Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 30 grudnia 2025 21:48
  • Data zakończenia: 30 grudnia 2025 22:04

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką funkcję pełni zarządzalny przełącznik, aby łączyć wiele połączeń fizycznych w jedno logiczne, co pozwala na zwiększenie przepustowości łącza?

A. Port mirroring
B. Agregacja łączy
C. Port trunk
D. Zarządzanie pasmem
Zarządzanie pasmem to koncepcja, która odnosi się do procesów regulujących przepustowość w sieciach komputerowych, ale nie ma ona bezpośredniego związku z łączeniem fizycznych portów w jeden kanał. Przykładowo, zarządzanie pasmem może obejmować regulacje dotyczące opóźnień, jittera i strat pakietów, co jest kluczowe, ale nie dotyczy bezpośrednio techniki agregacji łączy. Port mirroring to funkcjonalność, która służy do monitorowania ruchu w sieci, umożliwiając skopiowanie ruchu z jednego portu na inny, co jest przydatne w analizach i diagnostyce, ale nie przyczynia się do zwiększenia przepustowości. Z kolei port trunk to termin odnoszący się do sposobu przesyłania wielu VLAN-ów przez pojedyncze połączenie sieciowe, co również nie ma na celu łączenia portów w celu zwiększenia przepustowości. Często mylnie sądzimy, że różne technologie sieciowe mogą być używane zamiennie, co prowadzi do nieporozumień. W rzeczywistości każda z tych funkcji ma swoje specyficzne przeznaczenie i zastosowanie, a ich niewłaściwe zrozumienie może prowadzić do błędnego konfigurowania sieci oraz do problemów z wydajnością i niezawodnością systemów.

Pytanie 2

Jaki protokół mailowy pozwala między innymi na przechowywanie odbieranych wiadomości e-mail na serwerze, zarządzanie wieloma katalogami, usuwanie wiadomości oraz przenoszenie ich pomiędzy katalogami?

A. Simple Mail Transfer Protocol (SMTP)
B. Post Office Protocol (POP)
C. Internet Message Access Protocol (IMAP)
D. Multipurpose Internet Mail Extensions (MIME)
Internet Message Access Protocol (IMAP) jest protokołem pocztowym, który zapewnia zaawansowane możliwości zarządzania wiadomościami e-mail na serwerze. Umożliwia on użytkownikom nie tylko odbieranie wiadomości, ale również ich przechowywanie na serwerze, co jest kluczowe w kontekście dostępu z różnych urządzeń. IMAP pozwala na organizację wiadomości w foldery, co ułatwia zarządzanie dużą liczbą e-maili. Użytkownik może przenosić wiadomości między folderami, co jest szczególnie przydatne w przypadku archiwizacji lub segregacji tematów. Dzięki IMAP, zmiany wprowadzone na jednym urządzeniu są automatycznie synchronizowane na wszystkich pozostałych, co zapewnia spójność i wygodę użytkowania. Protokół ten jest zgodny z standardami Internet Engineering Task Force (IETF) i jest szeroko stosowany w aplikacjach pocztowych, takich jak Mozilla Thunderbird czy Microsoft Outlook, co czyni go istotnym elementem współczesnych systemów komunikacji. Dodatkowo, IMAP wspiera mechanizmy autoryzacji i szyfrowania, co podnosi bezpieczeństwo przesyłanych danych.

Pytanie 3

Protokół używany do zarządzania urządzeniami w sieci to

A. Internet Group Management Protocol (IGMP)
B. Simple Mail Transfer Protocol (SMTP)
C. Simple Network Management Protocol (SNMP)
D. Intenet Control Message Protocol (ICMP)
Simple Network Management Protocol (SNMP) jest protokołem zaprojektowanym do zarządzania i monitorowania urządzeń w sieciach IP. SNMP umożliwia administratorom sieci zbieranie informacji z różnych urządzeń, takich jak routery, przełączniki, serwery oraz inne elementy infrastruktury sieciowej. Głównym celem SNMP jest zapewnienie centralnego zarządzania, co pozwala na efektywne monitorowanie kondycji sieci oraz szybką reakcję na potencjalne problemy. Przykładowo, dzięki SNMP administrator może skonfigurować alerty o stanie urządzenia, co pozwala na proaktywne podejście do zarządzania siecią. Ponadto, SNMP korzysta z tzw. MIB (Management Information Base), czyli bazy danych, w której są zdefiniowane możliwe do monitorowania parametry urządzeń. Standardy związane z SNMP, takie jak SNMPv1, SNMPv2c i SNMPv3, wprowadzają różne poziomy bezpieczeństwa i funkcjonalności, co sprawia, że protokół ten jest elastyczny i skalowalny w zastosowaniach komercyjnych oraz korporacyjnych.

Pytanie 4

Jakie oznaczenie na schematach sieci LAN przypisuje się punktom rozdzielczym dystrybucyjnym znajdującym się na różnych kondygnacjach budynku według normy PN-EN 50173?

A. MDF (Main Distribution Frame)
B. CD (Campus Distribution)
C. BD (BuildingDistributor)
D. FD (Floor Distribution)
Odpowiedź FD (Floor Distribution) jest prawidłowa, ponieważ oznaczenie to odnosi się do punktów rozdzielczych dystrybucyjnych znajdujących się na poszczególnych piętrach budynku zgodnie z normą PN-EN 50173. Norma ta definiuje różne poziomy dystrybucji w strukturze sieci LAN, a FD jest stosowane w kontekście infrastruktury lokalnej, gdzie zainstalowane są urządzenia aktywne i pasywne. W praktyce, punkty FD umożliwiają efektywne zarządzanie ruchem danych w obrębie piętra, co jest kluczowe w biurowcach, uczelniach czy innych obiektach wielokondygnacyjnych. Zastosowanie tego oznaczenia ułatwia identyfikację lokalizacji urządzeń sieciowych, co jest fundamentalne podczas prac serwisowych oraz w kontekście rozbudowy sieci. Dobrą praktyką jest także utrzymywanie dokumentacji, w której zaznaczone są wszystkie FD, co wspiera zarówno zarządzanie infrastrukturą, jak i ewentualne audyty związane z bezpieczeństwem i wydajnością sieci.

Pytanie 5

NAT64 (Network Address Translation 64) to proces, który dokonuje mapowania adresów

A. MAC na adresy IPv4
B. IPv4 na adresy IPv6
C. IPv4 na adresy MAC
D. prywatne na adresy publiczne
NAT64 jest technologią translacji adresów, która umożliwia komunikację między sieciami IPv4 i IPv6, co jest niezbędne w dobie przechodzenia na nowy protokół. NAT64 realizuje mapowanie adresów IPv4 na adresy IPv6, co pozwala na wykorzystanie istniejącej infrastruktury IPv4 w środowisku IPv6. Przykładem zastosowania NAT64 może być sytuacja, gdy organizacja posiada zasoby dostępne tylko w IPv4, ale użytkownicy korzystają z sieci IPv6. Umożliwiając dostęp do tych zasobów, NAT64 przyczynia się do płynnej migracji i współistnienia obu protokołów. Technologia ta jest zgodna z wytycznymi IETF, które podkreślają znaczenie interoperacyjności między różnymi protokołami. Ponadto, NAT64 współpracuje z mechanizmem DNS64, który mapuje zapytania DNS IPv6 na odpowiednie adresy IPv4, co stanowi ważny element ekosystemu sieciowego. Dzięki NAT64 administratorzy sieci mogą efektywnie zarządzać przejściem z IPv4 na IPv6, co jest kluczowe w kontekście globalnego wyczerpywania się adresów IPv4.

Pytanie 6

Na ilustracji przedstawiono sieć komputerową w danej topologii

Ilustracja do pytania
A. magistrali
B. mieszanej
C. pierścienia
D. gwiazdy
Topologia pierścienia jest jednym z podstawowych rodzajów organizacji sieci komputerowych. Charakteryzuje się tym że każde urządzenie jest połączone z dwoma innymi tworząc zamknięty krąg. Dane przesyłane są w jednym kierunku co minimalizuje ryzyko kolizji pakietów. Ta topologia jest efektywna pod względem zarządzania ruchem sieciowym i pozwala na łatwe skalowanie. Dzięki temu można ją znaleźć w zastosowaniach wymagających wysokiej niezawodności takich jak przemysłowe sieci automatyki. W praktyce często stosuje się protokół Token Ring w którym dane przesyłane są za pomocą specjalnego tokena. Umożliwia to równomierne rozłożenie obciążenia sieciowego oraz zapobiega monopolizowaniu łącza przez jedno urządzenie. Choć topologia pierścienia może być bardziej skomplikowana w implementacji niż inne topologie jak gwiazda jej stabilność i przewidywalność działania czynią ją atrakcyjną w specyficznych zastosowaniach. Dodatkowo dzięki fizycznej strukturze pierścienia łatwo można identyfikować i izolować problemy w sieci co jest cenne w środowiskach wymagających ciągłości działania. Standardy ISO i IEEE opisują szczegółowe wytyczne dotyczące implementacji tego typu sieci co pozwala na zachowanie kompatybilności z innymi systemami oraz poprawę bezpieczeństwa i wydajności działania.

Pytanie 7

Urządzenie pokazane na ilustracji służy do zgrzewania wtyków

Ilustracja do pytania
A. SC
B. E 2000
C. BNC
D. RJ 45
Narzędzie przedstawione na rysunku to zaciskarka do wtyków RJ 45 wykorzystywana w sieciach komputerowych opartych na kablach typu skrętka. Wtyki RJ 45 są standardowymi złączami stosowanymi w kablach ethernetowych kategorii 5 6 i wyższych umożliwiającymi połączenia w sieciach LAN. Zaciskarka umożliwia właściwe umiejscowienie przewodów w złączu oraz zapewnia odpowiednie połączenie elektryczne dzięki zaciskaniu metalowych styków na izolacji przewodów. Proces ten wymaga precyzyjnego narzędzia które pozwala na równomierne rozłożenie siły co minimalizuje ryzyko uszkodzenia złącza. Przy prawidłowym użyciu zaciskarki możliwe jest uzyskanie niezawodnych połączeń które charakteryzują się wysoką odpornością na zakłócenia elektromagnetyczne. Warto również zwrócić uwagę na zastosowanie odpowiedniej kategorii kabli zgodnie z obowiązującymi standardami branżowymi jak np. ANSI TIA EIA 568 co zapewnia optymalne parametry transmisji danych. W codziennej praktyce instalatora sieciowego znajomość i umiejętność używania takiego narzędzia jest kluczowa dla zapewnienia jakości i niezawodności połączeń sieciowych.

Pytanie 8

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym przy użyciu protokołu TCP oraz komunikacja w trybie bezpołączeniowym z protokołem UDP?

A. Warstwa transportowa
B. Warstwa łącza danych
C. Warstwa sieciowa
D. Warstwa fizyczna
Odpowiedź "Transportowej" jest prawidłowa, ponieważ warstwa transportowa modelu ISO/OSI odpowiada za segmentowanie danych oraz zarządzanie połączeniami między aplikacjami. W tej warstwie realizowane są dwa kluczowe protokoły: TCP (Transmission Control Protocol) oraz UDP (User Datagram Protocol). TCP zapewnia komunikację w trybie połączeniowym, co oznacza, że przed wymianą danych następuje ustanowienie bezpiecznego połączenia oraz kontrola błędów, co jest kluczowe dla aplikacji wymagających niezawodności, takich jak przesyłanie plików czy strumieniowanie wideo. Z drugiej strony, UDP wspiera komunikację w trybie bezpołączeniowym, co sprawia, że jest szybszy, ale mniej niezawodny, idealny do aplikacji czasu rzeczywistego, takich jak gry sieciowe czy VoIP. Warstwa transportowa zapewnia również mechanizmy takie jak kontrola przepływu i multiplexing, umożliwiając jednoczesne przesyłanie wielu strumieni danych z różnych aplikacji. Znajomość tych aspektów jest niezbędna dla inżynierów sieci oraz programistów, aby skutecznie projektować i implementować systemy komunikacyjne, które spełniają wymagania użytkowników i aplikacji.

Pytanie 9

Aby komputery mogły udostępniać swoje zasoby w sieci, muszą mieć przypisane różne

A. adresy IP.
B. maski podsieci.
C. grupy robocze.
D. serwery DNS.
Adres IP (Internet Protocol Address) jest unikalnym identyfikatorem przypisywanym każdemu urządzeniu podłączonemu do sieci komputerowej. Aby komputery mogły komunikować się w Internecie, każdy z nich musi mieć przypisany unikalny adres IP. W przeciwnym razie, gdy dwa urządzenia mają ten sam adres IP, dochodzi do konfliktu adresów, co uniemożliwia prawidłowe przesyłanie danych. W praktyce, na przykład w sieciach domowych, router przypisuje adresy IP urządzeniom za pomocą DHCP (Dynamic Host Configuration Protocol), co zapewnia unikalność adresów. Dobre praktyki w zarządzaniu sieciami zalecają użycie rezerwacji DHCP dla urządzeń, które muszą mieć stały adres IP, co zapobiega konfliktom. Zrozumienie roli adresów IP jest kluczowe dla administrowania sieciami i zapewnienia ich prawidłowego działania, co jest istotne szczególnie w kontekście coraz bardziej złożonych systemów informatycznych i Internetu Rzeczy (IoT).

Pytanie 10

Informacje, które zostały pokazane na wydruku, uzyskano w wyniku wykonania

Ilustracja do pytania
A. traceroute -src
B. netstat -r
C. ipconfig /all
D. route change
Polecenie netstat -r jest używane do wyświetlania tabeli routingu dla systemu operacyjnego. Jest to kluczowe narzędzie w diagnostyce sieciowej, które pozwala administratorom zrozumieć, jak pakiety są kierowane przez różne interfejsy sieciowe. Wyjście z tego polecenia przedstawia zarówno tabele routingu IPv4, jak i IPv6, co jest widoczne na załączonym wydruku. Dzięki netstat -r można szybko zidentyfikować aktywne trasy sieciowe, co jest niezbędne przy rozwiązywaniu problemów z połączeniami i optymalizacji sieci. W kontekście dobrych praktyk branżowych, znajomość i umiejętność interpretacji tabel routingu jest podstawą efektywnego zarządzania siecią. W praktyce można wykorzystać to narzędzie do monitorowania konfiguracji sieci, audytów bezpieczeństwa oraz podczas zmian infrastruktury sieciowej. Warto również pamiętać, że netstat jest częścią standardowego zestawu narzędzi w większości systemów operacyjnych, co czyni je powszechnie dostępnym i uniwersalnym w użyciu rozwiązaniem w różnych środowiskach.

Pytanie 11

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. dziesiętnym
B. szesnastkowym
C. dwójkowym
D. ósemkowym
Adres IP 172.16.0.1 jest zapisany w systemie dziesiętnym, co oznacza, że każda liczba w tej sekwencji jest wyrażona w standardowym formacie dziesiętnym. Adresy IP w wersji 4 (IPv4) składają się z czterech oktetów, z których każdy jest reprezentowany jako liczba całkowita w zakresie od 0 do 255. System dziesiętny jest najczęściej używany do prezentacji adresów IP, co ułatwia ich odczyt i zapamiętanie przez użytkowników. Przykładem zastosowania adresów IP jest konfiguracja urządzeń w sieci lokalnej czy przydzielanie adresów IP przez serwery DHCP. W praktyce, standardy takie jak RFC 791 określają zasady dotyczące struktury adresów IP, w tym ich przedstawianie. Użycie systemu dziesiętnego w adresach IP jest zgodne z najlepszymi praktykami w dziedzinie inżynierii sieciowej, zapewniając przejrzystość i ułatwiając diagnostykę problemów sieciowych.

Pytanie 12

Który z materiałów eksploatacyjnych nie jest stosowany w ploterach?

A. Atrament
B. Tusz
C. Pisak
D. Filament
Filament nie jest materiałem eksploatacyjnym wykorzystywanym w ploterach, które są urządzeniami stosowanymi do druku 2D, na przykład ploterami atramentowymi czy plotterami tnącymi. Ploter używa tuszu lub atramentu do tworzenia obrazów na papierze lub innych materiałach. Filament jest materiałem stosowanym w technologii druku 3D, gdzie wykorzystuje się go do wytwarzania obiektów trójwymiarowych. W praktyce plotery atramentowe oraz tnące są standardem w branży graficznej, reklamowej oraz architektonicznej, gdzie precyzja i jakość wydruku są kluczowe. W przypadku ploterów atramentowych, tusze wodne lub solwentowe zapewniają wysoką jakość druku, a w zastosowaniach przemysłowych wykorzystywanie odpowiednich tuszy jest istotne dla trwałości i odporności wydruków na różne czynniki zewnętrzne. Dlatego odpowiedź 'Filament' jest prawidłowa, a jego zastosowanie nie jest związane z funkcją ploterów.

Pytanie 13

W zestawieniu przedstawiono istotne parametry techniczne dwóch typów interfejsów. Z powyższego wynika, że SATA w porównaniu do ATA charakteryzuje się

Table Comparison of parallel ATA and SATA
Parallel ATASATA 1.5 Gb/s
Bandwidth133 MB/s150 MB/s
Volts5V250 mV
Number of pins407
Cable length18 in. (45.7 cm)39 in. (1 m)
A. większą przepustowością oraz mniejszą liczbą pinów w złączu
B. mniejszą przepustowością oraz mniejszą liczbą pinów w złączu
C. mniejszą przepustowością oraz większą liczbą pinów w złączu
D. większą przepustowością oraz większą liczbą pinów w złączu
Interfejs SATA (Serial ATA) oferuje większą przepustowość niż jego poprzednik ATA (Parallel ATA). Przepustowość SATA 1.5 Gb/s wynosi około 150 MB/s, podczas gdy ATA oferuje 133 MB/s. Różnica związana jest z zastosowaniem sygnału szeregowego w SATA, co zwiększa efektywność przesyłu danych. Dzięki temu można osiągnąć lepszą wydajność we współczesnych systemach komputerowych. Co więcej SATA używa znacznie mniejszej liczby wyprowadzeń w złączu - tylko 7 pinów w porównaniu do 40 w ATA. To uproszczenie interfejsu zmniejsza jego złożoność i zwiększa niezawodność połączeń. Mniejsza liczba pinów pozwala na bardziej kompaktowe i elastyczne kable, co jest korzystne w kontekście organizacji przestrzeni wewnątrz obudowy komputera. Dodatkowo mniejsze napięcie zasilania w SATA (250 mV) w porównaniu do 5V w ATA pozwala na mniejsze zużycie energii co jest istotne w nowoczesnych laptopach i systemach oszczędzających energię. W praktyce wybór SATA nad ATA jest standardem, gdyż umożliwia on łatwiejszą instalację i lepszą wydajność w codziennym użytkowaniu.

Pytanie 14

Udostępniono w sieci lokalnej jako udział specjalny folder o nazwie egzamin znajdujący się na komputerze o nazwie SERWER_2 w katalogu głównym dysku C:. Jak powinna wyglądać ścieżka dostępu do katalogu egzamin, w którym przechowywany jest folder macierzysty dla konta użytkownika o określonym loginie?

A. SERWER_2$egzamin$\%USERNAME%
B. SERWER_2$egzamin\%USERNAME%
C. SERWER_2egzamin$\%$USERNAME%
D. SERWER_2egzamin$\%USERNAME%
Niepoprawne odpowiedzi bazują na błędnych założeniach dotyczących składni ścieżek dostępu i sposobu, w jaki zasoby są udostępniane w sieciach lokalnych. Poprzednie propozycje nie uwzględniają faktu, że w systemie Windows użycie znaku dolara ($) w nazwie folderu udostępnionego wzmacnia jego ukrytość, co jest kluczowe w kontekście bezpieczeństwa danych. W odpowiedziach, które nie zawierają znaku dolara, brakuje istotnego elementu, który informuje system o tym, że folder jest dostępny tylko dla wybranych użytkowników. Ponadto, w przypadku użycia znaku „\” przed zmienną środowiskową, jak w odpowiedziach błędnych, nie jest to akceptowalna praktyka. Zmienne środowiskowe w systemie Windows są interpretowane w kontekście komend i muszą być używane zgodnie z określoną składnią, aby działały poprawnie. Błędne użycie ścieżki, jak na przykład 'SERWER_2egzamin$\%$USERNAME%', świadczy o nieporozumieniu związanym z umiejscowieniem znaku dolara i procentów, co prowadzi do błędnych interpretacji przez system operacyjny. W kontekście udostępniania folderów, kluczowe jest zrozumienie, że każda zmiana w składni ścieżki może skutkować brakiem dostępu do danych lub ich niewłaściwą lokalizacją, co jest typowym błędem w konfiguracji zasobów sieciowych.

Pytanie 15

Wskaź protokół działający w warstwie aplikacji, który umożliwia odbieranie wiadomości e-mail, a w pierwszym etapie pobiera jedynie nagłówki wiadomości, podczas gdy pobranie ich treści oraz załączników następuje dopiero po otwarciu wiadomości.

A. SNMP
B. FTAM
C. MIME
D. IMAP
Protokół IMAP (Internet Message Access Protocol) jest jednym z najpopularniejszych protokołów używanych do zarządzania pocztą elektroniczną. Jego kluczową cechą jest umożliwienie użytkownikom dostępu do wiadomości na serwerze bez konieczności ich pobierania na lokalne urządzenie. W początkowej fazie użytkownik pobiera jedynie nagłówki wiadomości, co pozwala na szybkie przeszukiwanie i selekcję e-maili, a pełne treści wiadomości oraz załączniki są pobierane dopiero w momencie, gdy użytkownik zdecyduje się otworzyć konkretnego maila. To podejście jest szczególnie korzystne dla osób korzystających z urządzeń mobilnych lub z ograniczonym miejscem na dysku, ponieważ pozwala na oszczędność danych i przestrzeni. Ponadto, IMAP wspiera synchronizację między różnymi urządzeniami, co oznacza, że zmiany dokonane na jednym urządzeniu (np. usunięcie wiadomości) są odzwierciedlane na wszystkich pozostałych. Standardy związane z IMAP zostały zdefiniowane przez IETF, co zapewnia jego szeroką kompatybilność i stabilność w użytkowaniu. Warto zaznaczyć, że IMAP jest często preferowany w środowiskach korporacyjnych, gdzie zarządzanie dużymi ilościami wiadomości jest na porządku dziennym.

Pytanie 16

Jakie polecenie w systemie Linux służy do przypisania adresu IP oraz maski podsieci dla interfejsu eth0?

A. ifconfig eth0 172.16.31.1 netmask 255.255.0.0
B. ipconfig eth0 172.16.31.1 mask 255.255.0.0
C. ifconfig eth0 172.16.31.1 mask 255.255.0.0
D. ipconfig eth0 172.16.31.1 netmask 255.255.0.0
Odpowiedzi, w których wykorzystano komendę 'ipconfig', są niepoprawne, ponieważ 'ipconfig' jest narzędziem z systemu Windows i nie jest obsługiwane w systemie Linux. Użytkownicy często mylą te dwa polecenia, co prowadzi do nieprawidłowego wnioskowania o dostępnych narzędziach w różnych systemach operacyjnych. Użycie słowa 'mask' zamiast 'netmask' w niektórych odpowiedziach również jest błędem, ponieważ 'netmask' jest standardowym terminem w kontekście konfiguracji sieci w systemach Linux. Rozróżnienie między tymi terminami jest kluczowe, ponieważ niepoprawne polecenia nie tylko nie skomunikują się z interfejsem sieciowym, ale mogą również prowadzić do błędnej konfiguracji, co negatywnie wpłynie na funkcjonalność sieci. Niezrozumienie różnic między systemami operacyjnymi oraz technicznymi terminami używanymi do konfiguracji sieci jest częstym źródłem błędów wśród osób uczących się administracji systemów. Ważne jest, aby dobrze zaznajomić się z dokumentacją oraz najlepszymi praktykami, aby unikać takich nieporozumień podczas pracy z sieciami.

Pytanie 17

Jaki rodzaj routingu jest najbardziej odpowiedni w dużych, szybko zmieniających się sieciach?

A. Zewnętrzny
B. Statyczny
C. Lokalny
D. Dynamiczny
Routing dynamiczny jest najbardziej odpowiedni dla rozbudowanych, szybko zmieniających się sieci ze względu na swoją zdolność do automatycznego dostosowywania się do zmian w topologii sieci. W przeciwieństwie do routingu statycznego, gdzie trasy są konfigurowane ręcznie, routing dynamiczny wykorzystuje protokoły takie jak OSPF, EIGRP czy BGP, które umożliwiają urządzeniom sieciowym wymianę informacji o osiągalnych trasach. Dzięki temu, w przypadku awarii jednego z węzłów, sieć natychmiast znajdzie alternatywną ścieżkę, co zwiększa jej niezawodność i dostępność. Przykładowo, w dużych środowiskach korporacyjnych, gdzie zmiany w infrastrukturze są na porządku dziennym, routing dynamiczny pozwala na efektywne zarządzanie zasobami oraz minimalizację przestojów. Ponadto, protokoły dynamiczne mają możliwość uczenia się i adaptacji do zmieniających się warunków w sieci, co jest kluczowe w przypadku aplikacji wymagających wysokiej dostępności i niskich opóźnień.

Pytanie 18

Magistrala PCI-Express wykorzystuje do transmisji danych metodę komunikacji

A. asynchronicznej Full duplex.
B. synchronicznej Half duplex.
C. synchronicznej Full duplex.
D. asynchronicznej Simplex.
Metoda komunikacji asynchronicznej Full duplex stosowana w PCI-Express to jeden z kluczowych powodów, dla których ten standard wyparł starsze magistrale, takie jak PCI czy AGP. Chodzi o to, że sygnały wysyłane i odbierane są niezależnie od siebie – dane płyną w obie strony jednocześnie, bez czekania na zakończenie transmisji przez drugą stronę. To ogromnie przyspiesza przesył informacji, szczególnie w zastosowaniach wymagających szybkiej wymiany danych, np. przy pracy kart graficznych, SSD NVMe czy kart sieciowych 10Gbps. Moim zdaniem często niedoceniamy, jak duży przeskok wydajnościowy i stabilności zapewnił PCIe właśnie dzięki tej architekturze. Asynchroniczność sprawia, że każda linia (lane) działa niezależnie w swoim tempie, wykorzystując tzw. serializację sygnałów – czyli pozwala na lepsze skalowanie i elastyczność w zależności od zastosowania (np. x1, x4, x8, x16). Warto wiedzieć, że PCIe bazuje na topologii punkt-punkt zamiast współdzielonej magistrali, co przekłada się na znacznie większą przepustowość i niższe opóźnienia. Dla branży informatycznej to wręcz podstawa, bo standard PCIe jest obecnie wszędzie – od komputerów stacjonarnych, przez serwery, po rozwiązania przemysłowe. Praktyka pokazuje, że ta architektura pozwala na niemal liniowe skalowanie szybkości wraz ze wzrostem liczby linii i generacji PCIe (np. PCIe 3.0, 4.0, 5.0). Jeśli planujesz zajmować się sprzętem komputerowym zawodowo, warto solidnie rozumieć właśnie te aspekty działania PCI-Express.

Pytanie 19

Jakie jest kluczowe zadanie protokołu ICMP?

A. Przesyłanie e-maili
B. Kontrola transmisji w sieci
C. Szyfrowanie zdalnych połączeń
D. Automatyczna konfiguracja adresów hostów
Protokół ICMP (Internet Control Message Protocol) jest kluczowym elementem pakietu protokołów internetowych (TCP/IP), który odpowiada za przesyłanie komunikatów kontrolnych oraz informacji o błędach w sieci. Jego główne zadanie to monitorowanie i diagnozowanie stanu transmisji w sieci, co jest niezbędne do utrzymania niezawodności połączeń. Przykłady zastosowania ICMP obejmują narzędzia takie jak ping i traceroute, które wykorzystują komunikaty echo request oraz echo reply do testowania dostępności hostów oraz śledzenia ścieżki, jaką pakiety przebywają w sieci. W praktyce, ICMP umożliwia administratorom sieci identyfikowanie problemów z połączeniem, takich jak utraty pakietów czy opóźnienia, co jest kluczowe dla optymalizacji wydajności sieci. Zgodnie z dobrymi praktykami, zrozumienie działania ICMP jest niezbędne dla każdego specjalisty IT, ponieważ jego funkcje diagnostyczne są fundamentalne dla utrzymania zdrowia infrastruktury sieciowej.

Pytanie 20

Ilustracja pokazuje panel ustawień bezprzewodowego urządzenia dostępowego, który umożliwia

Ilustracja do pytania
A. konfigurację serwera DHCP
B. przypisanie adresów MAC do kart sieciowych
C. ustawienie nazwy hosta
D. określenie maski podsieci
Konfiguracja serwera DHCP na panelu konfiguracyjnym bezprzewodowego urządzenia dostępowego jest kluczowym krokiem w zarządzaniu siecią. DHCP, czyli Dynamic Host Configuration Protocol, automatycznie przydziela adresy IP urządzeniom w sieci, co upraszcza procesy administracyjne i zmniejsza ryzyko konfliktów adresów IP. W panelu konfiguracyjnym można ustawić początkowy adres IP, co pozwala na zdefiniowanie zakresu adresów, które będą przydzielane klientom. Można też określić maksymalną liczbę użytkowników DHCP, co zapewnia kontrolę nad zasobami sieciowymi. Ustawienia te są kluczowe w sieciach zarówno domowych, jak i korporacyjnych, gdzie automatyzacja przydzielania adresów IP oszczędza czas administratorów. Dobre praktyki zalecają również ustawienie czasu dzierżawy, co wpływa na to, jak długo dany adres IP pozostaje przypisany do urządzenia. Praktyczne zastosowanie tego polega na unikaniu ręcznego przydzielania adresów IP, co w przypadku dużych sieci jest czasochłonne i podatne na błędy. Serwery DHCP są integralnym elementem nowoczesnych sieci, a ich konfiguracja według najlepszych praktyk zwiększa efektywność i niezawodność połączeń sieciowych

Pytanie 21

Protokół User Datagram Protocol (UDP) należy do

A. warstwy transportowej z połączeniem w modelu TCP/IP
B. warstwy łącza danych bezpołączeniowej w modelu ISO/OSI
C. transportowych protokołów bezpołączeniowych w modelu TCP/IP
D. połączeniowych protokołów warstwy łącza danych w ISO/OSI
User Datagram Protocol (UDP) jest bezpołączeniowym protokołem warstwy transportowej w modelu TCP/IP, co oznacza, że nie nawiązuje on dedykowanego połączenia przed przesyłaniem danych. To podejście pozwala na szybsze przesyłanie pakietów, co jest szczególnie korzystne w aplikacjach wymagających niskich opóźnień, takich jak transmisje wideo na żywo, gry online czy VoIP. W przeciwieństwie do połączeniowych protokołów, takich jak TCP, UDP nie zapewnia mechanizmów kontroli błędów ani ponownego przesyłania utraconych danych, co sprawia, że jest bardziej efektywny w warunkach dużego obciążenia sieciowego. Przykładem zastosowania UDP są protokoły takie jak DNS (Domain Name System), które wymagają szybkiej odpowiedzi, gdzie minimalizacja opóźnień jest kluczowa. W kontekście standardów branżowych, UDP jest zgodny z dokumentem RFC 768, który definiuje jego funkcje oraz zasady działania. Zrozumienie roli UDP w architekturze sieciowej jest fundamentalne dla inżynierów sieci i programistów aplikacji wymagających wysokiej wydajności.

Pytanie 22

Który instrument służy do pomiaru długości oraz tłumienności przewodów miedzianych?

A. Reflektometr TDR
B. Woltomierz
C. Omomierz
D. Miernik mocy
Reflektometr TDR (Time Domain Reflectometer) jest specjalistycznym przyrządem używanym do pomiaru długości i tłumienności przewodów miedzianych, a także innych typów kabli. Działa na zasadzie analizy odbicia sygnału, co pozwala na precyzyjne lokalizowanie miejsc uszkodzeń oraz pomiar długości przewodu. Dzięki temu narzędziu, inżynierowie mogą szybko ocenić jakość połączeń oraz wykrywać ewentualne problemy, takie jak przerwy czy zwarcia. Przykładowo, w branży telekomunikacyjnej, reflektometry TDR są nieocenione podczas instalacji i serwisowania kabli, co pozwala na minimalizację przestojów w działaniu sieci. Korzystanie z reflektometrów zgodnie z normami branżowymi, takimi jak IEC 61280, zapewnia dokładność i rzetelność wyników, a także zgodność z najlepszymi praktykami. Warto również zauważyć, że reflektometry TDR mogą być używane nie tylko w aplikacjach telekomunikacyjnych, ale także w automatyce przemysłowej, co czyni je wszechstronnym narzędziem w pomiarach elektrycznych.

Pytanie 23

Pierwszym krokiem, który należy podjąć, aby chronić ruter przed nieautoryzowanym dostępem do jego panelu administracyjnego, jest

A. aktywacja filtrowania adresów MAC
B. włączenie szyfrowania przy użyciu klucza WEP
C. zmiana loginu i hasła dla wbudowanego konta administratora
D. zmiana domyślnej nazwy sieci (SSID) na unikalną
Dobra robota z tym pytaniem! Zmiana loginu i hasła dla konta administratora w ruterze to naprawdę ważny krok, żeby nie dać się złapać przez nieproszonych gości. Wiele ruterów przychodzi z domyślnymi hasłami, które wszyscy znają – to jak zostawić klucz pod wycieraczką, serio. Jak zmienisz te dane na coś trudniejszego, utrudniasz życie potencjalnym intruzom. Przykładowe hasło, takie jak `S3cur3P@ssw0rd!`, jest dużo lepsze niż coś prostego jak `admin` czy `123456`. A pamiętaj, żeby od czasu do czasu zmieniać te dane, żeby nie dać nikomu szans. To jest absolutnie kluczowe, żeby twoja sieć była bezpieczna. Wiesz, to nie tylko coś, co się zaleca, ale praktyka, która naprawdę się sprawdza.

Pytanie 24

Kabel pokazany na ilustracji może być zastosowany do realizacji okablowania sieci o standardzie

Ilustracja do pytania
A. 100Base-SX
B. 10Base-T
C. 100Base-TX
D. 10Base2
10Base2 to standard korzystający z kabla koncentrycznego, znanego również jako Thin Ethernet lub Cheapernet. Jest to starsza technologia, która nie jest już powszechnie używana ze względu na ograniczenia w szybkości transmisji oraz trudności w instalacji i konserwacji w porównaniu do nowoczesnych standardów, takich jak Ethernet na skrętce czy światłowodzie. 10Base-T oraz 100Base-TX są standardami wykorzystującymi skrętkę miedzianą. 10Base-T operuje z prędkością do 10 Mb/s, natomiast 100Base-TX umożliwia transmisję danych z prędkością do 100 Mb/s, co czyni go częścią Fast Ethernet. Te standardy są powszechnie używane w sieciach lokalnych, zwłaszcza w domach i małych biurach, ze względu na ich łatwość wdrożenia i niskie koszty. Niemniej jednak, w środowiskach, gdzie wymagane są wyższe prędkości oraz większa niezawodność, światłowody, takie jak 100Base-SX, stają się bardziej odpowiednim wyborem. Wybór niepoprawnych odpowiedzi często wynika z niewłaściwego rozpoznania typu kabla i jego zastosowania. Kluczowe jest zrozumienie, jakie medium transmisji jest używane w danym standardzie oraz jakie są jego specyficzne zalety i wady. Dzięki temu można dokładnie określić, jaki typ okablowania jest wymagany w określonych sytuacjach sieciowych. Ponadto, znajomość różnic między miedzią a światłowodem pomaga w wyborze odpowiedniego rozwiązania dla konkretnych potrzeb sieciowych, biorąc pod uwagę takie czynniki jak zasięg, przepustowość oraz odporność na zakłócenia. Dlatego ważne jest, aby w pełni zrozumieć zastosowania i ograniczenia każdej technologii, co pozwoli na lepsze podejmowanie decyzji projektowych w dziedzinie infrastruktury sieciowej. Podsumowując, wybór odpowiedniego standardu sieciowego powinien być oparty na specyficznych wymaganiach danej aplikacji oraz na właściwym dopasowaniu medium transmisji do tych wymagań.

Pytanie 25

W nagłówku ramki standardu IEEE 802.3, który należy do warstwy łącza danych, znajduje się

A. numer portu
B. adres IPv4
C. parametr TTL
D. adres MAC
Adres MAC, czyli Media Access Control, jest kluczowym elementem nagłówka ramki w standardzie IEEE 802.3, który jest odpowiedzialny za komunikację na warstwie łącza danych w modelu OSI. Adres MAC to unikalny identyfikator przypisany do interfejsu sieciowego, który umożliwia urządzeniom identyfikację i komunikację w sieci lokalnej. W kontekście ramki Ethernet, nagłówek zawiera zarówno adres docelowy, jak i adres źródłowy w postaci adresów MAC, co pozwala na poprawne przesyłanie danych pomiędzy urządzeniami. Przykładowo, gdy komputer wysyła dane do drukarki w tej samej sieci lokalnej, używa adresów MAC, aby wskazać, do którego urządzenia ma trafić przesyłka. W branży IT, stosowanie adresów MAC jest standardową praktyką, a ich struktura jest ściśle zdefiniowana przez organizacje, takie jak IEEE. Dzięki temu, analiza i monitorowanie ruchu sieciowego staje się znacznie prostsze, co jest kluczowe w zarządzaniu sieciami oraz zapewnianiu ich bezpieczeństwa.

Pytanie 26

Jakie polecenie w systemie operacyjnym Linux służy do prezentowania konfiguracji interfejsów sieciowych?

A. ipconfig
B. tracert
C. ifconfig
D. ping
Polecenie 'ifconfig' jest jednym z podstawowych narzędzi w systemie operacyjnym Linux, stosowanym do wyświetlania oraz konfiguracji interfejsów sieciowych. Umożliwia użytkownikowi uzyskanie szczegółowych informacji na temat aktualnych interfejsów, takich jak adresy IP, maski podsieci, statystyki ruchu oraz stany interfejsów. Przykładowo, komenda 'ifconfig -a' wyświetli listę wszystkich interfejsów, nawet tych, które są wyłączone. W praktyce, narzędzie to jest często wykorzystywane przez administratorów sieci do monitorowania i diagnostyki, np. w celu rozwiązywania problemów z połączeniem sieciowym. Warto jednak zauważyć, że 'ifconfig' zostało częściowo zastąpione przez bardziej nowoczesne polecenie 'ip', które jest częścią zestawu narzędzi iproute2. Znajomość obu tych narzędzi jest kluczowa dla efektywnego zarządzania siecią w systemach Linux, co jest zgodne z dobrymi praktykami w administracji systemami operacyjnymi.

Pytanie 27

Interfejs HDMI w komputerze umożliwia transfer sygnału

A. tylko cyfrowego audio
B. analogowego audio i video
C. tylko cyfrowego video
D. cyfrowego audio i video
Interfejs HDMI (High-Definition Multimedia Interface) jest standardem, który umożliwia przesyłanie zarówno cyfrowego sygnału audio, jak i wideo, co czyni go niezwykle wszechstronnym rozwiązaniem w dziedzinie elektroniki użytkowej. Dzięki temu, użytkownicy mogą podłączyć różnorodne urządzenia, takie jak telewizory, monitory, projektory, odtwarzacze multimedialne oraz komputery, za pomocą jednego kabla, eliminując potrzebę stosowania wielu kabli dla różnych sygnałów. Przykładowo, połączenie laptopa z telewizorem za pomocą kabla HDMI pozwala na przesyłanie obrazu w wysokiej rozdzielczości oraz towarzyszącego mu dźwięku, co jest szczególnie przydatne podczas prezentacji, oglądania filmów lub grania w gry. Standard HDMI obsługuje różne rozdzielczości, w tym 4K i 8K, a także różne formaty dźwięku, w tym wielokanałowy dźwięk przestrzenny, co czyni go idealnym rozwiązaniem zarówno dla profesjonalistów, jak i dla użytkowników domowych. HDMI stał się de facto standardem w branży audio-wideo, co potwierdzają liczne zastosowania w telekomunikacji, rozrywce i edukacji.

Pytanie 28

Na przedstawionym schemacie urządzeniem, które łączy komputery, jest

Ilustracja do pytania
A. ruter
B. regenerator
C. most
D. przełącznik
Ruter to urządzenie sieciowe, które łączy różne sieci komputerowe i kieruje ruchem danych między nimi. W przeciwieństwie do przełączników, które działają na poziomie drugiej warstwy modelu OSI i zajmują się przesyłaniem danych w obrębie tej samej sieci lokalnej, rutery funkcjonują w trzeciej warstwie, co pozwala im na międzysegmentową komunikację. Ruter analizuje nagłówki pakietów i decyduje o najlepszej ścieżce przesłania danych do ich docelowego adresu. Jego użycie jest kluczowe w sieciach rozległych (WAN), gdzie konieczna jest efektywna obsługa ruchu pomiędzy różnymi domenami sieciowymi. Rutery wykorzystują protokoły routingu, takie jak OSPF czy BGP, umożliwiając dynamiczną adaptację tras w odpowiedzi na zmiany w topologii sieci. Dzięki temu zapewniają redundancję i optymalizację trasy danych, co jest niezbędne w środowiskach o dużym natężeniu ruchu. W praktyce ruter pozwala również na nadawanie priorytetów i zarządzanie przepustowością, co jest istotne dla utrzymania jakości usług w sieciach obsługujących różnorodne aplikacje i protokoły.

Pytanie 29

Tusz w żelu wykorzystywany jest w drukarkach

A. fiskalnych
B. termotransferowych
C. sublimacyjnych
D. igłowych
Tusz żelowy jest powszechnie stosowany w drukarkach sublimacyjnych ze względu na swoje unikalne właściwości. Proces sublimacji polega na przekształceniu tuszu w parę, która następnie wnika w materiał, co skutkuje trwałym i wyraźnym nadrukiem. Tusze żelowe są idealne do tego zastosowania, ponieważ cechują się wysoką jakością kolorów oraz dużą odpornością na blaknięcie. Przykładem zastosowania tuszu żelowego w drukarkach sublimacyjnych jest drukowanie zdjęć na odzieży, kubkach czy flagach. W branży reklamowej i odzieżowej, drukarki sublimacyjne z tuszem żelowym są używane do personalizacji produktów, co zwiększa ich atrakcyjność rynkową. Dobre praktyki w tej dziedzinie obejmują dbałość o właściwe ustawienia temperatury i czasu transferu, co wpływa na jakość końcowego produktu. Warto również zwrócić uwagę na wybór wysokiej jakości papieru transferowego, co dodatkowo podnosi standardy produkcji.

Pytanie 30

Router przypisany do interfejsu LAN dysponuje adresem IP 192.168.50.1. Został on skonfigurowany w taki sposób, aby przydzielać komputerom wszystkie dostępne adresy IP w sieci 192.168.50.0 z maską 255.255.255.0. Jaką maksymalną liczbę komputerów można podłączyć w tej sieci?

A. 256
B. 253
C. 255
D. 254
Odpowiedź 253 jest prawidłowa, ponieważ w sieci z maską 255.255.255.0 (znanej również jako /24) mamy do czynienia z 256 adresami IP, które mogą być przypisane. Adresy te mieszczą się w zakresie od 192.168.50.0 do 192.168.50.255. Niemniej jednak, dwa adresy z tej puli są zarezerwowane: pierwszy adres (192.168.50.0) identyfikuje samą sieć, a ostatni adres (192.168.50.255) jest adresem rozgłoszeniowym (broadcast). Dlatego, aby uzyskać liczbę dostępnych adresów IP dla urządzeń (hostów), musimy odjąć te dwa adresy od całkowitej liczby. W rezultacie 256 - 2 = 254. Jednakże, w praktyce adres 192.168.50.1 jest przypisany routerowi, co z kolei oznacza, że jeden dodatkowy adres IP jest również zajęty. W związku z tym, maksymalna liczba komputerów, które można skonfigurować w tej sieci, wynosi 253. Warto znać te podstawy przy projektowaniu sieci lokalnych, aby efektywnie zarządzać przydzielaniem adresów IP oraz unikać problemów związanych z ich niedoborem.

Pytanie 31

Jaki jest poprawny adres podsieci po odjęciu 4 bitów od części hosta w adresie klasowym 192.168.1.0?

A. 192.168.1.44/28
B. 192.168.1.88/27
C. 192.168.1.80/27
D. 192.168.1.48/28
Wybór adresów 192.168.1.80/27, 192.168.1.88/27 oraz 192.168.1.44/28 wynika z nieprawidłowego zrozumienia zasad maskowania adresów IP oraz obliczania podsieci. Adres 192.168.1.80/27 jest nieprawidłowy, ponieważ maska /27 (255.255.255.224) wskazuje, że pierwsze 27 bitów jest używane do identyfikacji sieci, co prowadzi do adresu sieci 192.168.1.64 i rozgłoszeniowego 192.168.1.95, a więc adres 192.168.1.80 jest poza tą podsiecią. Analogicznie, adres 192.168.1.88/27 również nie jest prawidłowy z tych samych powodów, ponieważ również leży poza przypisaną przestrzenią adresową dla maski /27. Jeśli chodzi o adres 192.168.1.44/28, maska /28 oznacza, że mamy 16 adresów, co jest zgodne, ale adres sieci wynosi 192.168.1.32, a adres rozgłoszeniowy to 192.168.1.47, przez co 192.168.1.44 jest wciąż wykorzystywany jako adres hosta, co jest wadą w tym kontekście. Kluczowym błędem w tych odpowiedziach jest zrozumienie, że przy pożyczaniu 4 bitów z części hosta, zmieniając maskę na /28, musimy zwrócić uwagę na zakresy adresów, które są możliwe do przypisania w danej podsieci. Prawidłowe podejście do adresacji IP polega na zrozumieniu relacji między maską podsieci a rzeczywistymi adresami, co jest fundamentalne dla zarządzania sieciami.

Pytanie 32

Które z urządzeń używanych w sieci komputerowej NIE WPŁYWA na liczbę domen kolizyjnych?

A. Hub
B. Router
C. Switch
D. Server
Zrozumienie ról różnych urządzeń w sieci komputerowej jest kluczowe dla prawidłowego zarządzania ruchem danych. Ruter, jako urządzenie sieciowe, działa na poziomie warstwy sieci w modelu OSI i jest odpowiedzialny za przesyłanie pakietów między różnymi sieciami oraz zarządzanie ich trasowaniem. Przełącznik, z kolei, działa na poziomie warstwy łącza danych i może segmentować sieć na różne domeny kolizyjne, co pozwala na równoległe przesyłanie danych bez ryzyka kolizji. Koncentrator, będący urządzeniem działającym na poziomie fizycznym, przekazuje sygnały do wszystkich portów, co skutkuje tym, że wszystkie urządzenia podłączone do koncentratora należą do tej samej domeny kolizyjnej. W związku z tym, zarówno ruter, jak i przełącznik mają wpływ na liczbę domen kolizyjnych w sieci, co powoduje, że ich wybór i zastosowanie są istotne w kontekście projektowania efektywnych architektur sieciowych. Typowym błędem myślowym jest mylenie funkcji serwera z funkcjami urządzeń, które zarządzają ruchem. Serwer nie zmienia liczby domen kolizyjnych, ponieważ jego rola ogranicza się do udostępniania zasobów. Właściwe zrozumienie tych ról i ich zastosowanie w praktyce jest kluczowe dla optymalizacji działania sieci oraz unikania problemów z wydajnością i dostępnością zasobów.

Pytanie 33

Dostosowanie ustawień parametrów TCP/IP urządzenia na podstawie adresu MAC karty sieciowej jest funkcją protokołu

A. HTTP
B. DNS
C. FTP
D. DHCP
Odpowiedź DHCP (Dynamic Host Configuration Protocol) jest prawidłowa, ponieważ ten protokół odpowiada za dynamiczne przydzielanie adresów IP oraz konfigurowanie innych parametrów sieciowych hostów w sieciach IP. Kiedy urządzenie, takie jak komputer czy smartfon, łączy się z siecią, wysyła zapytanie DHCP, które jest odbierane przez serwer DHCP. Serwer ten następnie przypisuje adres IP na podstawie unikalnego adresu MAC karty sieciowej. Przykładowo, w biurze z setkami urządzeń, DHCP automatyzuje proces konfiguracji, co znacznie ułatwia zarządzanie siecią i minimalizuje ryzyko konfliktów adresów IP. Zgodnie ze standardami branżowymi, DHCP może także dostarczać informacje o bramach, serwerach DNS i innych parametrach, co czyni go kluczowym protokołem w nowoczesnych sieciach. Jego stosowanie jest zgodne z najlepszymi praktykami, ponieważ pozwala na elastyczne i efektywne zarządzanie adresacją IP w dynamicznie zmieniających się środowiskach.

Pytanie 34

W skład sieci komputerowej wchodzą 3 komputery stacjonarne oraz drukarka sieciowa, połączone kablem UTP z routerem mającym 1 x WAN oraz 5 x LAN. Które z urządzeń sieciowych pozwoli na podłączenie dodatkowych dwóch komputerów do tej sieci za pomocą kabla UTP?

A. Terminal sieciowy
B. Przełącznik
C. Modem
D. Konwerter mediów
Przełącznik, znany również jako switch, jest urządzeniem sieciowym, które umożliwia podłączenie wielu komputerów i innych urządzeń do jednej sieci lokalnej. Jego działanie polega na przekazywaniu danych między urządzeniami na podstawie adresów MAC, co zapewnia efektywną komunikację i minimalizuje kolizje. W przypadku opisanej sieci, gdzie już istnieją 3 komputery stacjonarne oraz drukarka sieciowa, a ruter ma ograniczoną liczbę portów LAN, dodanie przełącznika pozwala na zwiększenie liczby dostępnych portów. Dzięki temu, dwa dodatkowe komputery mogą być podłączone bezpośrednio do przełącznika, a ten przekaże ruch do rutera. W praktyce, przełączniki są często stosowane w biurach i domach, aby rozbudować sieci lokalne i zwiększyć liczbę urządzeń bez potrzeby inwestowania w droższe rutery z większą liczbą portów. Ważne jest również, że przełączniki mogą pracować na różnych warstwach modelu OSI, w tym warstwie drugiej (łącza danych), co czyni je elastycznymi narzędziami w zarządzaniu ruchem sieciowym. Stanowią one kluczowy element w każdej nowoczesnej infrastrukturze sieciowej, zgodnie z najlepszymi praktykami w projektowaniu sieci.

Pytanie 35

Ikona błyskawicy widoczna na ilustracji służy do identyfikacji złącza

Ilustracja do pytania
A. Micro USB
B. Thunderbolt
C. DisplayPort
D. HDMI
Symbol błyskawicy jest powszechnie używany do oznaczania złącza Thunderbolt, które jest nowoczesnym interfejsem opracowanym przez firmy Intel i Apple. Thunderbolt łączy w sobie funkcjonalności kilku innych standardów, takich jak DisplayPort i PCI Express, co pozwala na przesyłanie zarówno obrazu, jak i danych z dużą prędkością. Najnowsze wersje Thunderbolt pozwalają na przesył do 40 Gb/s, co czyni ten interfejs idealnym do profesjonalnych zastosowań, takich jak edycja wideo w wysokiej rozdzielczości czy szybki transfer danych. Dzięki obsłudze protokołu USB-C, Thunderbolt 3 i 4 są kompatybilne z wieloma urządzeniami, co jest wygodne dla użytkowników potrzebujących wszechstronności. Złącze to bywa stosowane w komputerach typu MacBook czy w niektórych laptopach z serii ultrabook, a jego wszechstronność i wysoka wydajność są cenione przez specjalistów z branży kreatywnej i IT. Warto wiedzieć, że Thunderbolt obsługuje kaskadowe łączenie urządzeń, co oznacza, że można podłączyć kilka urządzeń do jednego portu, co jest praktyczne w środowiskach wymagających intensywnej wymiany danych.

Pytanie 36

Jaką maksymalną liczbę hostów można przypisać w lokalnej sieci, dysponując jedną klasą C adresów IPv4?

A. 510
B. 254
C. 512
D. 255
Maksymalna liczba hostów, które można zaadresować w sieci lokalnej przy użyciu jednego bloku klas C adresów IPv4, wynosi 254. Adresy klasy C mają maskę podsieci 255.255.255.0, co daje możliwość zaadresowania 256 adresów IP. Jednakże, dwa z nich są zarezerwowane: jeden dla adresu sieci (w tym przypadku 192.168.1.0) oraz jeden dla adresu rozgłoszeniowego (w tym przypadku 192.168.1.255). W związku z tym, z 256 adresów, możemy użyć 254 do przydzielenia hostom. W praktyce, w lokalnych sieciach komputerowych, takie podejście jest powszechnie stosowane, zwłaszcza w małych sieciach domowych lub biurowych, gdzie nie jest potrzebna większa liczba urządzeń. Znajomość tych zasad jest istotna w projektowaniu oraz zarządzaniu sieciami, zapewniając skuteczność i wydajność przydzielania zasobów IP w danej infrastrukturze.

Pytanie 37

Jaki skrót oznacza rodzaj licencji Microsoft dedykowanej dla szkół, uczelni, instytucji rządowych oraz dużych firm?

A. OEM
B. BOX
C. MOLP
D. VLSC
MOLP, czyli Microsoft Open License Program, to typ licencji stworzony z myślą o organizacjach takich jak szkoły, uczelnie wyższe, instytucje rządowe oraz duże przedsiębiorstwa. Program ten oferuje elastyczność w zakresie zakupu oprogramowania, umożliwiając nabycie licencji na wiele komputerów w ramach jednej umowy. W praktyce oznacza to, że instytucje mogą korzystać z programów Microsoft, takich jak Windows i Office, w sposób dostosowany do ich specyficznych potrzeb oraz budżetu. Dodatkowo, MOLP zapewnia organizacjom dostęp do aktualizacji oprogramowania, co jest kluczowe w kontekście bezpieczeństwa i wydajności systemów informatycznych. Tego typu licencjonowanie jest zgodne z dobrymi praktykami w zarządzaniu IT, zapewniając jednocześnie wsparcie techniczne oraz opcje szkoleniowe, co jest istotne dla zwiększenia efektywności pracy użytkowników. Program MOLP promuje również odpowiedzialne korzystanie z oprogramowania, co jest zgodne z polityką Microsoft dotyczącą zrównoważonego rozwoju i etyki w biznesie.

Pytanie 38

Aby podłączyć dysk z interfejsem SAS, konieczne jest użycie kabla przedstawionego na ilustracji

Ilustracja do pytania
A. Odpowiedź A
B. Odpowiedź B
C. Odpowiedź C
D. Odpowiedź D
Kabel przedstawiony w opcji D to kabel SAS (Serial Attached SCSI) który jest niezbędny do podłączenia dysków z interfejsem SAS. Interfejs SAS jest rozwinięciem standardu SCSI i oferuje szereg korzyści technicznych takich jak wyższa przepustowość oraz możliwość jednoczesnego podłączenia wielu urządzeń bez utraty wydajności. Standard SAS jest szeroko stosowany w środowiskach serwerowych i centrach danych ze względu na swoją niezawodność i skalowalność. Kabel SAS charakteryzuje się specyficznym złączem które umożliwia przesył danych z dużą szybkością sięgającą do 12 Gb/s co jest kluczowe przy obsłudze dużych ilości danych. W praktyce wykorzystanie kabli SAS zapewnia stabilne i szybkie połączenie co jest nieocenione w krytycznych zastosowaniach biznesowych gdzie szybkość i niezawodność mają kluczowe znaczenie. Dodatkowo kable SAS mogą obsługiwać wiele dysków dzięki strukturze topologii punkt-punkt co eliminuje kolizje danych i zwiększa efektywność operacyjną systemów pamięci masowej. Wybór kabla SAS jest wynikiem analiz technologicznych które potwierdzają jego skuteczność w zaawansowanych środowiskach IT.

Pytanie 39

Sprzęt, który umożliwia konfigurację sieci VLAN, to

A. switch
B. most przezroczysty (transparent bridge)
C. regenerator (repeater)
D. firewall
Switch, czyli przełącznik sieciowy, jest kluczowym urządzeniem w architekturze sieci VLAN (Virtual Local Area Network). Pozwala on na tworzenie wielu logicznych sieci w ramach jednej fizycznej infrastruktury, co jest szczególnie przydatne w dużych organizacjach. Dzięki VLAN można segmentować ruch sieciowy, co zwiększa bezpieczeństwo i efektywność zarządzania siecią. Przykładem może być sytuacja, w której dział finansowy i dział IT w tej samej firmie funkcjonują w odrębnych VLAN-ach, co ogranicza dostęp do poufnych danych. Standardy takie jak IEEE 802.1Q definiują, w jaki sposób przełączniki mogą tagować ramki Ethernet, aby rozróżniać różne VLAN-y. Dobrą praktyką jest stosowanie VLAN-ów do izolowania ruchu, co nie tylko poprawia bezpieczeństwo, ale także zwiększa wydajność sieci poprzez ograniczenie rozprzestrzeniania się broadcastów. Warto również zwrócić uwagę na możliwość zarządzania VLAN-ami przez protokoły takie jak VTP (VLAN Trunking Protocol), co upraszcza administrację siecią w skomplikowanych środowiskach.

Pytanie 40

Aby zapewnić użytkownikom Active Directory możliwość logowania i korzystania z zasobów tej usługi w sytuacji awarii kontrolera domeny, trzeba

A. włączyć wszystkich użytkowników do grupy administratorzy
B. zainstalować dodatkowy kontroler domeny
C. skopiować wszystkie zasoby sieciowe na każdy komputer w domenie
D. podarować wszystkim użytkownikom kontakt do Help Desk
Przekazywanie numeru do Help Desk jako metoda zapewnienia wsparcia w przypadku awarii kontrolera domeny nie jest wystarczającym rozwiązaniem. Choć pomoc techniczna może być istotna dla użytkowników w sytuacjach kryzysowych, sama informacja kontaktowa nie eliminuje problemów związanych z dostępem do zasobów Active Directory. W sytuacji awarii kontrolera, użytkownicy mogą nie mieć możliwości logowania się do systemu, co czyni pomoc zdalną nieefektywną. Dodatkowo dodawanie wszystkich użytkowników do grupy administratorzy stwarza poważne zagrożenia bezpieczeństwa, bowiem przyznanie szerokich uprawnień może prowadzić do nieautoryzowanego dostępu do krytycznych zasobów systemowych, a także zwiększyć ryzyko przypadkowych lub intencjonalnych usunięć danych. Kopiowanie zasobów sieci na każdy komputer w domenie to rozwiązanie niezwykle nieefektywne i kosztowne, które nie tylko zajmuje cenne zasoby dyskowe, ale również nie zapewnia centralnego zarządzania i kontroli dostępu, co jest kluczowe w środowisku Active Directory. Te podejścia do zarządzania dostępnością usług są niezgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie redundancji i planowania na wypadek awarii, a także konieczność stosowania zrównoważonych strategii zabezpieczeń i zarządzania użytkownikami.