym używanym do weryfikacji wymiarów zewnętrznych, również nie jest najlepszym wyborem; sprawdziany te nie dają dokładnych wyników dla wałów o małych tolerancjach. Pomiar średnicy czopa głównego wymaga narzędzi, które są w stanie dostarczyć odpowiednią precyzję, a wszystkie wymienione metody pomiarowe mogą prowadzić do błędnych wyników. W praktyce, korzystanie z niewłaściwych narzędzi pomiarowych może skutkować poważnymi konsekwencjami, takimi jak niewłaściwe dopasowanie wałów, co w dłuższej perspektywie prowadzi do awarii silnika lub zwiększonego zużycia mechanizmów.

Pytanie 32

Przegub homokinetyczny zapewnia

A. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
B. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
C. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
D. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
Przegub równobieżny, czyli przegub homokinetyczny, jest naprawdę ważnym elementem w układach napędowych, szczególnie w autach. Jego największą zaletą jest to, że pozwala na zachowanie stałej prędkości obrotowej, niezależnie od tego, jak są ustawione osie. Dlatego właśnie wykorzystuje się go w autach osobowych i różnych maszynach. Na przykład, w napędach na cztery koła, te przeguby pozwalają na pokonywanie zakrętów bez straty mocy, co wpływa na lepszą stabilność i przyczepność. Przeguby te są też projektowane według branżowych standardów, jak ISO 9001, co daje pewność ich jakości. Gdyby osie obrotu były nierównoległe, inne typy przegubów mogłyby wprowadzać wibracje lub zmieniać prędkość, co mogłoby zaszkodzić systemowi napędowemu.

Pytanie 33

Podczas diagnostyki systemu klimatyzacji, który parametr jest kluczowy do sprawdzenia poprawności działania?

A. Poziom płynu hamulcowego
B. Temperatura oleju silnikowego
C. Napięcie akumulatora
D. Ciśnienie czynnika chłodniczego
Podczas diagnostyki systemu klimatyzacji w samochodach, kluczowym parametrem do sprawdzenia jest ciśnienie czynnika chłodniczego. Klimatyzacja działa poprzez cyrkulację czynnika chłodniczego, który przemienia się z cieczy w gaz i odwrotnie, co pozwala na absorpcję i usuwanie ciepła z wnętrza pojazdu. Ciśnienie czynnika chłodniczego jest istotnym wskaźnikiem, ponieważ zbyt niskie ciśnienie może sugerować wyciek lub niewystarczającą ilość czynnika, co z kolei prowadzi do nieefektywnego chłodzenia. Z kolei zbyt wysokie ciśnienie może wskazywać na blokadę w układzie lub problem z kompresorem. Sprawdzanie ciśnienia jest standardową praktyką podczas przeglądów serwisowych i napraw klimatyzacji, a jego prawidłowe wartości są zawsze określone przez producenta pojazdu. Dla technika zajmującego się obsługą i naprawą pojazdów, umiejętność prawidłowej oceny ciśnienia czynnika chłodniczego jest niezbędna, aby zapewnić efektywne działanie klimatyzacji i komfort wewnętrzny pojazdu.

Pytanie 34

Ciecz chłodząca po zużyciu powinna być

A. poddać destylacji, odzyskując alkohol
B. przekazać do utylizacji
C. zneutralizować za pomocą wapna
D. przelać do pojemnika z zużytymi olejami
Oddanie zużytej cieczy chłodzącej do utylizacji to najodpowiedniejsze i najbardziej odpowiedzialne podejście, które jest zgodne z przepisami prawa ochrony środowiska. Ciecze chłodzące, w zależności od ich składu chemicznego, mogą zawierać substancje toksyczne lub zanieczyszczające, które mogą być szkodliwe zarówno dla ludzi, jak i dla środowiska. Dlatego ważne jest, aby nie wylewać ich do systemów kanalizacyjnych ani do zbiorników z innymi odpadami, jak np. zużyte oleje, co może prowadzić do poważnych zanieczyszczeń. Utylizacja tych cieczy odbywa się zgodnie z przepisami, które mogą obejmować odzysk energii lub recykling chemiczny. W praktyce, odpowiedzialne zarządzanie zużytymi cieczami chłodzącymi jest nie tylko wymogiem prawnym, ale także elementem strategii zrównoważonego rozwoju przedsiębiorstw, które dążą do minimalizacji wpływu na środowisko. Przykładem mogą być zakłady przemysłowe, które regularnie monitorują i dokumentują procesy utylizacji, aby zapewnić zgodność z lokalnymi i międzynarodowymi normami.

Pytanie 35

Podczas wykonywania pomiarów kontrolnych po naprawie systemu wydechowego samochodu, miernik poziomu hałasu należy umieścić przy końcówce rury wydechowej w odległości około

A. 1,0 m
B. 0,3 m
C. 0,5 m
D. 0,1 m
Wybór błędnych odległości do pomiaru natężenia hałasu z układu wydechowego może prowadzić do nieprecyzyjnych wyników, które nie odzwierciedlają prawdziwego stanu technicznego pojazdu. Używanie zbyt małych odległości, takich jak 0,1 m, może spowodować, że pomiar będzie zafałszowany przez odbicia dźwięku od podłoża, co zakłóca ogólny poziom hałasu rejestrowany przez miernik. Z drugiej strony, odległość 1,0 m może nie być wystarczająco bliska, aby uchwycić rzeczywisty dźwięk emitowany przez układ wydechowy, co również prowadzi do błędnych wniosków. Tego rodzaju błędy mogą wynikać z niewłaściwego zrozumienia zasad akustyki oraz niewłaściwego stosowania sprzętu pomiarowego. Ważne jest, aby technicy zdawali sobie sprawę z faktu, że odległość ma kluczowe znaczenie dla jakości pomiaru, a nieodpowiednie podejście może skutkować brakiem możliwości spełnienia wymogów prawnych dotyczących poziomu hałasu emitowanego przez pojazdy. Przy pomiarach istotne jest także uwzględnienie warunków otoczenia, takich jak wiatr czy inne źródła hałasu, które mogą wpłynąć na wynik pomiaru. Zrozumienie tych aspektów jest kluczowe dla przeprowadzania skutecznych i rzetelnych pomiarów akustycznych w praktyce warsztatowej.

Pytanie 36

Nadmierne zużycie wewnętrznej krawędzi bieżnika jednego z kół osi przedniej wskazuje na

A. zbyt dużą wartość kąta wyprzedzenia osi sworznia zwrotnicy tego koła
B. zbyt niskie ciśnienie powietrza w tym kole
C. nieprawidłowe ustawienie zbieżności tej osi
D. zbyt dużą wartość kąta pochylenia tego koła
Zbyt duża wartość kąta wyprzedzenia osi sworznia zwrotnicy oraz nieprawidłowo ustawiona zbieżność osi to czynniki, które mogą wpływać na zachowanie pojazdu, ale w kontekście nadmiernego zużycia wewnętrznej krawędzi bieżnika koła przedniego, nie są one bezpośrednimi przyczynami. Kąt wyprzedzenia osi sworznia zwrotnicy ma na celu poprawę stabilności kierownicy, ale jego nadmiar nie prowadzi do specyficznego zużycia bieżnika. Podobnie, zbieżność osi, która odnosi się do ustawienia kół względem siebie, może wpływać na zużycie opon, ale jej niewłaściwe ustawienie zwykle prowadzi do nierównomiernego zużycia całej powierzchni bieżnika, a nie tylko do wewnętrznej krawędzi. Z kolei zbyt niskie ciśnienie powietrza w oponach jest problemem, który może powodować ich nadmierne zużycie, ale również nie ogranicza się tylko do wewnętrznej krawędzi, a doprowadza do ogólnego osłabienia struktury opony. Takie pomyłki mogą wynikać z braku zrozumienia zasad działania geometrii kół oraz ich wpływu na właściwości jezdne pojazdu. Kluczowe znaczenie ma zrozumienie, że poprawna geometria kół oraz regularne ich kontrolowanie są fundamentem trwałości opon oraz bezpieczeństwa na drodze.

Pytanie 37

Pomiar zużycia gładzi cylindrów wykonuje się przy użyciu

A. mikrometru
B. suwmiarki modułowej
C. głębokomościomierza
D. średnicówki czujnikowej
Użycie średnicówki czujnikowej do pomiaru zużycia gładzi cylindrów jest najlepszym rozwiązaniem, ponieważ umożliwia uzyskanie wysokiej precyzji i dokładności pomiarów. Średnicówki czujnikowe, zwane także czujnikami średnicy lub czujnikami cylindrycznymi, są narzędziami pomiarowymi, które pozwalają na bezpośrednie mierzenie średnic otworów, wałów czy cylindrów. Dzięki zastosowaniu mechanizmu pomiarowego z odczytem cyfrowym lub analogowym, średnicówki te oferują dokładność do 0,001 mm. Praktycznym zastosowaniem średnicówki czujnikowej jest kontrola wymiarów w procesie produkcji silników, gdzie zachowanie odpowiednich tolerancji wymiarowych jest kluczowe dla prawidłowego funkcjonowania. W branży motoryzacyjnej standardy takie jak ISO 2768 określają wymagania dotyczące tolerancji wymiarowych, dlatego wykorzystanie średnicówki czujnikowej jest zgodne z tymi normami. Dodatkowo, pomiar za pomocą tego narzędzia może być wspomagany przez systemy komputerowe, co pozwala na łatwe archiwizowanie i analizowanie danych pomiarowych.

Pytanie 38

Czym charakteryzuje się sprzęgło w samochodzie?

A. nie pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
B. pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
C. stanowi trwałe połączenie silnika spalinowego z innymi elementami układu napędowego
D. nie pozwala na płynne łączenie oraz rozłączanie części układu napędowego
Sprzęgło samochodowe jest kluczowym elementem układu napędowego, który umożliwia płynne łączenie i rozłączanie silnika spalinowego z pozostałymi komponentami, takimi jak skrzynia biegów. Główna funkcja sprzęgła polega na przenoszeniu momentu obrotowego z silnika na koła, co jest niezbędne podczas zmian biegów oraz uruchamiania pojazdu. Dzięki zastosowaniu sprzęgła, kierowca może kontrolować moment przeniesienia mocy, co pozwala na wygodne manewrowanie oraz uniknięcie szarpania podczas jazdy. W praktyce, dobrej jakości sprzęgło powinno charakteryzować się niskim zużyciem, odpornością na wysokie temperatury oraz zdolnością do przenoszenia dużych obciążeń. W branży motoryzacyjnej stosowane są różne typy sprzęgieł, w tym sprzęgła suche, mokre oraz wielotarczowe, z których każdy ma swoje zastosowanie w zależności od specyfikacji pojazdu. Warto również zaznaczyć, że regularna kontrola i serwisowanie sprzęgła są kluczowe dla utrzymania sprawności układu napędowego oraz zwiększenia bezpieczeństwa na drodze.

Pytanie 39

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. zbyt duże zanieczyszczenie filtra oleju
B. uszkodzenie uszczelki pod głowicą
C. awaria pompy olejowej
D. zużycie czopów wału korbowego
Nadmierne zabrudzenie filtra oleju może prowadzić do spadku ciśnienia oleju w silniku, co objawia się problemami z smarowaniem, ale nie jest przyczyną wzrostu jego poziomu. Filtr oleju ma za zadanie zatrzymywać zanieczyszczenia, a jego zanieczyszczenie skutkuje wyłącznie obniżeniem efektywności smarowania. Zużycie czopów wału korbowego wpływa na luz i może powodować wycieki oleju, ale nie ma bezpośredniego wpływu na wzrost poziomu oleju. W przypadku uszkodzenia pompy olejowej, mogłoby to prowadzić do obniżenia ciśnienia oleju, co także nie jest związane z jego wzrostem. W praktyce, problemy z podzespołami silnika mogą być mylnie interpretowane ze względu na niewystarczającą wiedzę na temat ich funkcji. Aby uniknąć takich błędów myślowych, ważne jest zrozumienie, że różne usterki silnika mają różne objawy, a ich diagnozowanie wymaga znajomości mechaniki i zastosowania odpowiednich narzędzi diagnostycznych. Standardy branżowe sugerują stosowanie systematycznych procedur diagnostycznych w celu prawidłowego zidentyfikowania przyczyny problemów, co jest kluczowe dla zapewnienia bezawaryjnej pracy silników.

Pytanie 40

Ile wyniesie całkowity koszt brutto wymiany oleju silnikowego?

Lp.NazwaIlość jednostkaCena jednostkowa netto
1.Olej silnikowy1 l25,00 zł
2.Filtr oleju1 szt.39,00 zł
3.Podkładka po korek spustowy1 szt.3,00 zł
4.Czas pracy0,5 h
5.Roboczogodzina1 h80,00 zł
Uwaga: ilość wymienianego oleju silnikowego - 5,5 l
Podatek VAT - 23%
A. 269,99 zł
B. 219,50 zł
C. 147,00 zł
D. 180,81 zł
Poprawna odpowiedź to 269,99 zł, co wynika z prawidłowego obliczenia całkowitego kosztu brutto wymiany oleju silnikowego. Aby uzyskać tę kwotę, należy zsumować wszystkie koszty netto związane z usługą, w tym koszt oleju, który zależy od jego ilości, oraz dodatkowe składniki usługi, takie jak koszt robocizny czy ewentualnych materiałów eksploatacyjnych. Kluczowym elementem jest również doliczenie podatku VAT, który w Polsce wynosi 23%. Przykładowo, jeżeli koszt netto wymiany oleju wynosi 219,50 zł, to po dodaniu VAT (219,50 zł * 0,23 = 50,49 zł), całkowity koszt brutto wynosi 269,99 zł. Tego typu obliczenia są standardową praktyką w branży motoryzacyjnej, gdzie klarowne i przejrzyste przedstawienie kosztów jest niezbędne dla klientów, pozwalając im na lepsze zrozumienie wydatków związanych z usługami serwisowymi.