Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 23:13
  • Data zakończenia: 7 grudnia 2025 23:26

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do czego służy klucz dynamometryczny?

A. do dokręcania śrub w trudno dostępnych miejscach
B. do ułatwienia odkręcania i dokręcania śrub
C. do odkręcania zardzewiałych śrub
D. do dokręcania śrub z określonym momentem obrotowym
Klucz dynamometryczny jest niezbędnym narzędziem w sytuacjach, gdzie precyzyjne dokręcanie śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Umożliwia on osiągnięcie określonego momentu siły, co jest istotne w wielu zastosowaniach, takich jak montaż elementów w silnikach, układach zawieszenia czy też w budowie maszyn. Dobrze dobrany moment dokręcania wpływa na złącza śrubowe, zapobiegając ich poluzowaniu lub uszkodzeniu. W praktyce, na przykład w branży motoryzacyjnej, wiele specyfikacji producentów wyraźnie określa wymagany moment dokręcania dla poszczególnych śrub. Użycie klucza dynamometrycznego zgodnie z tymi specyfikacjami jest kluczowe dla zapewnienia długowieczności i niezawodności elementów, a także uniknięcia niebezpiecznych awarii. Stosowanie klucza dynamometrycznego jest zatem zgodne z dobrymi praktykami i standardami branżowymi, które kładą nacisk na bezpieczeństwo i jakość wykonania.

Pytanie 2

Narzędzie pomiarowe, przedstawione na rysunku, służy do sprawdzania

Ilustracja do pytania
A. płaskości powierzchni.
B. szerokości szczelin między powierzchniami.
C. skoku gwintów metrycznych.
D. promieni zaokrągleń.
Zrozumienie działania narzędzi pomiarowych jest kluczowe dla skutecznej kontroli jakości w procesach produkcyjnych. Wybór odpowiedniego narzędzia pomiarowego, takiego jak kaliber promieniowy, ma istotne znaczenie w kontekście precyzyjnego pomiaru promieni zaokrągleń. W przypadku odpowiedzi dotyczących skoku gwintów metrycznych, płaskości powierzchni oraz szerokości szczelin, należy zauważyć, że każde z tych zagadnień wymaga zastosowania odmiennych narzędzi i technik pomiarowych. Nieprawidłowe przypisanie narzędzia do tych miar może prowadzić do poważnych błędów w produkcie końcowym. W przypadku skoku gwintów metrycznych, do ich pomiaru stosuje się mikrometry lub suwmiarki z odpowiednimi końcówkami pomiarowymi, które są zaprojektowane do oceny liczby gwintów na jednostkę długości. Płaskość powierzchni można natomiast sprawdzić za pomocą poziomicy lub specjalnych przyrządów do pomiaru płaskości, które wykorzystują metodę porównawczą z płaską referencją. Z kolei szerokość szczelin między powierzchniami wymaga użycia narzędzi takich jak szczelinomierze, które mogą dokładnie określić odległości między współpracującymi elementami. W związku z tym, niewłaściwe przyporządkowanie narzędzi do konkretnych zastosowań może prowadzić do nieprawidłowych pomiarów, co w konsekwencji wpływa na jakość i bezpieczeństwo wytwarzanych produktów. Wiedza na temat odpowiednich narzędzi i ich zastosowania jest kluczowa dla profesjonalistów w dziedzinie inżynierii i produkcji.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Która pompa hydrauliczna zbudowana jest z elementów przedstawionych na rysunku?

Ilustracja do pytania
A. Śrubowa.
B. Zębata.
C. Tłokowa promieniowa.
D. Tłokowa osiowa.
Pompa śrubowa, którą zidentyfikowałeś, wyróżnia się konstrukcją opartą na dwóch śrubach, które obracają się w przeciwnych kierunkach. Taka konstrukcja pozwala na efektywne przemieszczanie cieczy w zamkniętej przestrzeni, co czyni ją idealnym rozwiązaniem w aplikacjach wymagających wysokiej wydajności i stabilności. Pompy śrubowe są często wykorzystywane w przemyśle naftowym oraz chemicznym, gdzie transportuje się substancje o dużej lepkości. Dzięki swojej konstrukcji, pompy te charakteryzują się niskimi pulsacjami i możliwością pracy przy dużych obciążeniach. W praktyce, stosuje się je również w systemach nawadniania oraz w instalacjach HVAC, gdzie ich niezawodność i trwałość są kluczowe. Posiadając wiedzę na temat budowy i funkcji pomp śrubowych, można lepiej dobierać odpowiednie urządzenia do specyficznych potrzeb przemysłowych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 5

Na podstawie przedstawionego diagramu określ którym symbolem jest oznaczony element powodujący wysterowanie zaworu Y1 w pierwszym kroku działania.

Ilustracja do pytania
A. 1S1
B. 2A1
C. B1
D. T
Odpowiedź 1S1 jest poprawna, ponieważ na diagramie to właśnie ten symbol reprezentuje element, który aktywuje zawór Y1 w pierwszym kroku działania. Zrozumienie tego schematu jest kluczowe dla prawidłowego działania systemów automatyki, w których precyzyjne sterowanie zaworami może mieć bezpośredni wpływ na efektywność procesów. W kontekście automatyki przemysłowej, elementy jak 1S1 często pełnią rolę czujników lub sygnałów sterujących, które decydują o otwarciu lub zamknięciu zaworu w odpowiedzi na zmiany warunków operacyjnych. Dobrą praktyką jest regularne analizowanie i testowanie takich schematów, aby upewnić się, że każdy element działa zgodnie z przewidzianymi normami. Ponadto, znajomość oznaczeń i ich funkcji jest niezbędna w kontekście zgodności z normą ISO 1219, która określa standardy dla symboli i schematów używanych w pneumatyce oraz hydraulice.

Pytanie 6

Ile wynosi napięcie między przewodami L3 i N, w sieci pokazanej na rysunku, jeżeli zmierzone napięcia międzyfazowe wynoszą 400 V?

Ilustracja do pytania
A. 400 V
B. 200 V
C. 380V
D. 230 V
W sieci trójfazowej o napięciu międzyfazowym wynoszącym 400 V, napięcie między przewodem fazowym a przewodem neutralnym (N) wynosi około 230 V. To napięcie fazowe jest zgodne z normą PN-EN 50160, która definiuje parametry napięcia dostarczanego do odbiorców w Polsce. W praktyce, takie napięcie jest powszechnie stosowane w instalacjach elektrycznych do zasilania urządzeń domowych, oświetlenia i innych aplikacji wymagających zasilania z sieci. Znajomość tego napięcia jest kluczowa dla elektryków oraz inżynierów zajmujących się projektowaniem i budową instalacji elektrycznych. Umożliwia to właściwe dobieranie zabezpieczeń oraz przewodów, co wpływa na bezpieczeństwo i efektywność energetyczną instalacji. Użytkownicy powinni pamiętać, że pomiar napięcia w instalacji trójfazowej wymaga stosowania odpowiednich narzędzi pomiarowych, aby uzyskać dokładne wyniki, a także przestrzegania zasad BHP.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Przedstawiony kondensator ma pojemność

Ilustracja do pytania
A. 10 mF
B. 10 μF
C. 10 pF
D. 10 nF
Odpowiedzi 10 μF, 10 pF i 10 mF są błędne. Dlaczego? Bo nie odpowiadają oznaczeniu kondensatora, który miałeś na zdjęciu. Wartość 10 μF (mikrofaradów) to znacznie większa pojemność niż 10 nF, więc stosowanie takiego kondensatora w układzie może po prostu nie zadziałać. Na przykład, stosując kondensator o pojemności 10 μF zamiast 10 nF w filtrze, dostaniesz całkiem inne parametry częstotliwościowe, co może pogorszyć jakość sygnału. Z drugiej strony, 10 pF (pikofaradów) to pojemność znacznie mniejsza, która też nie nadaje się w tej aplikacji. Ostatnia wartość 10 mF (milifaradów) jest po prostu za duża i może uszkodzić obwód, bo to zbyt wysoka pojemność. Ważne jest, żeby znać oznaczenia i jednostki, żeby uniknąć tych podstawowych błędów w elektronice.

Pytanie 9

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Klejenie
B. Zgrzewanie
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 10

Zespół elementów przedstawiony na rysunku pełni funkcję

Ilustracja do pytania
A. stabilizatora napięcia.
B. powielacza napięcia.
C. prostownika.
D. filtra.
Prostowniki są kluczowymi elementami w układach elektronicznych, które przekształcają prąd przemienny (AC) na prąd stały (DC). W przedstawionym schemacie mamy do czynienia z mostkiem prostowniczym, który składa się z czterech diod, co pozwala na wyprostowanie obu połówek sygnału AC. Dzięki temu uzyskujemy stabilny prąd stały, który może być użyty do zasilania różnych urządzeń elektronicznych. Prostowniki są wykorzystywane w zasilaczach, ładowarkach oraz w systemach zasilania energią odnawialną, takich jak panele słoneczne. Dobrze zaprojektowane układy prostownicze uwzględniają także aspekty związane z filtracją, aby zminimalizować tętnienia w prądzie stałym, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej. Prostowniki są fundamentalnym elementem w konwersji energii elektrycznej i ich zrozumienie jest niezbędne dla każdego inżyniera elektryka.

Pytanie 11

Na podstawie tabeli kodów paskowych rezystorów wskaż rezystor o wartości rezystancji 1 kΩ i tolerancji 5%.

Kody paskowe rezystorów

KolorWartośćMnożnikTolerancja
± %
Współczynnik temp.
± ppm/K
1 pasek2 pasek3 pasek4 pasekOstatni pasek
czarny00x 1 Ω20200
brązowy11x 10 Ω1100
czerwony22x 100 Ω250
pomarańczowy33x 1 k315
żółty44x 10 k0 - +10025
zielony55x 100 k0.5
niebieski66x 1 M0.2510
fioletowy77x 10 M0,15
szary880,051
biały99
złoty0,1 Ω5
srebrny0,01 Ω10
brak20
Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór nieprawidłowego rezystora może wynikać z błędnego odczytu kodów paskowych lub ich niewłaściwej interpretacji. Paski na rezystorze, które nie odpowiednio odzwierciedlają wartości 1 kΩ i tolerancji 5%, mogą prowadzić do nieodpowiednich decyzji przy projektowaniu obwodów elektronicznych. Na przykład, jeżeli wybrano rezystor z innym kolorem pasków, łatwo można błędnie zinterpretować jego wartość. Jeżeli zamiast brązowego, czarnego, czerwonego i złotego, na rezystorze znajdują się paski, które wskazują na inną wartość rezystancji, z pewnością będzie to miało negatywne konsekwencje na działanie układów elektronicznych, w których ten komponent jest zainstalowany. Typowym błędem jest również nieznajomość kolorów pasków oraz ich kolejności. Prawidłowe zrozumienie kodu paskowego jest kluczowe dla każdego inżyniera, ponieważ pozwala to na nawiązanie do praktycznych zastosowań i standardów branżowych. Ponadto, znaczenie tolerancji jest często niedoceniane; niektórzy mogą zakładać, że tolerancje nie mają wpływu na działanie obwodu, co jest błędnym założeniem. W rzeczywistości, tolerancja odgrywa kluczową rolę w stabilności i niezawodności obwodów elektronicznych, a dobór odpowiednich komponentów na podstawie dokładnych specyfikacji jest absolutnie niezbędny, aby uniknąć problemów w przyszłości.

Pytanie 12

W jaki sposób można zamocować przedstawiony na rysunku stycznik?

Ilustracja do pytania
A. Wyłącznie na uchwycie montażowym na szynie TH.
B. Wyłącznie za pomocą wkrętów.
C. Na uchwycie montażowym lub na zatrzask na szynie TH.
D. Na zatrzask na szynie TH lub za pomocą wkrętów.
Styczniki są kluczowymi elementami w instalacjach elektrycznych, a ich odpowiedni sposób montażu jest niezbędny dla zapewnienia bezpieczeństwa i efektywności działania systemu. Odpowiedź "Na zatrzask na szynie TH lub za pomocą wkrętów." jest poprawna, ponieważ styczniki często wykorzystują standardowe szyny DIN (np. TH35) do montażu, co ułatwia ich instalację i demontaż. Szyny DIN są powszechnie stosowane w rozdzielnicach, co pozwala na łatwe rozmieszczanie różnych komponentów. Montaż na zatrzask zapewnia stabilność i umożliwia szybkie przemieszczenie lub wymianę stycznika, co jest istotne w przypadku serwisowania. Alternatywnie, niektóre modele styczników pozwalają na montaż za pomocą wkrętów, co może być preferowane w środowiskach o wysokich wibracjach lub tam, gdzie może występować ryzyko przypadkowego odłączenia. Zastosowanie obu metod montażu zgodnie z wymaganiami projektowymi oraz dobrą praktyką instalacyjną zwiększa bezpieczeństwo i trwałość instalacji elektrycznej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Do zdejmowania izolacji z przewodów elektrycznych należy zastosować narzędzie przedstawione na rysunku

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Zastosowanie niewłaściwych narzędzi do zdejmowania izolacji z przewodów elektrycznych może prowadzić do poważnych konsekwencji, zarówno dla bezpieczeństwa pracy, jak i dla integralności samych przewodów. Wiele osób może pokusić się o użycie narzędzi, które nie są przeznaczone do tego celu, co jest poważnym błędem. Użycie nożyc, noża czy nawet zwykłych szczypiec może prowadzić do uszkodzenia miedzianych lub aluminiowych przewodów, co z kolei może spowodować ich niewłaściwe przewodnictwo, prowadząc do ryzyka zwarcia i pożaru. Innym częstym błędem jest zbytnio agresywne podejście do ściągania izolacji; osoby, które nie znają specyfiki narzędzi, mogą stosować nadmierną siłę, co skutkuje niezamierzonym przełamaniem przewodu. Nieprzestrzeganie zasad bezpieczeństwa oraz ignorowanie podstawowych standardów pracy z instalacjami elektrycznymi jest nie tylko nieodpowiedzialne, ale także potencjalnie niebezpieczne. Ważne jest, aby zdawać sobie sprawę, że do takich zadań należy używać szczypiec do ściągania izolacji, które zapewniają pełną kontrolę nad procesem, minimalizując ryzyko uszkodzenia. Dlatego kluczowe jest przestrzeganie standardów oraz stosowanie odpowiednich narzędzi, które są zgodne z przepisami BHP oraz normami branżowymi.

Pytanie 15

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. płaskiego
B. nasadowego
C. nasadowego
D. imbusowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 16

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. kamerę termowizyjną
B. miernik uniwersalny
C. miernik RLC
D. miernik parametrów instalacji
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Wskaż tabliczkę znamionową urządzenia napędowego przeznaczonego do pracy przy stałym momencie obciążającym w nieograniczonym czasie.

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór odpowiedzi, która nie jest poprawna, często wynika z niepełnego zrozumienia kluczowych parametrów silników elektrycznych i ich zastosowań. Na przykład, tabliczka znamionowa, która nie wskazuje zdolności do pracy przy stałym momencie obciążającym, może odnosić się do silnika przeznaczonego do pracy w zmiennych warunkach obciążenia, co jest typowe dla silników stosowanych w aplikacjach, gdzie zmiana momentu obciążenia jest częsta. Takie silniki, bez wskazania odpowiednich danych dotyczących napięcia, prądu oraz momentu obrotowego, mogą prowadzić do nieodpowiedniego doboru urządzenia do specyficznych zadań przemysłowych. Ponadto, brak zrozumienia znaczenia klasyfikacji silników według norm IEC 60034, które podkreślają znaczenie tabliczek znamionowych dla użytkowników, może prowadzić do wyboru niewłaściwego sprzętu. Ważne jest, aby zrozumieć, że silniki przystosowane do stałego momentu obciążenia są projektowane z myślą o długotrwałym użytkowaniu, co oznacza, że ich parametry muszą odpowiadać wymaganiom operacyjnym. Błędem jest też pomijanie różnorodnych zastosowań silników, które mogą wymagać różnych charakterystyk pracy, co w rezultacie prowadzi do niewłaściwego doboru urządzeń, a tym samym obniżenia efektywności procesów przemysłowych.

Pytanie 19

Na szynie TH35 trzeba zamontować przedstawiony na ilustracji przekaźnik o 4 zestykach przełącznych. Które gniazdo można zastosować do tego montażu?

Ilustracja do pytania
A. Gniazdo 4.
B. Gniazdo 2.
C. Gniazdo 1.
D. Gniazdo 3.
Wybór innego gniazda, jak gniazdo 1., 2. lub 4., może prowadzić do nieprawidłowego działania przekaźnika oraz stanowić zagrożenie dla bezpieczeństwa instalacji. Każde z tych gniazd ma inną konfigurację pinów, co oznacza, że nie będą one w stanie prawidłowo współpracować z przekaźnikiem o 4 zestykach przełącznych. Często błędna decyzja o wyborze gniazda wynika z niewłaściwej interpretacji dokumentacji technicznej lub braku znajomości specyfikacji urządzenia. W praktyce, nieodpowiednie gniazdo może prowadzić do niewłaściwego podłączenia, co skutkuje nieprawidłowym funkcjonowaniem obwodów, a w skrajnych przypadkach do uszkodzenia komponentów elektronicznych. Zastosowanie niewłaściwego gniazda jest częstym błędem, szczególnie w sytuacjach, gdy użytkownicy mylą normy dotyczące różnych typów przekaźników. Aby zminimalizować takie ryzyko, kluczowe jest, aby zawsze dokładnie sprawdzać specyfikacje techniczne oraz upewnić się, że wybierane komponenty są kompatybilne. Zrozumienie różnic między gniazdami oraz ich właściwe zastosowanie jest fundamentalne dla zapewnienia trwałości i bezpieczeństwa instalacji elektrycznych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
B. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
C. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
D. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
Montaż zgodny z zasadą całkowitej zamienności oznacza, że wszystkie części składowe danego zespołu są produkowane z bardzo wąskimi tolerancjami wymiarowymi. Dzięki temu, każda z części może być wymieniana bez konieczności dodatkowej obróbki. Taki sposób produkcji jest kluczowy w branżach, gdzie precyzja i niezawodność są priorytetem, na przykład w przemyśle lotniczym czy motoryzacyjnym. W praktyce oznacza to, że przy wymianie części, takich jak elementy silnika czy układu napędowego, nie zachodzi potrzeba ich dopasowywania ani regulacji, co znacznie przyspiesza czas montażu. Standardy, takie jak ISO 286 dotyczące tolerancji wymiarowych oraz norma AS9100 w przemyśle lotniczym, podkreślają znaczenie tego podejścia, ponieważ mają one na celu zapewnienie wysokiej jakości oraz bezpieczeństwa produktów. Dostosowanie procesu produkcji do zasady całkowitej zamienności pozwala również na obniżenie kosztów, ponieważ zmniejsza się ryzyko błędów montażowych oraz reklamacji związanych z niewłaściwym działaniem części.

Pytanie 22

Jaką sprężarkę klasyfikuje się jako sprężarkę wyporową?

A. Sprężarkę śrubową
B. Turbosprężarkę
C. Sprężarkę osiową
D. Sprężarkę promieniową
Sprężarka śrubowa to jeden z typów sprężarek wyporowych, które działają na zasadzie mechanicznego zwiększania ciśnienia gazu poprzez jego zmniejszanie objętości w zamkniętej przestrzeni. W sprężarkach śrubowych dwa wirniki, w kształcie śrub, obracają się w przeciwnych kierunkach, co powoduje zasysanie gazu i jego sprężanie. Taki typ sprężarki jest szeroko stosowany w przemyśle, w tym w systemach pneumatycznych, systemach chłodzenia oraz w aplikacjach wymagających ciągłego przepływu sprężonego powietrza. Dzięki swojej konstrukcji, sprężarki śrubowe charakteryzują się wysoką wydajnością, niskim poziomem hałasu oraz długą żywotnością. Standardy branżowe, takie jak ISO 8573-1, określają wymagania dotyczące jakości sprężonego powietrza, co sprawia, że sprężarki śrubowe są często wybierane ze względu na ich zdolność do dostarczania powietrza o wysokiej czystości i niskiej wilgotności, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W przekładni zbudowanej z kół przedstawionych na rysunku należy zastosować pasek

Ilustracja do pytania
A. wieloklinowy.
B. zębaty.
C. wielorowkowy.
D. klinowy.
Wybór pasków wielorowkowych, klinowych lub wieloklinowych do połączenia kół zębatych jest błędny z kilku powodów. Paski wielorowkowe są stosowane w układach napędowych, gdzie wymagane jest przeniesienie mocy z silnika na inne elementy napędowe, ale nie współpracują one z zębami kół zębatych. Ich konstrukcja, polegająca na wielowrzecionowych rowkach, nie pozwala na precyzyjne dopasowanie i synchronizację z zębami, co prowadzi do poślizgu i utraty efektywności. Z kolei paski klinowe, które działają na zasadzie tarcia, są używane w napędach, gdzie nie ma potrzeby precyzyjnego dopasowania zębów, co w przypadku kół zębatych jest absolutnie konieczne. Wreszcie, paski wieloklinowe, podobnie jak paski klinowe, nie są przeznaczone do pracy z zębami kół zębatych i ich zastosowanie w tym kontekście prowadziłoby do niskiej efektywności oraz przyspieszonego zużycia komponentów. W praktyce, błędny dobór paska może skutkować nie tylko obniżoną wydajnością, ale także uszkodzeniem elementów przekładni, co wiąże się z kosztami napraw i przestojami w produkcji. Dlatego kluczowe jest, aby w przypadku przekładni zębatych zawsze stosować paski zębate, co jest zgodne z najlepszymi praktykami inżynieryjnymi oraz standardami jakości.

Pytanie 25

Na której ilustracji przedstawiono zawór odcinający?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 2.
C. Na ilustracji 3.
D. Na ilustracji 4.
Ilustracja 1 przedstawia zawór odcinający, który jest niezbędnym elementem w wielu systemach inżynieryjnych. Zawory odcinające służą do całkowitego zatrzymywania lub umożliwiania przepływu medium, takiego jak woda, gaz czy olej. Dzięki swojej konstrukcji, pozwalają na szybkie i efektywne zamknięcie przepływu, co jest kluczowe w sytuacjach awaryjnych, gdzie może być konieczne natychmiastowe odcięcie zasilania lub przepływu. W praktyce stosuje się je w instalacjach wodociągowych, przemysłowych systemach hydraulicznych oraz w instalacjach gazowych. Ważne jest, aby wybrać odpowiedni rodzaj zaworu odcinającego, dostosowany do specyfiki medium oraz warunków pracy. Zawory te powinny spełniać normy branżowe, takie jak PN-EN 13774, które określają wymagania dla zaworów używanych w systemach instalacyjnych. W kontekście bezpieczeństwa, zawory odcinające są często elementem systemów zabezpieczających, co podkreśla ich istotną rolę w inżynierii i technice.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Deasembler
B. Kompilator
C. Debugger
D. Emulator
Kompilator jest narzędziem, które tłumaczy kod źródłowy napisany w określonym języku programowania na kod maszynowy, który jest zrozumiały dla mikrokontrolera. Proces ten obejmuje kilka kroków, w tym analizę składniową, analizę semantyczną oraz generację kodu. Kompilatory są kluczowe w programowaniu systemów embedded, gdzie efektywność i optymalizacja kodu są niezwykle istotne. Przykładem popularnego kompilatora dla języka C jest GCC (GNU Compiler Collection), który jest szeroko stosowany w projektach związanych z mikrokontrolerami, takimi jak platforma Arduino. Kompilacja pozwala także na wykorzystanie różnych poziomów optymalizacji, co sprawia, że końcowy kod maszynowy działa szybciej i zużywa mniej zasobów. W dobrze zaprojektowanym procesie kompilacji, programiści mogą również zastosować dyrektywy preprocesora, co umożliwia dostosowanie kodu do różnych platform sprzętowych. Z tego powodu, znajomość działania kompilatorów jest niezbędna dla każdego, kto pragnie efektywnie programować mikrokontrolery.

Pytanie 28

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Potrzeba zmian w parametrach programu
B. Tryb wstrzymania CPU
C. Brak baterii podtrzymującej zasilanie
D. Tryb funkcjonowania CPU
Zaświecenie się czerwonej diody oznaczonej skrótem BATF na panelu sygnalizacyjnym sterownika PLC informuje użytkownika o braku baterii podtrzymującej zasilanie. Baterie te są kluczowe dla prawidłowego działania urządzeń, które przechowują dane w pamięci nieulotnej, takich jak godzina systemowa czy ustawienia konfiguracyjne. Gdy bateria jest wyczerpana lub nieobecna, sterownik PLC może stracić wprowadzone dane po wyłączeniu zasilania, co może prowadzić do nieprawidłowego działania systemu oraz utraty istotnych informacji. W praktyce, w przypadku zaświecenia się diody BATF, zaleca się jak najszybszą wymianę baterii, aby uniknąć potencjalnych awarii. Ponadto, zgodnie z normami branżowymi, regularne przeglądy stanu baterii oraz systematyczne konserwacje są kluczowe dla zapewnienia ciągłości pracy urządzeń oraz ich niezawodności. Utrzymanie funkcji podtrzymywania zasilania nie tylko zabezpiecza dane, ale również zwiększa efektywność operacyjną całego systemu.

Pytanie 29

Jaki element odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. Przełącznik obiegu.
B. Zawór ograniczający ciśnienie.
C. Element dławiący.
D. Element realizujący iloczyn logiczny.
Analizując niepoprawne odpowiedzi, można zauważyć kilka kluczowych błędów konceptualnych. Po pierwsze, element dławiący, choć również istotny w układach hydraulicznymi, służy do regulacji przepływu medium, a nie do jego przełączania. Dławik nie zmienia kierunku przepływu, lecz ogranicza jego ilość, co sprawia, że jest stosowany w innych kontekstach, takich jak kontrola prędkości silników hydraulicznych. Z kolei, element realizujący iloczyn logiczny jest komponentem stosowanym w automatyce, ale nie ma zastosowania w kontekście układów hydraulicznych czy pneumatycznych. Jest on wykorzystywany w systemach sterowania jako element decyzyjny, a nie jako mechanizm do kierowania przepływem medium. Zawór ograniczający ciśnienie, choć pełni ważną rolę w ochronie układów przed nadmiernym ciśnieniem, także nie realizuje funkcji przełączania, a jego zastosowanie koncentruje się na stabilizacji ciśnienia w systemach. Typowym błędem myślowym w przypadku wyboru tych odpowiedzi jest mylenie funkcji różnych komponentów oraz brak zrozumienia ich specyficznych ról w systemach hydraulicznych. Znajomość tych różnic jest kluczowa dla prawidłowego projektowania i eksploatacji układów, co podkreśla znaczenie odpowiedniego szkolenia i edukacji w obszarze technologii hydraulicznych.

Pytanie 30

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. chromowo-krzemowych
B. krzemowych
C. chromowych
D. krzemowo-manganowych
Rdzenie maszyn elektrycznych wykonuje się głównie ze stali krzemowej, ponieważ jej właściwości ferromagnetyczne zapewniają efektywność energetyczną oraz minimalizują straty energii w postaci ciepła. Stal krzemowa charakteryzuje się niskim współczynnikiem strat magnetycznych, co jest kluczowe w zastosowaniach takich jak silniki elektryczne czy transformatory. Dodatkowo, dzięki swojej strukturze krystalicznej, stal krzemowa ma dużą przewodność magnetyczną. W praktyce oznacza to, że rdzenie wykonane z tego materiału są bardziej kompaktowe i lżejsze, co przyczynia się do zmniejszenia wymiarów urządzeń elektrycznych. Standardy branżowe, takie jak IEC 60404, określają wymagania dotyczące rodzajów stali używanej w rdzeniach, podkreślając znaczenie stali krzemowej w produkcji zaawansowanych technologicznie maszyn elektrycznych. W związku z tym, stosowanie stali krzemowej jest zgodne z najlepszymi praktykami w zakresie projektowania i produkcji maszyn elektrycznych.

Pytanie 31

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. efektu piezoelektrycznego
B. zmiany rezystancji
C. zmiany pojemności elektrycznej
D. zmiany indukcyjności własnej
Czujniki oparte na zmianie rezystancji, znane jako tensometry, są kluczowe w pomiarze odkształceń konstrukcji nośnych. Ich działanie opiera się na zasadzie zmiany rezystancji elektrycznej materiału pod wpływem odkształcenia mechanicznego. Kiedy materiał jest rozciągany lub ściskany, jego długość oraz przekrój poprzeczny ulegają zmianie, co bezpośrednio wpływa na jego rezystancję. Tensometry są powszechnie stosowane w inżynierii budowlanej, zwłaszcza przy monitorowaniu mostów, wieżowców oraz innych obiektów narażonych na duże obciążenia. Dzięki ich użyciu inżynierowie mogą ocenić stan techniczny konstrukcji i przewidzieć potencjalne zagrożenia. Standardy branżowe, takie jak ISO 376, definiują wymagania dotyczące precyzyjnych pomiarów odkształceń, co czyni tensometry niezastąpionym narzędziem w nowoczesnym monitorowaniu strukturalnym. Umożliwiają one również przeprowadzanie analiz statycznych i dynamicznych, co jest kluczowe w projektowaniu bezpiecznych i trwałych obiektów budowlanych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. narzędzi do obróbki skrawaniem
B. śrub, nakrętek, podkładek
C. resorów, sprężyn i drążków skrętnych
D. łożysk tocznych
Stal niskostopowa z dodatkami krzemu, manganu, chromu i wanadu charakteryzuje się korzystnymi właściwościami mechanicznymi, które sprawiają, że jest idealnym materiałem do produkcji resorów, sprężyn i drążków skrętnych. Dodatki te poprawiają wytrzymałość oraz odporność na zmęczenie materiału, co jest kluczowe w zastosowaniach, gdzie elementy te muszą wytrzymywać wielokrotne obciążenia dynamiczne. Na przykład, w przemyśle motoryzacyjnym resory i sprężyny używane w systemach zawieszenia pojazdów muszą nie tylko absorbować drgania, ale także bezpiecznie przenosić duże obciążenia. Stal niskostopowa, dzięki swoim właściwościom, może być poddawana różnym procesom obróbczo-wytwórczym, takim jak hartowanie czy odpuszczanie, co dodatkowo zwiększa jej trwałość. Zgodnie z normami ISO i DIN, komponenty wykonane z tej stali powinny spełniać określone wymagania dotyczące wytrzymałości i twardości, co czyni je niezawodnymi w krytycznych zastosowaniach. Przykłady zastosowań obejmują nie tylko przemysł motoryzacyjny, ale także maszyny budowlane i przemysł ciężki, gdzie elementy te są niezbędne do zapewnienia odpowiedniej wydajności i bezpieczeństwa.

Pytanie 35

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wysuniętym tłoczysku siłownika i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0 i I3 = 1
B. I2 = 0 i I3 = 0
C. I2 = 1 i I3 = 0
D. I2 = 1 i I3 = 1
W przypadku błędnych odpowiedzi, można zauważyć, że mogą one wynikać z niepełnego zrozumienia zasady działania czujników oraz ich wzajemnych interakcji w danym układzie. Odpowiedzi sugerujące, że I2 = 1, wskazują na mylne założenie, jakoby czujnik B1 mógł być aktywowany, gdy tłoczek siłownika jest wysunięty. W rzeczywistości aktywacja czujnika B1 ma miejsce jedynie w momencie, gdy tłoczek jest w pozycji cofniętej. To typowy błąd, który często pojawia się przy analizie systemów automatyki, z powodu nieprecyzyjnego zrozumienia, jak poszczególne komponenty układu wpływają na siebie. Zrozumienie logiki, która stoi za stanami logicznymi I2 i I3, jest kluczowe dla skutecznej diagnostyki i analizy, a także dla projektowania systemów kontrolnych. Często podczas nauki koncepcji automatyki, uczniowie mogą błędnie interpretować schematy, co prowadzi do fałszywych wniosków. Dlatego tak ważne jest, aby zwracać uwagę na kontekst pracy czujników oraz ich stan w danej aplikacji. Kluczowym krokiem w nauce jest umiejętność dokładnej analizy i syntezowania informacji na podstawie schematów oraz rzeczywistych zachowań systemów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który miernik należy zastosować w układzie, którego schemat przedstawiono na ilustracji, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Woltomierz.
B. Omomierz.
C. Watomierz.
D. Amperomierz.
Wybór omomierza, watomierza lub amperomierza do pomiaru napięcia elektrycznego jest nieodpowiedni z kilku powodów, wynikających z ich specyfikacji oraz zasady działania. Omomierz służy do pomiaru rezystancji w obwodach elektrycznych, a jego zastosowanie w pomiarze napięcia może doprowadzić do błędnych wyników, ponieważ omomierz z reguły wykorzystuje zasilanie do pomiaru, co może zmienić parametry obwodu. Watomierz, z drugiej strony, mierzy moc, a nie napięcie, co oznacza, że służy do oceny ilości energii elektrycznej wykorzystywanej przez urządzenie w danym czasie. Zastosowanie watomierza do pomiaru napięcia prowadzi do mylnych interpretacji, ponieważ moc to iloczyn napięcia i natężenia prądu, a nie samodzielna wartość napięcia. Amperomierz jest przeznaczony do pomiaru natężenia prądu, a jego podłączenie w szereg do obwodu w miejsce woltomierza może spowodować zwarcie lub uszkodzenie urządzeń. Argumentacja, że te urządzenia mogą być używane zamiennie, wynika z niepełnego zrozumienia zasady działania i zastosowania różnych typów mierników, co jest powszechne wśród początkujących. W rzeczywistości, każdy z tych mierników ma swoje specyficzne zastosowanie i kierunki działania, co potwierdzają standardy branżowe, które jasno definiują ich funkcje i ograniczenia.

Pytanie 38

Ilustracja przedstawia budowę i działanie zaworu

Ilustracja do pytania
A. dławiąco-zwrotnego.
B. szybkiego spustu.
C. odcinającego.
D. zwrotnego.
Zawór dławiąco-zwrotny, który został przedstawiony na ilustracji, pełni kluczową rolę w systemach hydraulicznych i pneumatycznych, umożliwiając jednoczesną regulację przepływu medium oraz zapobiegając jego cofaniu się. Tego typu zawór jest szczególnie istotny w aplikacjach, gdzie precyzyjna kontrola przepływu jest wymagana, jak w układach chłodzenia czy smarowania. Zawór dławiąco-zwrotny zastosowany w tych systemach umożliwia optymalizację wydajności oraz bezpieczeństwa operacyjnego. Dodatkowo, przez odpowiednie ustawienie elementów dławienia, można dostosować przepływ do specyficznych potrzeb urządzenia, co jest zgodne z najlepszymi praktykami w inżynierii. W kontekście standardów, zawory tego typu powinny spełniać normy ISO dotyczące bezpieczeństwa oraz wydajności, co zwiększa ich niezawodność w trudnych warunkach eksploatacyjnych.

Pytanie 39

W przedstawionym na rysunku układzie sterowania siłownikiem jednostronnego działania, którego schemat przedstawiono na rysunku, tłoczysko siłownika wysuwa się po naciśnięciu jednego z przycisków. W opisanej sytuacji znakiem "?" oznaczono zawór

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
W sytuacji przedstawionej w pytaniu, wybór błędnych odpowiedzi wiąże się z niezrozumieniem podstawowych zasad działania zaworów w układach pneumatycznych. Odpowiedzi takie jak A, B czy D mogą sugerować inne typy zaworów, które nie są dostosowane do wymogów pracy z siłownikami jednostronnego działania. Na przykład, zawory 3/2, które mogą być przedstawione w odpowiedziach, nie posiadają wystarczającej liczby portów ani możliwości precyzyjnego kierowania przepływem, co skutkuje niemożnością realizacji funkcji wysuwania lub chowania tłoczyska siłownika. Często myślenie, że prostsze zawory mogą zaspokoić potrzeby skomplikowanego układu, prowadzi do poważnych problemów operacyjnych, takich jak niepełne wysunięcie siłownika lub brak możliwości jego wycofania. W branży automatyzacji, nieodpowiedni dobór elementów sterujących może prowadzić do awarii sprzętu lub wypadków, co jest niezgodne z wytycznymi BHP i normami SAE J1939. Dlatego kluczowe jest zrozumienie, że każdy element układu, w tym zawór, musi być dobierany w oparciu o specyfikacje aplikacji oraz wymagania techniczne, aby zapewnić bezpieczne i efektywne działanie całego systemu.

Pytanie 40

Odczytaj wynik pomiaru wykonanego mikrometrem przedstawionym na rysunku.

Ilustracja do pytania
A. 5,030 mm
B. 5,583 mm
C. 5,783 mm
D. 5,780 mm
Wybór niepoprawnej odpowiedzi może wynikać z kilku błędnych koncepcji związanych z odczytem mikrometru. Na przykład, w odpowiedziach, w których podano wartości takie jak 5,583 mm, 5,780 mm lub 5,030 mm, można zauważyć nieprawidłowe zrozumienie, jak odczytywać skalę główną i bębnową mikrometru. Często błąd polega na pominięciu wyraźnych wartości na bębnie lub na niewłaściwym ich zaokrąglaniu. Ważne jest, aby zwrócić uwagę na to, że każda nieprawidłowa interpretacja wyników może prowadzić do znacznych różnic w końcowym pomiarze, co ma bezpośredni wpływ na jakość produktu. W kontekście inżynierii, takie pomyłki mogą skutkować niezgodnościami w wymiarach produktów i ich wykonaniu. Warto zwrócić uwagę, że dokładne umiejętności pomiarowe są niezbędne, aby spełniać wymogi norm jakościowych, takich jak ISO. Niezrozumienie tego procesu może prowadzić do rutynowych błędów, które mogą być kosztowne zarówno w kontekście czasu, jak i zasobów. Dlatego warto ćwiczyć czytanie mikrometru, zwracając szczególną uwagę na precyzyjne oparcie się o trzy kluczowe wartości – główną, bębnową i drobne podziałki, aby uniknąć takich nieporozumień.